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Abstract
We study deep bioacoustic event detection through multi-head
attention based pooling, exemplified by wildlife monitoring. In
the multiple instance learning framework, a core deep neural
network learns a projection of the input acoustic signal into a
sequence of embeddings, each representing a segment of the
input. Sequence pooling is then required to aggregate the in-
formation present in the sequence such that we have a single
clip-wise representation. We propose an improvement based on
Squeeze-and-Excitation mechanisms upon a recently proposed
audio tagging ResNet, and show that it performs significantly
better than the baseline, as well as a collection of other recent
audio models. We then further enhance our model, by perform-
ing an extensive comparative study of recent sequence pooling
mechanisms, and achieve our best result using multi-head self-
attention followed by concatenation of the head-specific pooled
embeddings – better than prediction pooling methods, as well as
compared to other recent sequence pooling tricks. We perform
these experiments on a novel dataset of spider monkey whinny
calls we introduce here, recorded in a rainforest in the South-
Pacific coast of Costa Rica, with a promising outlook pertaining
to minimally invasive wildlife monitoring.
Index Terms: acoustic event detection, deep attention models,
multiple instance learning, wildlife monitoring, bioacoustics

1. Introduction
Automated methods for recording and analysing bioacoustic
data hold the promise for unprecedented scalability in wildlife
monitoring, with the purpose of preservation through a global
biodiversity crisis [1]. This has enabled biologists and engineers
to perform machine learning studies on bioacoustics across a
large taxonomic range, such as primates [2, 3] or other terrestrial
[4, 5] or marine mammals [6, 7, 8, 9, 10], birds [11, 12, 13, 14,
15], as well as amphibians [14], in applications like call detection
for verifying presence or estimating density [6, 2, 4], discerning
between calls of different species [14, 15], as well as different
call types of a particular animal [5, 8].

In this study, we focus on the binary call detection of the
‘whinny’ call of Geoffroy’s spider monkey (Ateles geoffroyi)
towards verifying their presence. This highly sensitive forest
specialist is endangered across its range, due to forest loss for
conversion into urban areas and agricultural lands, as well as
also being a target for hunters for meat consumption and the pet
trade, thus hampering its role as seed disperser for many large
tree species which are critical to retaining healthy forests [16]. In
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an attempt to reduce the demanding fieldwork required to detect
this rare and elusive species, we used Passive acoustic monitor-
ing (PAM) [1] by means of in situ sound recorders in order to
collect an acoustic dataset, while keeping perturbations to their
behaviour, by our presence, to a minimal degree. We approach
the spider monkey call detection task via weakly supervised,
Acoustic Event Detection (AED), specifically the Multiple In-
stance Learning (MIL) framework [17, 18, 19, 20, 21, 22]: since
our call annotations refer to the entire clip, we have to use mech-
anisms for pooling instance-level information to a bag-level
embedding (or prediction) that characterises the entire clip.

We perform an extensive comparative study among recent
acoustic core models, by controlling the pooling mechanism, and
validate that a ResNet inspired from the best performing model
proposed in the recent study performed by [23], is also the best
performer in our dataset and task. We then show that an improve-
ment upon this model, SE-ResNet28, based on the addition of
Squeeze-And-Excitation (SE) mechanisms [24] leads to increase
across all performance measures, with statistical significance
(p < 0.01 in three out of four measures) using Welch’s unequal
variances t-test. We then perform a second comparative study,
among pooling mechanisms, this time controlling the core model
to be our proposed SE-ResNet28. We include in the comparison
both prediction based [25, 22, 21], as well as embedding based
[26, 27, 17] pooling methods. Our surprising results show that
self-attention based embedding pooling is generally better than
prediction pooling for our dataset, thus contradicting previous
insights from similar comparisons [20, 21]. Specifically, we
find multiple head attention and subsequent concatenation of
the pooled embeddings from each head to be the best approach,
and perform a significance analysis. Regarding machine audi-
tion research on the endangered, Geoffroy’s spider monkey, we
collected and introduce here the first acoustic recording dataset
with call annotations, recorded using PAM methods.

