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A B S T R A C T

Cardiovascular diseases are the leading cause of death and severely threaten human health in daily life. There
have been dramatically increasing demands from both the clinical practice and the smart home application for
monitoring the heart status of individuals suffering from chronic cardiovascular diseases. However, experienced
physicians who can perform efficient auscultation are still lacking in terms of number. Automatic heart sound
classification leveraging the power of advanced signal processing and deep learning technologies has shown
encouraging results. Nevertheless, a lack of explanation for deep neural networks is a limitation for the
applications of automatic heart sound classification. To this end, we propose explaining deep neural networks
for heart sound classification with an attention mechanism. We evaluate the proposed approach on the heart
sounds shenzhen corpus. Our approach achieves an unweighted average recall of 51.2% for classifying three
categories of heart sounds, i. e., normal, mild, and moderate/severe. The experimental results also demonstrate
that the global attention pooling layer improves the performance of the learnt representations by estimating
the contribution of each unit in high-level features. We further analyse the deep neural networks by visualising
the attention tensors.
1. Introduction

As reported by the World Health Organisation (WHO), Cardiovas-
cular diseases (CVDs) are the first leading cause of death globally,
which made 17.9 million people dead in 2016 (representing 31% of
all global deaths) (Wolrd Health Organisation (WHO), 2017). More
seriously, this number is predicted to be around 23 million per year by
2030 (Benjamin et al., 2019). Early-stage diagnosis and proper man-
agement of CVDs can be very beneficial to mitigate the high costs and
social burdens by coping with serious CVDs (Hu et al., 2016; Schwamm
et al., 2017). Auscultation of the heart sounds, as a cheap, convenient,
and non-invasive method, has been successfully used by physicians
for over a century (Dwivedi et al., 2018). However, this clinical skill
needs tremendous training and is still difficult for more than 20%
of the less experienced medical interns to efficiently use (Mangione,
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2001). Therefore, developing an automatic auscultation framework can
facilitate the early cost-effective screening of CVDs, and at the same
time, manage the progression of its condition (Dwivedi et al., 2018).

Computer audition (CA) and its applications in healthcare (Qian,
Li et al., 2020) have yielded encouraging results in the past decades.
Due to its non-invasive and ubiquitous characteristic, CA-based meth-
ods can facilitate automatic heart sound analysis studies, which have
already attracted a plethora of efforts (Dwivedi et al., 2018). Addition-
ally, benefited from the fast development of machine learning (ML),
particularly, its subsets, i. e., deep learning (DL), and the prevalent
smart sensors, wearables, devices, etc., intelligent healthcare can be
implemented feasibly in this era of AIoT (artificial intelligence-enabled
internet of things). A systematical and comprehensive review of the
existing literature on heart sound analysis via ML was provided in the
study (Dwivedi et al., 2018). In the early works, designing efficient
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Fig. 1. The overview scheme of our heart sound classification procedure.

eatures ranging from classic Fourier transformation to multi-resolution
nalysis (e. g., wavelet transformation) dominated the well-documented
iterature in this field. In recent years, using DL models for analysing
nd extracting high-level representations from heart sounds has in-
reasingly been studied (Clifford et al., 2017). Furthermore, as indi-
ated in the study (Dong et al., 2020), the current trend is to classify the
eart sounds from the whole audio recording without any segmentation
tep. On the one hand, the state-of-the-art DL methods aim to build a
eep end-to-end architecture that can learn high-level representations
rom the heart sound itself without any human hand-crafted features.
n the other hand, the DL models are restrained by the generalisation
f the learnt representations from a limited data set. However, with the
L-based systems of heart sounds analysis, black-box DL models cannot
roduce transparent and understandable decisions for physicians to
rovide the next physical examination and appropriate treatment. Mak-
ng explainable decisions via DL-based systems is a trend to enhance the
rust of physicians in the systems and promote their application in the
edical area (Holzinger et al., 2017). In the recent study (Xu et al.,
017), a promising attention mechanism was proposed to explain the
L models via visualising the internal layers.

