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Abstract

With the COVID-19 pandemic, several research teams have

reported successful advances in automated recognition of

COVID-19 by voice. Resulting voice-based screening tools for

COVID-19 could support large-scale testing efforts. While ca-

pabilities of machines on this task are progressing, we approach

the so far unexplored aspect whether human raters can distin-

guish COVID-19 positive and negative tested speakers from

voice samples, and compare their performance to a machine

learning baseline. To account for the challenging symptom

similarity between COVID-19 and other respiratory diseases,

we use a carefully balanced dataset of voice samples, in which

COVID-19 positive and negative tested speakers are matched by

their symptoms alongside COVID-19 negative speakers without

symptoms. Both human raters and the machine struggle to reli-

ably identify COVID-19 positive speakers in our dataset. These

results indicate that particular attention should be paid to the

distribution of symptoms across all speakers of a dataset when

assessing the capabilities of existing systems. The identification

of acoustic aspects of COVID-19-related symptom manifesta-

tions might be the key for a reliable voice-based COVID-19 de-

tection in the future by both trained human raters and machine

learning models.

Index Terms: auditory disease perception, automatic disease

recognition, computational paralinguistics, COVID-19, voice

1. Introduction

As of April 2021, over 125 million confirmed cases with

over 2.8 million deaths due to the coronavirus disease 2019

(COVID-19) were reported by the WHO [1]. COVID-19 is

caused by an infection with the severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2), which first appeared in

December 2019 [2] and since then led to a pandemic.

The severity of COVID-19 is heterogeneous. While nu-

merous patients with COVID-19 have no symptoms and are

diagnosed by chance or not at all, most patients have mild-

to-moderate flu-like symptoms, and others need to be hospi-

talised or even die from the disease. The most commonly re-

ported symptoms of COVID-19 are respiratory and ear-nose-

throat symptoms such as cough, shortness of breath, sore throat,

and headache, systemic symptoms such as fever, weakness, and

muscle pain, as well as loss of taste and/or smell [3]. A great

proportion of the characteristic symptoms of COVID-19 affect

anatomical correlates of speech production, namely the lungs,

the vocal folds, the vocal tract, and/or the nasal tract [4]. A num-

ber of studies investigated voice changes in other diseases af-

fecting those correlates. Researchers reported a range of acous-

tic parameters differing between healthy controls and patients

with asthma [5, 6], vocal fold atypicalities [7, 8], or cleft lip and

palate [9]; among these are jitter, shimmer, harmonics-to-noise-

ratio (HNR), fundamental frequency (F0), first to third vowel

formants, and maximum phonation time (MPT).

The existing literature on acoustic parameters in patients

with COVID-19 is still sparse. A study on Persian speakers

found significant differences in voice samples of the sustained

vowel /a:/ between patients with COVID-19 and healthy con-

trols in F0 standard deviation, jitter, shimmer, HNR, difference

between the first two harmonic amplitudes (H1–H2), MPT, and

cepstral peak prominence [10]. To the best of our knowledge,

Bartl-Pokorny et al. [11] were the first to investigate acoustic

parameters in the sustained vowels /i:/, /e:/, /u:/, /o:/, and /a:/

produced by German speakers with and without COVID-19.

Across all vowels, the study revealed differences in the mean

voiced segment length and the number of voiced segments per

second, reflecting discontinuities in the pulmonic airstream dur-

ing phonation in patients with a COVID-19 infection.

Related work. Motivated by the manifestation of various

diseases in the human voice, machine learning approaches have

been deployed in recent years and shown effectiveness in the au-

tomatic voice-based recognition of medical conditions ranging

from respiratory diseases, e. g., cold and flu [12], via psychiatric

disorders, such as depression [13], to developmental disorders,

such as autism spectrum disorder [14] or Rett syndrome [15],

and neurodegenerative diseases, e. g., Alzheimer’s disease [16].

