
EMOTION RECOGNITION IN PUBLIC SPEAKING SCENARIOS
UTILISING AN LSTM-RNN APPROACH WITH ATTENTION

Alice Baird 1, Shahin Amiriparian 1, Manuel Milling 1, Björn W. Schuller 12

1 Chair of Embedded Intelligence for Healthcare and Wellbeing, University of Augsburg Germany
2 GLAM – Group on Language, Audio, & Music, Imperial College London, UK

ABSTRACT

Speaking in public can be a cause of fear for many peo-
ple. Research suggests that there are physical markers such
as an increased heart rate and vocal tremolo that indicate an
individual’s state of wellbeing during a public speech. In
this study, we explore the advantages of speech-based fea-
tures for continuous recognition of the emotional dimensions
of arousal and valence during a public speaking scenario.
Furthermore, we explore biological signal fusion, and per-
form cross-language (German and English) analysis by train-
ing language-independent models and testing them on speech
from various native and non-native speaker groupings. For
the emotion recognition task itself, we utilise a Long Short-
Term Memory - Recurrent Neural Network (LSTM-RNN) ar-
chitecture with a self-attention layer. When utilising audio-
only features and testing with non-native German’s speaking
German we achieve at best a concordance correlation coeffi-
cient (CCC) of 0.640 and 0.491 for arousal and valence, re-
spectively – demonstrating a strong effect for this task from
non-native speakers, as well as promise for the suitability of
deep learning for continuous emotion recognition in the con-
text of public speaking.

Index Terms— public speaking, affective computing,
long short-term memory, recurrent neural networks

1. INTRODUCTION

In modern society, public dissemination is a useful tool for
knowledge-sharing. However, having a fear of public speak-
ing means that some individuals avoid this opportunity. Pub-
lic speaking can provoke disorders, including Generalised
Anxiety Disorder (GAD), and acute stress [1], both having a
substantial effect on short-term wellbeing [2]. Physical mark-
ers of such disorders are prominently observed in speech [3].
Furthermore, cultural differences in regards to an individual’s
response to the fear of public speaking have been researched,
with markers including varied heart and speech rates [1].

To this end, observing emotional states during public
speaking allows for a strong indication of the overall state of
wellbeing [4], particularly as research has shown that an indi-
vidual’s typical emotion production can change during public

speaking [5]. With this in mind, biological signals are not
readily observable and require rather invasive methods to be
continuously captured. Audio, however, can be observed non-
invasively, and has shown to be a reliable indicator for an in-
dividual’s state or trait [6, 7]. However, research has shown
that the ‘illusion of transparency’ can mean that alterations
in speech are more prominent to the speaker than the audi-
ence [8], suggesting that biological signals may be more valu-
able for observation during a public speech.

For the current study, we have two core research goals,
i) to evaluate if speech-based audio features are useful for
recognition of emotion during a public speaking scenario
ii) to understand the impact of fusing audio and biological sig-
nals for speech emotion recognition. To explore these goals
we implement a deep learning-based approach, utilising a
long short-term memory - recurrent neural network (LSTM-
RNN) architecture with self-attention, to predict continuous
emotion (arousal and valence). We apply an attention mecha-
nism as this has shown to improve results for most sequence-
based tasks, including emotion recognition [9, 10], as well
as healthcare tasks such as continuous detection of sleepi-
ness [11]. We train a series of models on various acoustic
features as well as fusing the biological signals of ‘blood vol-
ume pulse’ (BVP) and ‘skin conductance’ (SC). The dataset
utilised in this current work includes individuals speaking in
both German and English during a public speaking scenario.
Moussu et al. have shown that speaking in front of others in
ones non-native language may cause more fear [12]. Moti-
vated by this research and given the bilingual nature of the
current dataset, we further organise the dataset into nativeness
groupings to explore this effect.

The rest of our paper is organised as follows. First, in
Section 2, we outline some related computational approaches
in this area. We then describe the database used in our ex-
periments in Section 3. Following this, we outline our experi-
mental settings for the task of emotion prediction from speech
and biological signals in Section 4. Our results are then dis-
cussed in Section 5, and we further perform a brief acoustic
analysis to more deeply observe the machine learning result
in Section 6. Finally, we provide conclusions and future work
plans in Section 7.
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Fig. 1. Distribution of the gold-standard ratings for arousal
(left) and valence (right) across all speakers in the BIOS-DB ,
including the normalised distribution curve.