To this end, we propose a novel attention-based deep representation
earning method for heart sound classification in this study (Fig. 1). The
roposed approach is validated on an open database, i. e., the Heart
ounds Shenzhen (HSS) database (Dong et al., 2020), hence rendering
ur studies reproducible and sustainable. The main contributions of
ur work are: First, by leveraging the power of a global attention
ooling layer, the DL models can learn more robust and generalised
igh-level representations from the heart sound. Second, we make
comprehensive investigation and comparison of the topologies of

L models, i, e., convolutional neural networks (CNNs) and recurrent
eural networks (RNNs). Third, we compare the proposed method with
ther state-of-the-art approaches using the same database and standard
rocessing. Fourth, we explore the visualisation of the learnt high-
evel representations of our proposed DL models using the attention
echanism, which can contribute to an explainable AI (XAI) (Adadi &
errada, 2018). Last but not least, we indicate the current limitations
nd give our perspectives in this domain, which can be good guidance
or future work.

The remainder of this paper will be structured as follows. First, a
rief description of related work will be given in Section 2. Then, we in-
roduce the database and methods used in Section 3. The experimental
esults and discussion are illustrated in Sections 4 and 5, respectively.
inally, we summarise our work in Section 6.

. Related work

Classic machine learning. In the classic ML paradigm, human
and-crafted feature extraction is a prerequisite, which aims to de-

ign a series of efficient and robust features from the signals for

2

specific tasks, e. g., heart sound classification. Among the features,
wavelet transformation (WT) based representations showed efficient
and excellent performance. For instance, wavelet features fed into the
least square support vector machine (LSSVM) can enable to recognise
the cases of normal, aortic insufficiency, aortic stenosis, atrial septal
defect, mitral regurgitation, and mitral stenosis (Ari et al., 2010).
Moreover, Uğuz (2012) designed entropy features of sub-bands by using
discrete wavelet transformation (DWT) for classifying heart sounds.
Similarly, tunable-Q wavelet transformation (TQWT) based features
that characterise the various types of murmurs in cardiac sound sig-
nals were introduced in the study (Patidar et al., 2015). Wavelet
packet transformation (WPT) based features were used in another
study (Zheng et al., 2015), by which a full decomposition tree can
be generated in a one-level decomposition process. Besides using the
directly extracted low-level descriptors (LLDs) of the wavelet features,
some high-level representations can also be derived. For example, auto-
correlation features can be extracted from the sub-band envelopes that
are calculated from the sub-band coefficients of the heart sound by
DWT (Deng & Han, 2016). A combination of WT and WPT energy-
based features combined with a deep RNN model was proposed in
the study (Qian et al., 2019). Compared with the conventional short-
time Fourier transformation (STFT) based features used for heart sound
classification (Wang et al., 2007), wavelet features can provide a multi-
resolution analysis of the non-stationary signals (heart sounds). This
capacity helps to optimise the Heisenberg-alike time–frequency trade-
off in time–frequency transformations (De Bruijn, 1967). Nevertheless,
wavelet transformation still has its own drawbacks. In particular, de-
signing a suitable wavelet function is not an easy job, which demands
tremendous empirical experiments for specific tasks.

Deep Learning. Benefiting from the fast development of DL, the
eart sound feature extraction can be realised without domain knowl-
dge. Supervised learning and unsupervised learning approaches for
nalysing heart sounds are introduced as follows.
(i) Supervised Learning. The higher representations of the heart

ounds can be automatically extracted from (pre-trained) CNNs and be
ed into a classifier, e. g., SVM (Ren, Cummins et al., 2018). In recent
ork, Fernando et al. introduced the attention-based deep learning
odel for the heart sound segmentation task, and indicated that their
odel outperformed the state-of-the-art baseline methods (Fernando

t al., 2020).
(ii) Unsupervised Learning. (Amiriparian et al., 2018) introduced

n unsupervised representation learning method using an auto-encoder-
ased recurrent neural network in the paradigm of sequence-to-
equence (Seq2Seq) learning.
Attention Mechanism. With the generated high-level represen-

ations, most end-to-end deep representation learning methods, par-
icularly CNNs and RNNs, use a global pooling layer to summarise
he high-dimensional representations into one-dimensional vectors for
ater classification (Akhtar & Ragavendran, 2020; Ren, Kong et al.,
018). For example, global max-pooling selects the maximum value
rom each two-dimensional feature map in CNNs (Ren, Kong et al.,
018). Yet, our previous study has shown that global max-pooling
oses the contribution of the other smaller values (Ren et al., 2019).
lobal attention pooling was proposed in the study (Ren, Kong et al.,
018) to improve the performance of CNNs through estimating the
ontribution of each unit in the feature maps to the classification task.
n attention mechanism was also employed to explain the decisions
ia visualising the internal layers of DL models in the studies (Ren
t al., 2019; Xu et al., 2017). With the inspiration of global attention
ooling (Xu et al., 2017), we will show the effectiveness of CNNs with
ttention at the time–frequency level, and RNNs with attention at the
ime level, respectively. Notably, the input of the deep learning models
s the log Mel spectrograms of heart sound signals.
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Table 1
The data partitions, i. e., train, dev(elopment), and test sets, of the HSS corpus at the
three classes, i. e., normal, mild, and mod(erate)/sev(ere), and subject numbers.