2. Related Work
In a recent comparative study of convolutional neural network
(CNN) layer based models applied on LogMel-Spectrograms
[23], a 38-layer ResNet was found to be the best performer –
more layers did not lead to improvements. We validate the great
performance of ResNet28, as well as improve it using SE [24].
The latter have been used before in acoustic scene classification
[28], albeit on a much smaller, 3-CNN layer VGG-style [28]
architecture, comparable to the lower performers of our study.

Despite recent advances in pooling mechanisms in the MIL
framework, several recent studies focusing on AED or audio
tagging adopt simpler embedding pooling methods, like aver-
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Table 1: A summary of the first A. Geoffroyi whinny call dataset.

Partition #Sites #Positives #Negatives

train 7 277 4,288
validation 3 125 2,488
test 3 189 1,886

age or max operations [29], a combination of the two [23], or
concatenation of the sequence along the feature axis [2]. Two
recent studies [20, 21] have performed comparisons between
two groups of pooling methods: a) embedding based; which
learn a weighted average of the embedding sequence produced
by the core model, and b) prediction based; which apply a dense
layer with an activation function on each of the embeddings to
produce a corresponding sequence of prediction probabilities,
and learn a weighted average of the latter. In the multi-class
classification study performed in [20], the authors found that
learning-free prediction pooling methods, like averaging, expo-
nential softmax, and linear softmax (LinSoft – first proposed in
[25]) outperformed attention based embedding pooling. LinSoft
was later adopted by [18], and used as a competitive baseline
in [21, 22]. In the binary classification study performed in [21],
the max operator prediction pooling method was instead shown
to outperform LinSoft; a seemingly contradictory result with
respect to the previous study, which the authors attribute to the
ability of the max operator to highlight rare positive event in-
stances. More recently [22], Power Pooling was proposed, which
raises the prediction probabilities to a power equal to a learnt pa-
rameter, outperforming LinSoft, and the max operator; the latter
by far. With the exception of the most recent Power Pooling, no
prediction pooling method has undisputedly been shown to be
better, and we thus opt to include them in our comparison.

Regarding embedding pooling methods, even though single-
head attention has not been shown to be better than prediction
pooling [20, 21], there has been a growing number of recent
studies using multi-head attention on audio classification tasks
[26, 30, 17, 27]. Multiple attention heads hold the potential of
learning to attend to different patterns, however, they introduce
additional parameters, as well as the need to aggregate their
outputs. In the speaker identification study performed in [26],
the authors simply average the pooled embeddings from each
head, whereas in the followup paper [30], they propose a second
attention mechanism that describes a weighted average. Alter-
natively, the authors of [27] propose to use a different, fixed
temperature parameter per head to encourage them to attend
to different event durations, and then concatenate the pooled
embeddings. Finally, the authors of [17] also use concatenation
of the weighted averages, as well as of the weighted standard de-
viation of the embeddings, as proposed in [31], before applying
a gating mechanism on this aggregated vector.

3. The Spider Monkey Whinny in the Wild
Our study area covered approximately 2,000 km2 in the South-
Pacific coast of Costa Rica. Data were collected at 341 sites
totalling 60,000 hours of recordings at a 48 kHz sampling rate;
however, in the context of this study, we annotated data from 13
sites. Of the nine recognised types of calls of A. Geoffroyi, the
‘whinny’ is the most common, representing general communica-
tion related to feeding and movement [32]. Indeed, we found that
over 80 % of recorded calls were whinnies; therefore, we opted
to focus on it; other species exhibit acoustic differences with re-
spect to the type of call [5, 8]. We manually listened to 600 hours

of acoustic data and isolated 591 examples of the target sound
in a total of 366 sound files, which are included in this study.
We included calls from both quiet and noisy backgrounds, to
best represent the natural environment, annotated using the Praat
software1. The calls are around 1 second long, and we opted to
segment our recordings into 3 second clips for this study. For the
positives, we calculate the earliest and latest possible timestamps
that can serve as the clip starting point such that the entire call
can fit. We uniformly sampled a starting point in this interval to
get a clip. The segments that strictly do not contain a call, are
then deterministically segmented into 3 second clips, to produce
our set of negatives. We partition in a site-independent manner,
to ensure that our model does not learn the characteristics of a
site. The dataset characteristics are summarised in Table 1.