2. BACKGROUND

In the field of affective computing, there are numerous com-
putational methods for continuous recognition of emotional
states, and the success of speech emotion recognition (SER)
has led to a growing research community [13, 14]. Promis-
ing results for SER based on end-to-end learning [15], as well
as unsupervised representation learning with sequence to se-
quence autoencoders [16] and image-to-audio transfer learn-
ing systems with pre-trained convolutional neural networks
(CNNs) (e. g. , DEEP SPECTRUM ) show promise [17]. How-
ever, many studies still find success with more hand-crafted
approaches [18, 19]

Recently, Zhao et al. [20] applied an artificial neural net-
work consisting of convolution-based local feature learning
blocks and recurrent layers with LSTM cells to improve pre-
vious results on the Berlin EmoDB database [21]. In regards
to biological signal prediction from speech, there have been
minimal works [22], however, in [23], the authors use an end-
to-end approach based on 1D convolutional and recurrent lay-
ers for the prediction of emotions from biological signals,
achieving competitive results on the Audio Visual Emotion
Challenge (AVEC) 2016 data [24].

With the current contribution focused on emotion predic-
tion during a public speaking scenario, we found that there
has been minimal research in this area. In [25], the au-
thors utilise conventional machine learning classifiers such as
support vector machines (SVMs) to infer emotion from non-
verbal vocalisations, during a public speaking exercise. Sim-
ilarly, in [26], the authors explore various window lengths
for extracting standard audio features, i. e. , jitter, pitch, and
MFCCs, to predict states of stress during public speaking.
With these works in mind, to the best of the authors’ knowl-
edge, this contribution is the first of its kind, to utilise deep
learning methods in the context of public speaking for emo-
tion recognition, as well as exploring the advantages of bio-
logical signal fusion.

3. THE BIOSPEECH DB

The BioSpeech DB (BIOS-DB ) was first introduced in [22],
and the interested reader is referred to this publication for fur-
ther details. In this contribution, we present an updated ver-

sion of the BIOS-DB . This version includes higher resolution
biological signals, which may be of more use to a wider vari-
ety of research fields1.

The currently used version of the BIOS-DB contains 42
speakers (17 female), with a mean age of 26.76 years, and a
standard deviation of 6.62 years. From these speakers, 30 are
native German, and 12 are from a variety of foreign countries.
The number of speakers in the dataset is typical for the field
of computational paralinguistics [28], due to the time-cost re-
lated to quality data collection and annotation [29]. Each par-
ticipant was asked to speak a text (“The North Wind and the
Sun”) out loud in front of a minimum of 4 observers, speak-
ing in German and English. During their speech, 3 of the
observers were using joysticks to continually rate the emo-
tion of the speakers in regards to the arousal and valence di-
mensions, where the Y axis is arousal (i. e. , strength of the
emotion), and the X axis is the valence of the emotion (i. e. ,
negative or positive). During their speech, two channels of
audio were captured, one from a lapel microphone and one
from a room microphone placed on the table in front of the
speaker. Furthermore, two sensors were placed on the fin-
ger of the participants to capture blood volume pulse (BVP)
as a % of blood volume pressure, and skin conductance (SC)
measured in microSiemens (µS), at a sampling frequency of
2 048 Hz and 256 Hz, respectively.

3.1. Data Processing

Audio data was captured at a 44.1 kHz sampling rate with 16
bit resolution in MONO WAV format, and has been converted
to 16 kHz, 16-bit WAV for use with popular feature extraction
tool kits. As our fusion strategy requires an identical sam-
ple frequency of the given modalities, we choose 16 Hz for
audio feature extraction as well as for resampling of the bio-
logical signals. We observe the expected loss of information
caused by the resampling of the biological signals to be min-
imal, and to support this we performed peak analysis across
the BVP signals of all speakers, finding that the mean distance
between peaks is 0.668 s and 0.656 s, for 2 048 Hz and 16 Hz,
respectively

A gold-standard for the emotion labels was calculated be-
tween the three raters utilising the Evaluator Weighted Es-
timator (EWE) method. EWE is described with more detail
in [30] and has been applied repeatedly on emotion-based cor-
pora [31]. The mean inter-rater agreement across all speak-
ers in the BIOS-DB , from the three annotators was 0.47 and
0.36 (based on a range of [0,1]) for arousal and valence, re-
spectively. For the machine learning experiments the gold-
standard emotion labels were re-scaled to [-1,1] based on the
maximum possible value. In Figure 1, the distribution of the
gold-standard ratings for both emotional dimensions, across
all speakers used in our experiments is given.