# Subject Normal Mild Mod./Sev. 𝛴

Train 100 84 276 142 502
Dev 35 32 98 50 180
Test 35 28 91 44 163

𝛴 170 144 465 236 845

3. Materials and methods

In this section, the HSS corpus, which were collected for heart sound
classification, will be firstly introduced. Afterwards, two DL topolo-
gies, including a CNN and an RNN, are presented, and the attention
mechanisms applied to each of them are described in detail. Finally,
the evaluation metrics for the task of heart sound classification will be
given.

3.1. HSS corpus

The HSS corpus was established by Shenzhen University General
Hospital, Shenzhen, China (Dong et al., 2020). Please note that the
study (Dong et al., 2020) was approved by the ethics committee of
the Shenzhen University General Hospital. During the data collection,
170 participants (Female: 55, Male: 115, Age: 65.4 ± 13.2 years) were
nvolved. Specifically, the heart sound signals were recorded from
our positions on the body of each subject, including auscultatory
itral, aortic valve auscultation, pulmonary valve auscultation, and

uscultatory areas of the tricuspid valve, through an electronic stetho-
cope (Eko CORE, USA) using Bluetooth 4.0 and 4 kHz sampling rate.
hen, experienced cardiologists annotated the data into three cate-
ories: normal, mild, and moderate/severe by using Echocardiography
s the golden standard. Finally, 845 audio recordings, each of which
as around 30 s, were obtained, i. e., approximately 7 h. Considering
ubject-independency, and balanced age and gender distribution, the
SS corpus was split into three data sets: train, dev(elopment), and

est sets (cf. Table 1). For more details on the HSS collection and
urther information, interested readers are suggested to refer to the
tudy (Dong et al., 2020).

.2. Deep learning models

In essence, DL is a series of non-linear transformations of the inputs,
esulting in the highly abstract representations which have shown
ffectiveness in audio classification tasks (Amiriparian et al., 2017; Ren,
ummins et al., 2018). For this study, two typical DL topologies, i. e., a
NN (with a strong feature extraction capacity) and an RNN (which
an capture the context information from time-series data), will be
nvestigated.

.2.1. Convolutional neural network
With a strong capability of feature extraction, CNN models have

een applied to heart sound classification in previous research (Ryu
t al., 2016; Tschannen et al., 2016). As shown in Fig. 2, a CNN
odel generally contains a stack of convolutional layers and local
ax-pooling layers to extract high-level representations. Convolutional

ayers capture abstract features using a set of convolutional kernels,
hich achieve convolution operations on the input or the feature maps

rom the intermediate layers. At the 𝑚th layer, 𝑚 = 1,… ,𝑀 , where 𝑀
s the total number of layers, an 𝐼 ×𝑃 ×𝑄 feature map 𝒉𝑚 is produced,
here 𝐼 is the number of channels, and 𝑃 ×𝑄 stands for the size of 𝒉𝑚
t each channel. While the (𝑚+ 1)th layer is a convolutional layer, the

𝑗th channel of 𝒉𝑚+1 is calculated by

𝒉𝑗𝑚+1 =
𝐼
∑

𝒘𝑖𝑗
𝑚+1 ∗ 𝒉𝑖𝑚 + 𝑏𝑗𝑚+1, (1)
𝑖=1
t

3

where 𝒉𝑖𝑚 is the 𝑖th channel of 𝒉𝑚, 𝒘𝑖𝑗
𝑚+1 denotes the (𝑖, 𝑗)th convolu-

tional kernel, ∗ is the convolutional operation, and 𝑏𝑗𝑚+1 is the bias.
ach two-dimensional convolutional kernel works on the feature maps
t each channel, therefore the convolutional layers can learn the rep-
esentations at the time–frequency level. Notably, batch normalisation
nd an activation function of rectified linear unit (ReLU) are utilised to
eal with the output of each convolutional layer, as batch normalisation
sually improves the stability of CNNs, and both of them can accelerate
he convergence speed (Ide & Kurita, 2017).