4. MIL Model Design
Let xi, yi ∼ D be the i-th sample/label pair from the dataset.
yi is either 0 or 1, depending on whether the sample is negative
or positive, and xi can be a LogMel-Spectrogram, or the raw
waveform of the audio clip, depending on the required core
modelMcore input. The core model processes the input, and
yields a sequence of learnt, latent embeddings of length T : Hi =
{hi,t}. Each ht corresponds to a segment of the input xi, of time
dependent to the degree of subsampling performed byMcore,
and Hi has size equal to T × C, where C corresponds to the
number of features/filters of each hi,t.

4.1. Sequence pooling

LetMpred be a prediction module that expects an input instance
of size 1× C, and outputs a prediction, we have two potential
solutions for getting our final prediction estimate ŷi.

Prediction pooling: We pass all instances hi,t through
Mpred, to get T corresponding {ŷi,t} probability predictions.
We then need to pool this sequence, in order to get our final
prediction for the entire bag of T instances; i. e., a clip-level pre-
diction. For max pooling, we just select max(ŷi,t). Otherwise,
we use the following general form equation:

ŷi =

∑T
t ŷi,t · f(ŷi,t)∑T

t f(ŷi,t)
, (1)

where f(·) is a learnt linear transformation, the exponential func-
tion, and the identity function for the cases of attention pooling,
regular softmax, and LinSoft [25], respectively. For Power Pool-
ing [22], the function is the power to the β-th, where β is a learnt
parameter. A similar adaptive method (AutoPool) was proposed
in [19], where the learnt parameter was the temperature of the
regular, exponential softmax. Since regular softmax, as well as
AutoPool have been outperformed [20, 21, 22] by LinSoft and
Power Pooling, we will include in our comparisons here another
variant: LinSoft-Auto, in which f(ŷi,t) is equal to β · ŷi,t. This
choice also allows for adaptation to variable call durations, but
is less prone to reaching extremely high values and tending to
the max operator, without the need for regularisation.

Embedding pooling: We aggregate the instance-level em-
beddings hi,t into a bag-level one hi, which is then processed
by Mpred to get the final prediction estimate ŷi. Since hi,t

is an embedding in a subspace of RC , we can learn a linear
C × 1 energy transformation f that serves as an unnormalised
proxy of the importance of each instance. In fact, recent work
[26, 30, 17, 27] has shown the value of a plural learning of such

1https://www.fon.hum.uva.nl/praat/
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Table 2: A sketch of our proposed SE-ResNet28. The @ symbol
refers to the number of filters by the respective CNN layers.

LogMel-Spectrogram input (300×128)

(3×3-CNN @ 64, ReLU)×2 & 2×2-MaxPool

(SEBlock @ 64, ReLU)×2 & 2×2-MaxPool
(SEBlock @ 128, ReLU)×3 & 2×2-MaxPool
(SEBlock @ 256, ReLU)×5 & 2×2-MaxPool
(SEBlock @ 512, ReLU)×2 & 2×2-MaxPool

(3×3-CNN @ 2048, ReLU)×2 & 2×2-MaxPool

Reshape embedding (9, 8192)

functions – i. e., multi-head attention – in the context of audio
MIL classification. Assuming K attention heads, the aggregated
bag-level embedding per head is calculated as follows:

h
(k)
i =

∑T
t hi,t · g(k)(hi,t)∑T

t g
(k)(hi,t)

, (2)

where g(k)(·) is the linear function of the k-th attention head.
Let v(k) be a C × 1 matrix that parametrises the linear en-
ergy function. Then, g(k)(hi,t) = exp(hi,tv

(k)), using regular,
exponential softmax to squash energies into probability based
attention weights. The authors of [27] propose to include fixed
temperature parameters β(k), of different values, inside the ex-
ponential function, which encourages each attention head to
learn to attend to different duration patterns. We include in our
comparison a variant according to which β(k) is adaptive.

Finally, there remains the issue of how to aggregate the K
{h(k)

i }: [17, 27] propose a concatenation [h
(1)
i , h

(2)
i , ..., h

(K)
i ],

whereas the recent study in [30] proposes a higher-level single-
head attention based weighted average thereof.