Thus, well-founded and not surprisingly, there is also a growing

body of research on the automated detection of COVID-19 from

voice. Several research groups in the domain of computational

paralinguistics have focused their efforts on collecting large

‘crowdsourced’ datasets (e. g., [17, 18, 19, 20]) using them to

create machine learning models (e. g., [21, 22, 23, 24, 25, 26]).

Since voice is a readily available modality and the collection of

voice data is non-invasive, voice-based models for COVID-19

detection could serve as valuable screening instruments [27].

Such models could be deployed online and enable a large share

of the population access to inexpensive and frequent testing.

Another, yet unexplored, aspect in context of COVID-19 is

listening perception of human raters to recognise the disease.

It seems intuitive that humans may be able to recognise res-

piratory diseases in voice as humans have substantial experi-

ence in listening to the voice of people with a cold. Empir-

ical evidence that humans are able to recognise the presence
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or absence of a disease comes, e. g., from a study focusing on

Rett syndrome, a rare genetic disorder associated with profound

speech-language deficiencies [28]. The researchers found that

professional and naive human raters were capable to differen-

tiate between (pre-linguistic) vocalisations produced by infants

with Rett syndrome and vocalisations produced by typically de-

veloping infants [28].

Contributions of this work. To the best of our knowledge,

this is the very first study to assess if naive human raters can be

trained to distinguish between voice samples from speakers who

were tested positive or negative for COVID-19. Furthermore,

we aim to compare the raters’ performance to the performance

of an automatic recognition approach on the same dataset.

One prominent challenge when distinguishing COVID-19

by voice is that several symptoms, such as coughing and

sneezing, overlap in COVID-19 and other respiratory diseases.

Therefore, in this study, we compose a carefully balanced

dataset with three groups of equal sizes (all speakers tested pos-

itive (+) or negative (-) for COVID-19):

1. COVID-19+: symptomatic and asymptomatic

2. COVID-19-: matched symptoms of COVID-19+

3. COVID-19-: asymptomatic

2. Materials and Methods

2.1. Dataset

The dataset in this study, used for both the listening percep-

tion and the automatic recognition task, is composed as a sub-

set of two existing datasets with COVID-19 positive and nega-

tive speakers from the audEERING GmbH and the University

of Augsburg, Germany. The composed dataset includes only

speakers from German-speaking countries (Germany, Austria,

Switzerland) to minimise language-dependent influences. We

select the following overlapping six prompts of both datasets:

coughing deliberately 1–3 times while breathing out (‘cough-

ing’), reading aloud the first two sentences of the standard pho-

netic text passage “The North Wind and the Sun” in German

(‘read text’), as well as sustained phonations of the vowels /a:/,

/e:/, /i:/, and /u:/ for 5 seconds, each. Detailed demographics

of the combined and separate datasets are presented in Table 1.

Of the eleven symptomatic COVID-19 positive subjects, four

have respiratory and systemic symptoms, six only respiratory,

and one only systemic symptoms. Those symptom patterns are

closely matched in the symptomatic COVID-19 negative group.

audEERING developed a data collection platform called

AI SoundLab1, which enables the remote collection of voice

samples through a web-app on any device with internet ac-

cess. Users can register with their e-mail address or use

pseudonymised study-tokens, which enables clear association

of a unique user and their recordings from multiple sessions.

Users can choose to disclose general metadata with age, gen-

der, and mother tongue being mandatory and for every record-

ing session, the test status for COVID-19 as well as various sys-

temic (e. g., fever) and respiratory symptoms (e. g., coughing)

are assessed.

The dataset from the University of Augsburg consists of

comparable speech data of COVID-19 positive and COVID-19

negative speakers. The speakers were asked to record their

voice with their smartphones and to transfer the recordings via

the secure file-sharing service of the University of Augsburg.