Convolutional layers with batch normalisation and a ReLU activa-
ion function are mostly followed by local pooling layers, which reduce
he computational cost via downsampling the feature maps (Kobayashi,
019). Through local pooling layers, the robustness of CNNs is also im-
roved against the input variation (Kobayashi, 2019). Since local max-
ooling has been successfully employed in our previous study (Ren,
ong et al., 2018), we use local max-pooling layers following each
onvolutional layer.

.2.2. Recurrent neural network
RNNs can extract sequential representations from time-series data

sing a set of recurrent layers (cf. Fig. 3). Each recurrent layer contains
sequence of recurrent units, each of which is used to process the

orresponding time step of the input data. The hidden states, output
rom each recurrent layer, are fed into the next recurrent layer. Finally,
he hidden states of the final recurrent layer are used to predict the
lasses of the samples.

We define the number of the total time steps by 𝑇 . At the 𝑡th
ime step, 𝑡 = 1,… , 𝑇 , a traditional recurrent unit computes its output
ia a weighted sum of the input 𝑥𝑡 and the hidden state ℎ𝑡−1. Due
o the vanishing gradient problem caused by the traditional recurrent
nit (Hochreiter, 1998), in particular, two recurrent units were pro-
osed in the literature: Long Short-Term Memory (LSTM) cells (Hochre-
ter & Schmidhuber, 1997), and Gated Recurrent Units (GRUs) (Chung
t al., 2014).

At the 𝑡th time step, an LSTM unit consists of an input gate 𝑖𝑡, an
utput gate 𝑜𝑡, a forget gate 𝑓𝑡, and a cell state 𝑐𝑡. The procedure of an
STM unit is defined by

𝑡 = 𝜎(𝒘𝒊𝑥𝑡 + 𝒖𝒊ℎ𝑡−1 + 𝑏𝑖), (2)

𝑡 = 𝜎(𝒘𝒇𝑥𝑡 + 𝒖𝒇ℎ𝑡−1 + 𝑏𝑓 ), (3)

𝑡 = 𝜎(𝒘𝒐𝑥𝑡 + 𝒖𝒐ℎ𝑡−1 + 𝑏𝑜), (4)

𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ tanh(𝒘𝒄𝑥𝑡 + 𝒖𝒄ℎ𝑡−1 + 𝑏𝑐 ), (5)

𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡), (6)

here 𝒘 and 𝒖 are the weight matrices, 𝑏 denotes the bias, 𝜎 stands for a
ogistic sigmoid function, and ⊙ means the element-wise multiplication.
ompared to the traditional recurrent unit, an LSTM cell can control
hat information to remember using an input gate, and what to forget
sing a forget gate.

Different from an LSTM cell, a GRU contains a reset gate 𝑟𝑡 and an
pdate gate 𝑧𝑡 at the 𝑡 time step. The procedure of a GRU is defined by

𝑡 = 𝜎(𝒘𝒓𝑥𝑡 + 𝒖𝒓ℎ𝑡−1 + 𝑏𝑟), (7)

𝑡 = 𝜎(𝒘𝒛𝑥𝑡 + 𝒖𝒛ℎ𝑡−1 + 𝑏𝑧), (8)

𝑡 = (1 − 𝑧𝑡)⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ tanh(𝒘𝒉𝑥𝑡 + 𝒖𝒉(𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ). (9)

ith two gates inside one unit, a GRU has fewer parameters than an
STM cell. As both LSTM–RNN and GRU–RNN have been employed in
udio classification tasks (Dong et al., 2020; Ren, Qian et al., 2018),

he effectiveness of them are explored in this study.
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Fig. 2. The structure of the chosen CNN model with attention. The input are log Mel spectrograms. The CNN model consists of several convolutional layers, local max-pooling
layers, an attention layer, and a log softmax layer for classification.
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Fig. 3. The structure of the chosen RNN model. The RNN model learns sequential
representations from the logmel spectrograms, and the features from the final recurrent
layer are then processed by an attention layer and a log softmax layer for classification.
In the attention layer, 𝐴 = 𝐴1 , 𝐴2,… , 𝐴𝑇 is the attention vector, and 𝐶 = 𝐶1 , 𝐶2 ,… , 𝐶𝑇
s the classification vector, while 𝑇 denotes the frame number of each log Mel
pectrogram.