1Follow the DOI for a link to the current data repository [27]
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Table 1. Subset of the original BIOS-DB - speaker in-
dependent partitions, for German (GER) and NonGerman
(NonGER) speakers (#).

# Train Test
∑

GER 25 5 30
NonGER 7 5 12∑

32 10 42

4. EXPERIMENTAL SETTINGS

A brief overview of our recurrent attention-based approach
for the task of emotion recognition (arousal and valence) from
speech with biological signal fusion is given in Figure 2.
We evaluate the data in several language-based groups, train-
ing language-dependent models, and testing on various native
and non-native subsets. An overview of the data distribution
across the speaker-independent partitions is given in Table 1.

4.1. Audio Features

We extract conventional hand-crafted speech features, as well
as a deep learning approach in which spectrogram-based data
representations are extracted from the speech signals.

As a conventional and well established speech approach,
the 88 dimensional EGEMAPS feature set [32], is used given
the advantages found in similar paralinguistic tasks [3]. From
each audio instance, EGEMAPS acoustic features are ex-
tracted with the OPENSMILE toolkit [33]. The default pa-
rameter settings from OPENSMILE are used, and features are
extracted with a window size of 62.5 ms.

For the unsupervised approach, we extract a 4 096-
dimensional feature set of deep data-representations using the
DEEP SPECTRUM toolkit [34]2. DEEP SPECTRUM has shown
success for similar audio- and speech-based tasks [35], and
extracts features from the audio data using pre-trained image
convolutional neural networks (CNNs). For this study, we ex-
tract Viridis colour map spectrograms (cf. Figure 3 for colour
map), and we extract features with the same window length of
62.5 ms, using the default VGG16 pre-trained network. Dur-
ing training, the DEEP SPECTRUM features are standardised
by subtracting the mean and scaling to unit variance.

4.1.1. Data Augmentation

To infer the effect of data quantity in this context, we apply
data augmentation to the spectrogram features. For this we
extract the spectrogram representations of each audio file at
a window length of 1 second and a hop size of 62.5 ms. We
then apply the SPECAUGMENT approach [36] which masks

2https://github.com/DeepSpectrum/DeepSpectrum
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Fig. 2. Overview of the experimental settings applied in this
study for the task of emotion recognition (arousal and va-
lence) from speech and biological signal fusion.

portions of frequency and time from each extracted spectro-
gram. With this approach we duplicate the training data by
a factor of 2. We then utilise the methodology provided by
the DeepSpectrum toolkit to extract feature vectors from the
augmented spectrogram images directly.

4.2. LSTM-RNN with Attention

In order to address the sequential nature of both the audio
and biological-based input features, we implement an LSTM-
RNN based architecture. The network consists of one recur-
rent layer with 128 LSTM cells. We then add a self-attention
sequence layer, with a sequence-wide attention window, and
sigmoid as the attention activation. The output is fed into a
feed-forward layer to provide the predictions.

4.2.1. Network training

We train each model for 5 epochs with a batch size of 64 us-
ing the Adam optimiser with a learning rate of 0.001. Due
to the temporal nature of both the signals, we reshaped the
input data in sequences of 20 feature vectors (equal to 1.25
seconds). Training of the network is made speaker indepen-
dently, and the model is updated iteratively per speaker. To
avoid potential speaker bias caused by this training method,
for each trained model, we shuffle the order of speakers.