All speakers provided a copy of the result of their COVID-19

1https://aisoundlab.audeering.com/

Table 1: Number of speakers (# Speak.), gender distribution, as

well as mean ± standard deviation of speaker age rounded to

full years (y) per sub-dataset, condition, class, and in total. neg

= COVID-19 negative, pos = COVID-19 positive, yes = with

symptoms, no = without symptoms, ♀ = female, ♂ = male

Condition Sub-dataset # Speak. (♀/♂) Age [y]

neg+no

audEERING 7 (2/5) 48±11

Uni Augsburg 6 (1/5) 42±17

Σ 13 (3/10) 45±13

neg+yes

audEERING 7 (2/5) 42±18

Uni Augsburg 6 (2/4) 47±21

Σ 13 (4/9) 45±19

Σneg 26 (7/19) 45±16

pos+no

audEERING 2 (0/2) 41±8

Uni Augsburg - -

Σ 2 (0/2) 41±8

pos+yes

audEERING 5 (2/3) 37±10

Uni Augsburg 6 (1/5) 38±19

Σ 11 (3/8) 38±15

Σpos 13 (3/10) 38±14

Σneg∪pos 39 (10/29) 43±16

test done within the last three days before their study partici-

pation. They completed a short questionnaire including infor-

mation about potential symptoms and health issues. The data

collection was approved by the ethics representative of the Uni-

versity of Augsburg. All speakers gave their written informed

consent to participate in the study.

To provide enough data for human raters to learn the dif-

ference between COVID-19 negative and positive tested speak-

ers, we partition the combined dataset into three folds for cross

validation. 2/3 of the data is assigned to the train and 1/3

to the test partition. 13 COVID-19 positive speakers of both

datasets are matched according to their symptoms, age, and gen-

der with 13 COVID-19 negative ones and supplemented with

13 COVID-19 negative speakers without symptoms. Folds are

created so that speakers are kept separate in the train and test

partitions. Due to the odd number of speakers, the first third

of speakers contains five speakers of each condition, while the

other two thirds contain four.

2.2. Human raters

We conduct a binary classification study for the three data par-

titions in order to evaluate the capability of human raters to dis-

tinguish COVID-19 positive and COVID-19 negative speakers

by only listening to voice samples. The listening study is per-

formed using a browser-based interface provided through the

gamified crowdsourcing platform iHEARu-PLAY [29]. Within

each fold, raters listen to all train samples (2/3 of the speak-

ers) for one prompt, while being informed about the respec-

tive ground truth labels, and rate all test samples (remaining

1/3 of the speakers) of that prompt, before advancing to the

next prompt. For each test sample, raters state the confidence

of their rating. In total, 15 native German-speaking raters take

part (5 per fold). Their age is between 21 and 32 years, with a

mean age of 25.3 years and a standard deviation of 2.4 years.

The raters are employees and students from audEERING and
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the University of Augsburg, who have no insight into the re-

search and study procedure. In order not to overburden the

raters, the sessions are designed to last no more than one hour;

raters are also allowed to take a break whenever needed. The

listening study itself is a forced-choice task: a binary classi-

fication task for COVID-19 positive vs COVID-19 negative as

well as a 3-class task for the confidence of their rating (‘unsure’,

‘somewhat sure’, and ‘sure’).

Scale merging. In order to obtain a 5-point Likert scale

for later analyses of COVID-19 perception, we merge the bi-

nary answers of the raters with their judgement of how sure

they are in their decision as follows: (negative+sure) is mapped

to 1, (negative+somewhat sure) to 2, (negative+unsure), as well

as (positive+unsure) to 3, (positive+somewhat sure) to 4, and

(positive+sure) is mapped to 5.

Statistical analyses. Separately for each prompt, we first

test by means of two-tailed binomial tests whether human

raters’ performance is significantly better than chance level. For

this assessment, performance is measured in terms of the pro-

portion of correct answers and compared against the chance

level 0.5 (raters are not aware of the class distribution). We

repeat this analysis for aggregated binary judgements, which

are derived the following way: one aggregated judgement is

obtained per rater and speaker by calculating the proportion of

COVID-19 positive judgements of the rater over all prompts of

the speaker. If this proportion is greater than 0.5, the aggregated

judgement is set to positive, else to negative.