In a similar way to CNNs, a layer normalisation (Ba et al., 2016)
nd an activation function of scaled exponential linear unit (SELU)
Phankokkruad & Wacharawichanant, 2019) are set to follow each
ecurrent layer, since layer normalisation can stabilise the hidden state
ynamics in RNNs (Ba et al., 2016), and the SELU activation function
as been successfully applied in the previous study (Phankokkruad &
acharawichanant, 2019).

.3. Attention mechanism

It is essential to interpret the key parts of the input inside a deep
earning model, especially in the applications of medical diagnosis. As
forementioned in Section 2, global attention pooling can evaluate the
ontribution of each unit in a representation. We will now introduce
he attention mechanisms in CNNs and RNNs, respectively.

.3.1. Attention in CNN
While a log Mel spectrogram is fed into a CNN model, the feature

ap 𝒉𝑀 output by the final layer before the attention mechanism has
hree dimensions 𝐼 ′ × 𝑃 ′ × 𝑄′, where 𝐼 ′ is the number of channels,
nd 𝑃 ′ × 𝑄′ denotes the feature map size at the time–frequency level.
o achieve the heart sound classification, the dimensions of 𝒉𝑀 are
educed from three into one. During this procedure of dimension
eduction, the global attention pooling evaluates how much each time–
requency bin in 𝒉𝑀 devotes to the final predictions by estimating a
eight value for each bin. As shown in Fig. 2, the global attention
ooling consists of two components: the top one has a convolution
ayer, and the bottom one is comprised of a convolutional layer and

normalisation operation. In the top component, the convolutional
ayer is set up with 1 × 1 kernels and an output channel of the class
umber. In the bottom component, the convolutional layer has the
ame hyperparameters as that in the top one. Afterwards, to calculate
he weight tensor of 𝒉 , an activation function is employed to rectify
𝑀 n

4

the values of the feature map from the convolutional layer in the
bottom component. Both softmax and sigmoid functions can rectify the
values into the interval of [0, 1]. Further, normalisation is applied to the
rectified feature map 𝐹 using

𝐹 ∗ = 𝐹
∑𝑃 ′

𝑝=1
∑𝑄′

𝑞=1 𝐹𝑝𝑞

, (10)

where 𝐹 ∗ is the output of the bottom component. Next, the feature
map from the top component is multiplied with 𝐹 ∗, leading to an
element-wise product, which is then summed to a vector with the
length equalling the number of classes. Finally, log softmax is employed
to fit the chosen negative log-likelihood (NLL) loss function.

3.3.2. Attention in RNN
The representation from the recurrent layers has two dimensions

𝑇 ×𝑄′′, where 𝑄′′ denotes the length of the feature at each time frame.
While summarising the representation to a vector for classification, it
would be worthwhile to explain the essential time frames using global
attention pooling in RNNs. As the length of the time frames is equal to
that of the original log Mel spectrogram, an attention mechanism can
show more details at the frame level in RNNs than in CNNs.

As shown in Fig. 3, the global attention pooling in RNNs also
includes two components as the attention mechanism in CNNs. In
a similar way to the attention mechanism in CNNs, the left com-
ponent (corresponding to the top one in Fig. 2) herein contains a
one-dimensional convolutional layer, in which the kernel size is 1 and
the output channel number is equal to the class number, leading to a
classification tensor 𝐶 of size 𝑇 × 𝑐𝑙𝑎𝑠𝑠 𝑛𝑢𝑚𝑏𝑒𝑟. The right component
(corresponding to the bottom one in Fig. 2) consists of a convolutional
layer with the same setting as that in the left component and a normal-
isation procedure. In the right component, the convolutional layer is
also followed by an activation function (softmax or sigmoid) to rectify
the values of the representation. Then, normalisation is applied to the
rectified representation 𝐴 using

𝐴∗ = 𝐴
∑𝑇

𝑡=1 𝐴𝑡
, (11)

where 𝐴∗ is the normalised feature in the right component. The
element-wise product of 𝐴∗ and 𝐶 is then followed by a log softmax
ayer for the heart sound classification.