4.2. Core & prediction models

For ourMcore, we perform a comparative study among various
recently published models in Sub-section 5.1. We found that
the ResNet architecture that performed best in [23] was the best
among published methods on our dataset as well2. Here, we also
propose to enhance this network by using SE mechanisms [24]
after each residual block [33] – hence SEBlock. Our proposed
architecture, SE-ResNet28, is summarised in Table 2. As for our
Mpred, it is a single feedforward layer, followed by the sigmoid
activation function, for a total of 29 blocks.

5. Experiments
Code to replicate the experiments is available at the project web-
page3. We resample the audio files to 16 kHz, and calculate the
LogMel-Spectrogram using a 128 ms Fast Fourier window, with
10 ms stride. In terms of data augmentation, we use: a) Random
time shift, b) input jitter sampled from a zero-centred normal dis-
tribution with standard deviation equal to 1e-7, and c) SpecAug-
ment [34] with 2 time and 2 frequency masks of size 24 and 16,
respectively. We perform the former in an offline manner: during
the 3 second positive clip segmentation process, we uniformly
sampled 5 possible time-shifted positive clips in the training

2We used one less basic residual block per group, for a total of four,
such that it fit in our GeForce GTX 1080 Ti.

3https://github.com/glam-imperial/
Spider-Monkey-Whinny-Detection

Table 3: Core model comparison (%): We use average em-
bedding pooling in all cases. ‡ denotes statistically significant
improvement compared to the second best value in the same
column at the p<0.01 level.

Method AU-PR AU-ROC F1 Recall

wavCRNN 37.54 ± 2.22 77.80 ± 1.53 66.87 ± 0.92 65.67 ± 2.12
melCRNN 59.69 ± 1.71 91.69 ± 0.30 76.78 ± 0.76 79.23 ± 2.04
CNN-3 46.15 ± 2.32 89.29 ± 0.87 70.49 ± 1.57 76.95 ± 2.36
VGG16 62.59 ± 3.95 91.42 ± 0.76 76.98 ± 1.69 77.34 ± 3.25
CNN14 63.12 ± 2.63 91.69 ± 0.51 77.18 ± 1.24 79.26 ± 1.65
ResNet28 65.76 ± 2.69 91.55 ± 0.79 77.07 ± 2.52 77.39 ± 4.60

SE-ResNet28 71.76 ± 3.95 ‡ 93.32 ± 0.97 ‡ 80.95 ± 2.10 ‡ 81.08 ± 4.42

set; in validation and testing, we sampled only once, and the
same clips were used throughout the experiments. The two latter
augmentation methods are performed online. We use a batch
size of 64, and the Adam optimiser [35], with initial learning rate
of 1e-6. Finally, we use a NaN-safe cross entropy loss function.

On the validation set, we monitor Area Under the Precision-
Recall curve (non-interpolated AU-PR) of the positive class for
model selection, and use this model in testing. For the test set,
we report AU-PR, as well as Macro averaged Area Under the
Receiver Operator Characteristic curve (AU-ROC), F1 (F1) and
recall (Recall) scores. In all cases, we performed 10 trials for
which we report mean and standard deviation. For statistical
significance testing, we use Welch’s unequal variances t-test.

5.1. Results – core model comparison

In our core model comparison, we control for the sequence pool-
ing method, by setting it equal to average embedding pooling.
All the following models are applied on LogMel-Spectrograms,
unless otherwise specified. We replicated them exactly based
on the papers they were originally introduced, with two excep-
tions: i) We consistently observed a drop in performance if batch
normalisation was used, even though we use double the batch
size as [23], thus we do not use it anywhere, ii) the ResNet28,
which is slightly adapted from the ResNet38 proposed in [23],
and described in Sub-section 4.2. We consider the following
core models in the comparison: a) wavCRNN [36]; a stack
of 1-dimensional CNN layers applied on the raw audio wave-
form, followed by a stack of recurrent neural network layers
(RNN), used in MIL based categorical emotion classification
from speech, b) melCRNN [2]; a stack of 2-dimensional CNN
layers followed by a stack of recurrent neural network layers
(RNN), used in MIL based classification of Bornean gibbon
calls, c) CNN-3 [17]; a simple model using CNN layers fol-
lowed by average pooling used in MIL based audio tagging – it
is of similar complexity to the model used in [28], d) VGG16
[37], e) CNN-14 [23], f) ResNet28 [23], and g) our proposed
improvement SE-ResNet28. Table 3 summarises the results.