Two types of language-based models (German and En-
glish) are trained with the two feature sets described
(EGEMAPS and DEEP SPECTRUM ), as well as fusing the
BVP and SC signals, to evaluate the effect of this fusion strat-
egy. For model testing, we group the speakers into Native-
Germans speaking German (GER-GER), Native-Germans
speaking English (GER-ENG), Non-Germans speaking Ger-
man (NonGER-GER), and Non-Germans speaking English
(NonGER-ENG). We also report results from all test speakers
together (All). To evaluate the prediction accuracy, we utilise
concordance correlation coefficient (CCC) as our evaluation
metric. CCC is well established in the field of SER [15, 37],
and considers offset and scaling variance better than the con-
ventional Correlation Coefficient metric [38].
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Table 2. Continuous (A)rousal and (V)alence recognition results from the BIOS-DB . Results obtained from the mean of all test
speakers in that grouping, across the 5 best-performing models trained on both English (ENG) and German (GER) languages
(Lang.). † indicates the use of data augmentation. Reported is concordance correlation coefficient (CCC) from audio features
only, as well as from the fusion of blood volume pulse (BVP) and skin conductance (SC). Emphasised results for arousal
indicate >0.3 CCC, and for valence >0.1 CCC. Results with * are discussed in Section 5.

GER-GER GER-ENG NonGER-GER NonGER-ENG All

Feature Set Lang. A V A V A V A V A V

eGeMAPS ENG .072 .045 .165 .102∗ .403 .279∗ .582∗ .175∗ .269 .130∗

GER .075 .069 .147 .072 .382 .148 .370 .088 .203 .084
DeepSpectrum ENG .046 .074 .117 .045 .233 .089 .349 .063 .147 .037

GER -.003 .064 -.004 .021 .471 .078 .339 .010 .114 .028
DeepSpectrum† ENG .172 .056 .018 .393 .283 .308 .156 .244 .158 .226

GER -.050 .192 .096 .419 .640 .491 .387 .296 .344 .334

eGeMAPS + BVP ENG .127 .059 .260∗ .112 .423 .347∗ .518∗ .100 .269 .145∗

GER .084 .053 .160 .018 .307 .036 .358 .035 .194 .029
DeepSpectrum + BVP ENG .077 .055 .169 .034 .292 .088 .361 .015 .155 .034

GER .034 .076 .057 .040 .491 .103 .342 .017 .167 .042

eGeMAPS + SC ENG .082 .077 .166 .086 .438 .165 .468* .099 .228 .094
GER .047 .051 .096 .129 .333 .298 .171 .126 .114 .137

DeepSpectrum + SC ENG .027 .066 .065 .001 .376 .006 .353 .027 .145 .010
GER .056 .051 .099 .078 .271 .141 .165 .176 .178 .078

5. DISCUSSION OF RESULTS

An overview of the results for all experimental paradigms is
given in Table 2. Where we discuss significant differences,
this is based on the predictions from all speakers and a mean
of all models and proceeds an evaluation of normality using
a Shapiro-Wilktest [39]; we then perform a two-tailed T-test,
and reject the null hypothesis at a level of p < 0.05.

The results in Table 2 show that language appears to play
a notable role for emotion recognition in this context. The
best Native-German correlation for arousal is 0.260 CCC for
the model trained on English, and tested on Germans speak-
ing English (GER-ENG). As well as this, The German only
models (GER-GER) have consistently negligible correlations
as compared to NonGER-GER.

Furthermore, if we look only at the Non-German re-
sults, we see a promising increase in CCC, particularly for
the English trained models. Indeed, in this paradigm, we
see our best valence result comes from NonGER-GER, with
0.279 CCC, which is then significantly (p < 0.05) increased
through the fusion of BVP biological signals up to 0.347
CCC. This result suggests that the positive to negative aspect
of emotion (which is typically a challenge for audio mod-
elling) is captured more easily when individuals are speaking
in their non-native language. A result which is slightly agreed
upon with the GER-ENG valence score of 0.102 CCC, and
even from the NonGER-ENG valence results of 0.175 CCC –
as within the dataset there are only 2 native English speakers.

For the prediction of arousal, the best correlation is 0.582

CCC, and comes from the audio-only English model, when
testing on NonGER-ENG, a result which is significantly (p <
0.05) stronger than results obtained from fusion of BVP and
SC signals. For the fusion results in general, we see that
for arousal there is little to no benefit; however, valence
does show improvement particularly with BVP, and with the
EGEMAPS result for the SC German model (0.298 CCC).