.4. Evaluation metrics

To evaluate the performance of the proposed models, the un-
eighted average recall (UAR) is employed as the main evaluation
etric by taking the imbalanced characteristic of the HSS database and

he inherent phenomena into account. Compared to another popular
valuation metric, weighted average recall (WAR), aka accuracy, UAR
hows more reasonable in measuring the performance of a model
rained by imbalanced data (Schuller et al., 2009). The value of UAR
s defined as:

AR =
∑𝑁𝑐

𝑖=1 𝑟𝑒𝑐𝑎𝑙𝑙𝑖
𝑁𝑐

, (12)

where 𝑟𝑒𝑐𝑎𝑙𝑙𝑖 is the recall achieved for the 𝑖th class, and 𝑁𝑐 denotes the
umber of classes (𝑁 = 3 in this study).
𝑐
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When comparing two methods’ performances, we use a one-tailed
𝑧-test (Dietterich, 1998) by checking if a finding is significant (𝑝 < 0.05)
or not. Additionally, the area under the receiver operating characteris-
tic curve (AUC-ROC) is calculated to evaluate the performance.

4. Experimental results

We give a brief description of our experimental setup at first. Then,
we present and discuss the results achieved in this study.

4.1. Setup

First, a series of 936 × 64 log Mel spectrograms are extracted from
the audio signals in the HSS corpus using a Hamming window of 256
samples width with 50% overlap and 64 Mel frequency bins. During
training, all models are learnt with an Adam optimiser and a batch size
of 32. The initial learning rate is experimentally set to 0.0001, and is
reduced into 90% at each 100-th iteration with the aim of stabilising the
training process. The setting of the initial learning rate is based on the
experiments of training models in our prior studies (Ren, Kong et al.,
2018; Ren, Qian et al., 2018). Finally, the learnt models at the 3 000-th
iteration are used to predict the audio samples in the development/test
set.

The CNN models employ a flattening layer or a global pooling
layer before the final log softmax layer for classification. The flattening
layer is to flatten the multi-dimensional feature maps into a vector
with retaining all units in each feature map. In contrast, the global
pooling layer in CNN summarise the multi-dimensional feature maps
into a vector with the length of the channel number by calculating the
maximum or average values along the axes other than the channel axis,
i. e., global max-pooling and global average-pooling, and the global
pooling layer in RNN summarise the feature maps into a vector with the
length of feature dimensions at each time step. In our prior study (Ren,
Kong et al., 2018), global pooling outperformed flattening as it reduces
redundant information from the feature maps. In this regard, we apply
flattening and global pooling for comparison in this work. In contrast,
the RNN models generally select the feature at the last time step
for further procedure. To be consistent with the experiments on CNN
models, the selection of the last time step is also compared to global
pooling. The structures before the flattening or global pooling layer in
the deep neural networks are empirically set as follows (cf. Table 2).

• The CNN models consist of four convolutional layers with out-
put channels 64, 128, 256, and 256. Each convolutional layer is
followed by a local max-pooling layer with 2 × 2 kernels.

• Both LSTM–RNN and GRU–RNN models contain three recurrent
layers with output dimensions 256, 1 024, and 256.

Finally, the representations after the flattening layer/global pooling
layer/last-time step selection are fed into a linear layer for the final
prediction.

To investigate the effect of the balanced training set on the DL
models, we compare the results on the original imbalanced HSS data
and balanced HSS training data produced by a random upsampling
strategy aiming at class balance (Zhang & Schuller, 2012). The random
upsampling strategy randomly selects data samples from the class with
less data to increase the sample number, therefore all classes will have
the same sample number.

4.2. Results

The experimental results (UARs in [%]) of all three DL topologies
(CNN, LSTM–RNN, and GRU–RNN) are shown in Table 3. The best re-
sult (a UAR of 51.2%) is achieved by the CNN model with an attention
mechanism (using a sigmoid function). The best results for LSTM–
RNN and GRU–RNN are 42.6% UAR and 46.8% UAR, respectively. To
produce convincing results, subject-independent experiments are used
 D

5

Table 2
The details of the employed CNN and RNN models in this work. ‘‘conv’’ is the
convolutional layer, ‘‘ch’’ means the output channel number, ‘‘k’’ is the kernel size,
and ‘‘out’’ denotes the output dimension of each RNN layer.