Further, we assess for each prompt whether COVID-19 pos-

itive speakers and/or symptomatic speakers are scored higher on

the 5-point Likert scale than COVID-19 negative and/or asymp-

tomatic speakers. These questions are addressed by means of

two-tailed Mann-Whitney U tests.

Finally, for each prompt we record the proportion of Likert-

level 3 (‘unsure’) answers as a proxy for perceived task diffi-

culty, and we collect for each prompt the unweighted average

recall (UAR) value over all raters to compare it with the ma-

chine learning results.

2.3. Machine Learning

We use the baseline feature set of the annual COMPUTATIONAL

PARALINGUISTICS CHALLENGE (COMPARE) [30] to gener-

ate 6, 373 features for each audio sample by means of the

open-source feature extraction toolkit openSMILE [31]. Fur-

thermore, we employ the COMPARE baseline machine learn-

ing model, i. e., linear-kernel support vector machines (SVMs),

to classify the audio samples into COVID-19 negative vs

COVID-19 positive.

Based on the same three data partitions already used for the

listening study, we train and evaluate the SVM models sepa-

rately for each prompt following a three-fold cross-validation

scheme. The predictions for the test set of each fold are

connected to form predictions for all samples of the respec-

tive prompt. The SVM complexity parameter C is optimised

∈ [10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1] in order to obtain

the best UAR across all folds. To mitigate the issue of class

imbalances, SVM models are trained with class weights being

inversely proportional to the class frequencies. In addition to the

prompt-wise performance evaluation scenarios, we combine the

predictions for all samples of a speaker to derive a final decision

for him or her as a whole based on majority voting (in at least

four of six prompts, the speaker has to be classified as positive

for being assigned to the COVID-19 positive class as a whole).

3. Results

Human performance. Only for sustained /i:/ and for the aggre-

gated judgements, human raters perform weakly significantly

better than chance level (two-tailed binomial tests, p = 0.09
and 0.06, respectively). Accuracies amount in both cases to

57 %. Judgement performances for all other prompts are close

to 50 % and thus do not differ from chance level.

Five-point Likert scale. Only for the read text, we

find significantly higher scores for COVID-19 positive and

for asymptomatic speakers (two-tailed Mann-Whitney U tests;

COVID-test: U = 3131.0, p = 0.04; symptoms: U = 3332.5,

p = 0.04). Effect sizes however are small, Cohen-d values

amount to 0.28 for COVID-test and 0.23 for symptoms.

Perceived task difficulty. Perceived task difficulty is mea-

sured in terms of the overall proportion of level 3 (‘unsure’)

scores. Perceived difficulty is overall high and amounts to 0.54
for coughing, 0.68 for read text and for sustained /e:/, 0.71 for

sustained /i:/, 0.72 for sustained /a:/, and 0.76 for sustained /u:/.

Thus, human raters are most confident when judging coughing

and least confident when judging sustained /u:/.

Machine judgement. For most prompts, the SVM mod-

els achieve an UAR around or slightly above chance level, i. e.,

0.5. Aggregating the predictions per speaker across all prompts

leads to an UAR of 0.58. The best machine judgement, i. e., an

UAR of 0.63, is obtained for the read text.

Comparison of human and machine judgements. For

the purpose of performance comparison, we present one con-

fusion matrix each for human and machine judgements for the

best performing prompts, which are /i:/ and read text, respec-

tively. Further, we compare the UAR scores separately for

all prompts. Figure 1 shows the confusion matrix of human

COVID-19 judgements for sustained /i:/. Overall, there is a

bias towards COVID-19 negative. A systematic influence of

symptoms towards COVID-19 positive judgements cannot be

observed.

Figure 2 shows the confusion matrix of machine COVID-19

judgements for read text. Recall turns out to be high for the

negative, but low for the positive class. Again, symptoms do

not show a systematic influence on classification.

The UAR values for all prompts and both humans and ma-

chine are presented in Figure 3. Scores are low for both humans

and machine, with a slight advantage for the latter.