Across most of the testing paradigms, the hand-
crafted EGEMAPS features perform better than DEEP SPEC-
TRUM for this task. However, through the use of data aug-
mentation, we see more stable results across all, with our best
result for arousal of .640 CCC obtained in the NonGER-GER
grouping. This suggests that the data augmentation approach
is suitable to improve the robust nature of the model, and fur-
ther establishes the findings in regards to the language group-
ings, as we do see similar patterns of behaviour between the
feature sets.

In this regard, for the GER-GER model trained on En-
glish there is an improvement with data augmentation, which
would also point to the language dependency of our models
and the task itself. For further research, it would be of inter-
est to perform feature selection with the EGEMAPS features,
to explore which features from this set perform highly in this
context. As well as this various audio-based augmentation
approaches, such as additive noise, may also improve the ro-
bustness of these results.
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Fig. 3. Spectrogram representation of speaker #5 GER-GER
(left), and speaker #36 NonGER-GER (right). Of note, we see
that there is a shorter duration of speech in GER- samples, and
more pitch (F0) variance in NonGER- samples.

6. ACOUSTIC ANALYSIS

To explore the machine learning results further, we perform a
brief acoustic analysis on the audio samples. We extract the
standard deviation (STD) of Pitch F0 (Hz), and intensity (dB),
from a short (ca. 2 seconds) segment containing the phrase
“The North Wind and the Sun” in English or “Der Nordwind
und die Sonne” in German. We additionally extract spectro-
grams from the samples, plotting F0 to visually observe any
acoustic phenomena present in the samples (cf. Figure 3 for
a selection of spectrogram representations.).

6.1. Fundamental Frequency

When analysing the fundamental frequency (F0), we find
that native German speakers have an overall lower mean F0.
Germans speaking German and English show a mean F0 of
105.87 Hz and 113.72 Hz, respectively, and a mean F0 stan-
dard deviation (STD) of 43.11 Hz, and 45.90 Hz. However,
Non-Germans speaking German and English have a mean
of 145.23 Hz (F0 STD: 52.15 Hz), and 150.52 Hz (F0 STD:
45.95 Hz), respectively. This leads us to assume that F0 plays
a role in this task, particularly as the STD in the speech signal
is higher for Non-German speakers. We also see as expected
that female speakers show a higher F0 than males, 168.05 Hz
(mean STD 49.51 Hz) compared to 87.05 Hz (mean STD
42.39 Hz), potentially this F0 variance may have aided emo-
tion recognition for Non-German speakers as there is a slight
imbalance in the dataset (7:8 Non-German:German, females),
although this would require further investigation.

6.2. Intensity

We additionally extract the sound intensity (dB) from each
of the audio files. In this case, we see that speakers speak-
ing German have a lower mean intensity than those speak-
ing English, 63.09 dB, 66.92 dB, respectively. We see further
that Non-Germans speaking English have a higher mean in-
tensity as compared to all other groupings tested of 68.24 dB.
This observation leads us to assume that intensity of the audio
signal is also meaningful, as we again see a more prominent

variance in Non-German speakers, although as with the find-
ing for F0 this would require a more in-depth analysis.

7. CONCLUSIONS AND FUTURE WORK

In this contribution we presented results from experiments fo-
cusing on emotion recognition in a public speaking scenario.
We utilised an LSTM-RNN with an attention mechanism and
evaluated various audio-based feature sets as well as fusion
with biological signals. Of high interest, findings suggest
that speech variances from the Non-German speakers may
have aided modelling of emotion for this grouping. A finding
which is further established through a continued trend across
results in each grouping (even after data augmentation), e. g. ,
the large disparity in results when testing on German speak-
ers speaking German, although this would need further more
specific evaluation.

We find that audio features are suitable alone for the task
of predicting emotion in this context. Although fusing bio-
logical signals with audio has shown only minimal CCC im-
provement in most cases, valence does appear to be modelled
better with this fusion strategy. However, this behaviour was
not consistent across feature sets and so would also require a
deeper analysis. To this point, it would be of great interest
to explore temporal and frequency domain feature extraction
of the biological signals in a future study, as well as conduct-
ing a more close analysis of the acoustic findings relating to
speaker nativeness during public speaking.
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41, núm. 3, p. 315-348, 2008.

[13] M. El Ayadi, M. S. Kamel, and F. Karray, “Survey on speech emotion
recognition: Features, classification schemes, and databases,” Pattern
Recognition, vol. 44, no. 3, pp. 572–587, 2011.
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