CNN RNN

conv (ch:64, k: 5 × 5), local max-pooling
(k: 2 × 2)

LSTM/GRU layer(out: 256)

conv (ch:128, k: 5 × 5), local max-pooling
(k: 2 × 2)

LSTM/GRU layer(out: 1 024)

conv (ch:256, k: 5 × 5), local max-pooling
(k: 2 × 2)

LSTM/GRU layer(out: 256)

conv (ch:256, k: 5 × 5), local max-pooling
(k: 2 × 2)

Flattening/global pooling/attention Last-time step/global
pooling/attention

Linear layer

Table 3
The results comparison of different deep learning topologies on the HSS corpus.

w/o upsampling w/upsampling

UAR [%] Dev Test Dev Test

CNN

Flattening 35.6 37.6 35.6 39.9
Global max-pooling 41.7 38.4 39.3 38.5
Attention-softmax 31.5 43.1 38.3 47.3
Attention-sigmoid 40.1 51.2 39.6 50.5

LSTM–RNN

Last-time step 39.3 36.1 40.7 35.7
Global max-pooling 32.9 38.9 34.6 38.1
Attention-softmax 40.0 39.6 39.0 39.4
Attention-sigmoid 39.6 38.9 42.0 42.6

GRU–RNN

Last-time step 39.0 36.5 37.4 36.1
Max-pooling 38.7 35.8 40.7 35.2
Attention-softmax 30.8 44.7 35.3 46.8
Attention-sigmoid 34.9 44.2 34.5 45.7

in our work; therefore the performance is not very high. All of the best
results are significantly better than the chance level (in a one-tailed
z-test, 𝑝 < 0.001 for CNN, 𝑝 < 0.05 for LSTM–RNN, and 𝑝 < 0.01 for GRU-
RNN). We can see that, an attention-based mechanism can significantly
improve the corresponding DL models in recognising heart sound. For
instance, CNN with sigmoid-attention (a UAR of 51.2%) performs better
than a CNN with flattening (a UAR of 37.6%), and a CNN with max-
pooling (a UAR of 38.4%) (in a one-tailed z-test, 𝑝 < 0.01), and a

RU–RNN with softmax-attention (a UAR of 46.8%) outperforms GRU–
NNs without attention (UARs of 36.1% and 35.2%) (in a one-tailed
-test, 𝑝 < 0.05). The upsampling strategy can slightly improve the
erformances of the best RNN models. Compared to other state-of-
he-art studies, our proposed method can perform better than most
erformances achieved by single models (cf. Table 4). Notably, the best
erformance 56.2% on the test set is achieved by the ConParE baseline
ith fusion methods, indicating fusion of multiple models is helpful to

mprove the performance. As our aim is to verify the effectiveness of
ttention and explain the attention models, the single models are used
or comparison rather than embedding multiple models.

When looking at the confusion matrices (cf. Fig. 4), we find that
he best CNN and GRU–RNN models outperform the best LSTM–RNN
odel in recognising the ‘Mild’ type of heart sounds. For all the three
odels, both the ‘Normal’ and ‘Mod./Sev.’ types of heart sounds are

ncorrectly recognised as the ‘Mild’ type of heart sounds. Figs. 5 and
present the macro-averaged receiver operating characteristic (ROC)

urves and the visualisation of the best three proposed attention-based

L models on each class, respectively.
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Fig. 4. Confusion matrices (normalised) achieved by the best models on the test set of the HSS corpus. The best three models are (a) CNN, (b) LSTM–RNN, and (c) GRU–RNN,
espectively.
able 4
he results comparison among the state-of-the-art methods and our proposed model on
he HSS corpus.
UAR [%] Dev Test

ComParE baseline (End2You) (Schuller et al., 2018) 41.2 37.7
ComParE baseline (openSMILE) (Schuller et al., 2018) 50.3 46.4
ComParE baseline (openXBOW) (Schuller et al., 2018) 42.6 52.3
ComParE baseline (fusion) (Schuller et al., 2018) – 56.2
Ensemble of transfer learning (Humayun et al., 2018) 57.9 42.1
Utterance-level feature and SVMs (Gosztolya et al., 2018) 53.2 49.3
Seq2Seq autoencoders and SVMs (Amiriparian et al., 2018) 35.2 47.9
Wavelets and RNNs (Qian et al., 2019) – 43.0
Log Mel features and SVMs (Dong et al., 2020) 46.5 49.7
Our proposed approach 40.1 51.2

5. Discussion

In this section, we summarise the findings from this study. After-
wards, we indicate the limitations and future work by providing our
perspectives.