4. Discussion

In our study, naive human raters and machine learning mod-

els struggle to detect COVID-19 from voice better than chance

level. For human raters, we only find slight indications of a per-

ceptual sensitivity to COVID-19 for vowel /i:/ and read text. For

machine learning models, the best performance is achieved for

read text. Our findings suggest that distinguishing COVID-19

positive and negative speakers with similar respiratory symp-

toms is a challenge both for human raters and machine learning

methods. Here, we prominently address the symptom similar-

ity aspect by matching every COVID-19 positive speaker with

a COVID-19 negative speaker with similar respiratory or sys-

temic symptoms. Most crowdsourcing efforts do not consider

potential recurring users and that multiple samples of one and

the same user could be partitioned both into the train and test

sets. To account for this issue, our data collection approach en-

sures clear association of all recording sessions to unique users.

This procedure results in a rather small, but to date uniquely

carefully balanced dataset.
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Figure 1: Confusion matrix for human judgements for sustained

/i:/. COVID-19 positive (pos) and negative (neg) ground truth

is further split into symptomatic (yes) and asymptomatic (no).

Absolute counts (row-wise): 38, 27, 33, 32, 6, 4, 29, 26
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Figure 2: Confusion matrix for machine judgements for read

text. COVID-19 positive (pos) and negative (neg) ground truth

is further split into symptomatic (yes) and asymptomatic (no).

Absolute counts (row-wise): 12, 1, 11, 2, 1, 1, 7, 4.

For automated recognition of COVID-19, our results are in

line with findings of previous studies. Coppock et al. [21] re-

ported lower UAR and area under the receiver operating char-

acteristic curve (AUC) scores when distinguishing COVID-19

positive speakers with a cough from COVID-19 negative speak-

ers with a cough. Stasak et al. [25] similarly obtained chance-

level results when regarding COVID-19 positive and nega-

tive speakers with moderate COVID-19-like symptoms. Con-

versely, Han et al. [22] reported a high rate of asymptomatic

patients getting misclassified as healthy speakers.

With regard to human perception of voice samples, it is

worth emphasising that the findings of our study clearly can-

not be extrapolated to the performance of trained experts like

medical doctors or speech-language therapists, who may per-

form better on this task.

When aggregating a rater’s judgements over a speaker, per-

formance slightly improves. This might indicate that the raters

need a larger amount of speech material from a speaker in or-

coughing read vowel-a vowel-e vowel-i vowel-u aggreg

prompts
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Figure 3: Unweighted average recall (UAR) comparison be-

tween human and machine judgements for each prompt and

prompt aggregation (‘aggreg’).

der to succeed. Similarly, sufficient amounts of data are also

required for machine learning methods to reach robustness and

to generalise well. In this regard, it is beneficial that more and

more publicly available COVID-19 voice datasets are provided

to the community (such as [19, 20]).

The issue of class imbalances was approached in [23, 24] by

using data augmentation techniques. It is essential to report in-

formation on class distributions and performance on those more

fine-grained targets to get a fundamental understanding of pro-

posed systems and their potential shortcomings, as interpreta-

tion is otherwise challenging (e. g., [26]).

Finally, fusion of modalities showed promising results to

increase the robustness of automated COVID-19 detection. Han

et al. [22] gained their best results when regarding self-reported

symptoms of the speakers in addition to voice-based analyses.

5. Conclusion and Outlook

To the best of our knowledge, this study is the first of its kind

to evaluate how well naive human raters can distinguish voice

samples from COVID-19 positive and negative speakers, com-

pared to a machine learning baseline. It represents an initial

exploration based on a small, but carefully balanced dataset,

pointing out difficulties for both human raters and the machine

in reliably recognising COVID-19 due to the potential presence

of symptoms in both COVID-19 positive and negative speakers.

Future work shall expand our approach by additionally includ-

ing expert human raters, such as healthcare professionals, and

by using larger amounts of data, allowing for an application of

more sophisticated machine learning methodology.
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