5.1. Findings of this study

In most cases, the results on the test set are better than those on the
development set. The reason might be that the models trained on both
training and development sets are verified on the test set; the models
trained on only the training set are verified on the development set. In
Fig. 4, some samples with the classes of ‘Normal’ and ‘Mod./Sev.’ are
classified into ‘Mild’, probably due to the data imbalance. A CNN model
is found to be superior to an RNN in recognising heart sounds in this
study. As shown in Fig. 5, the ROC curve of the considered CNN and
GRU–RNN can yield a higher true positive rate at a given false positive
rate compared to the LSTM–RNN, and the true positive rate of the CNN
is superior to or comparable to that of our GRU–RNN. Finally, the area
6

Fig. 5. Comparison of the macro-average receiver operating characteristic (ROC) curves
of the best three models on the test set of the HSS corpus. The corresponding
area-under-curve (AUC) is also computed for each model.

under the ROC curve (AUC) of the CNN is the highest in those of the
three models.

As depicted in Fig. 6, compared to ‘Normal’ or ‘Mild’ types of heart
sounds, the ‘Mod./Sev.’ type shows more irregular waveforms and spec-
trograms. In addition, by checking the learnt high-level representations
of the CNN models, the ‘Mod./Sev.’ types of heart sounds can have a
higher number of higher energy components than the other two types
at similar frequency bands. Such irregular changes in frequency bands
via the time axis of the heart sound might be caused by pathological
changes in the heart. When looking at the learnt representations of the
RNN models (cf. Fig. 6), we can see the periodic signal’s characteristics
in the ‘Normal’ types of the heart sound. It is worth exploring the
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Fig. 6. Visualisation of three examples in the HSS corpus with the classes Normal, Mild, and Moderate/Severe, respectively. Each example consists of an original audio signal, its
orresponding log Mel spectrogram, the attention matrix in the CNNs, the attention vector in the LSTM–CNNs, and the attention vector in the GRU–RNNs.
undamental mechanism of CVDs and their corresponding properties
n heart sound changes.

.2. Ablation study

In this study, we explore the effectiveness of random upsampling
or improving the performance. We find that simple data augmentation
upsampling) cannot yield significantly better results than using the
riginal data set (cf. Table 3). We may think that the random upsam-
ling technique cannot generate sufficiently informative instances for
mproving the models’ performances.

.3. Comparison with the state-of-the-art

Compared to the state-of-the-art approaches on the HSS corpus (cf.
able 4), our proposed approach performs better than most single-
odel methods and is comparable to the ComParE baseline with fea-

ures extracted by openXBOW (Schuller et al., 2018). Particularly, our
pproach outperforms the log Mel features and SVMs in Dong et al.
2020), indicating that deep neural networks can better learn a non-
inear mapping between the inputs and the labels than the traditional
achine learning method.

.4. Limitations and perspectives

Data size limitation is the biggest challenge in the current study.
oreover, similar to other clinical data studies, e. g., snore sound (Qian,

anott et al., 2020), asking experienced medical experts to annotate
assive data is expensive, time-consuming, and even unavailable in
ractice. Even though the data augmentation did not show excellent
erformance in this study, it is a necessary step in improving the DL
odels’ generalisation and robustness. More recently, some advanced
ata augmentation technologies, e. g., the generative adversarial net-
orks (GANs) (Goodfellow et al., 2014) can be considered. In future
ork, we should explore using more sophisticated data augmentation

echnologies for heart sound classification. Moreover, (labelled) data
carcity is a challenging issue for almost all of the biomedical areas
ncluding heart sound. One should consider using unsupervised learn-
ng, semi-supervised learning, active learning, and cooperative learning
aradigms in future studies.

The best model’s result is encouraging but modest. In a future effort,
ne should consider using hybrid network architectures (Yu et al.,
017) or model fusion strategies (Qian et al., 2017). Even though
e can find promising results achieved by the deep attention-based
7

models, the inherited mechanism is still unclear. We tried to visualise
the learnt representations of the hidden layers, but it failed to make
any consolidated conclusion. Another direction is to explore the learnt
representations by DL models, which aims to present the interpretations
between the model architectures and the pathological meaning of the
heart sound. An explainable AI is essential for intelligent medical
applications.

6. Conclusion

In this work, we proposed a novel attention-based deep repre-
sentation learning method for heart sound classification. We also in-
vestigated and compared different topologies of the DL models and
found the considered CNN model as the best option in this study.
The efficacy of the proposed method was successfully validated by
the publicly accessible HSS corpus. We also compared the results with
other state-of-the-art works and pointed out the current limitations and
future directions. For a three-category classification task, the proposed
approach achieved an unweighted average recall of 51.2%, which
outperformed the other models trained by traditional human hand-
crafted features or other deep learning approaches. In future work, we
will improve our model’s generalisation and explainability for the heart
sound classification task.
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