5.2. Discussion – core model comparison

The three bigger models – VGG16, CNN14, and ResNet28 –
have similar performances, however, the only significant differ-
ence between them is that ResNet28 yields higher AU-PR at the
p<0.1 level. Similarly, melCRNN performed relatively well in
terms of AU-ROC and Recall, however, ResNet28 is better at
AU-PR at the p< 0.01 level. We thus opted to apply the SE
mechanism on this model, leading to the best performace of this
experiment by SE-ResNet28, with significance at p<0.01 for
AU-PR, AU-ROC, and F1, against the corresponding second
best value. This extends the insights from [28] about the efficacy
of SE in machine audition, on a higher complexity model.
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Table 4: Sequence pooling comparison (%): We use the SE-
ResNet28 core model in all cases. The upper block summarises
prediction, and the lower block, embedding pooling methods.

Method AU-PR AU-ROC F1 Recall

max 59.01 ± 7.25 89.97 ± 2.41 74.24 ± 3.36 76.05 ± 4.26
power 53.63 ± 11.96 89.54 ± 3.60 72.87 ± 4.07 73.91 ± 4.70
linsoft 66.54 ± 4.29 92.01 ± 1.01 78.55 ± 1.79 79.13 ± 1.88
linsoft-auto 66.07 ± 5.38 92.44 ± 1.74 77.92 ± 1.90 79.62 ± 2.87

avg-max 70.09 ± 5.23 93.02 ± 1.41 79.17 ± 3.61 75.20 ± 5.33
att-1 75.82 ± 1.77 94.17 ± 0.88 82.40 ± 1.92 80.16 ± 2.55
att-1-auto 73.32 ± 3.52 93.55 ± 2.37 80.66 ± 2.78 81.85 ± 3.50
att-4 76.36 ± 1.79 94.45 ± 0.87 82.56 ± 2.12 82.00 ± 4.06
att-4-std 75.44 ± 2.54 94.14 ± 0.88 81.97 ± 1.38 80.15 ± 3.45
att-4-mul/res 74.50 ± 2.26 94.43 ± 0.63 80.77 ± 2.79 81.89 ± 2.60
att-4-auto 74.01 ± 2.96 94.25 ± 0.95 80.62 ± 2.33 82.76 ± 3.34
double-att-4 70.63 ± 6.08 93.19 ± 1.60 79.63 ± 3.15 79.79 ± 3.11

5.3. Results – sequence pooling comparison

Table 4 summarises our sequence pooling comparison experi-
ments, divided into two blocks: prediction pooling (upper block)
and embedding pooling (lower block) methods. We include the
following methods in the prediction pooling experiment: a) max;
selecting the maximum instance prediction probability, b) power
[22]; the recent adaptive Power Pooling method, c) linsoft [25];
the learning-free linear softmax method, and d) linsoft-auto;
our own variant with adaptive temperature parameter. Finally,
we include the following methods in the embedding pooling
experiment: a) avg-max [23]; the concatenation of a max and
an average pooling operation, b) att-1, and att-1-auto; single
head attention mechanisms, the latter our own variant with adap-
tive temperature β, c) att-4; a four-head attention mechanism,
with subsequent concatenation of the head-specific pooled em-
beddings, as used in [17, 27], d) att-4-std; as before, but also
concatenating the weighted embedding standard deviation, as
proposed in [31] and adopted in [17], e) att-4-mul/res [27]; as
att-4, but with fixed temperature parameters as described in [27],
f) att-4-auto; the temperature parameters are initialised as att-4-
mul/res, but now are adaptive, g) double-att-4 [30]; alternative
aggregation of the head-specific embeddings, via weighted aver-
aging through a higher level single attention head.

5.4. Discussion – sequence pooling comparison

The best prediction pooling methods respective to measure do
not manage to outperform the average embedding pooling re-
ported in Table 3; significantly lower for linsoft in AU-PR and F1
(p<0.05). Max performed better than power across all measures,
contradicting [22], albeit without any kind of significance. Com-
paring linsoft and linsoft-auto is also inconclusive in terms of
significance. However, linsoft and linsoft-auto were significantly
better than max in AU-PR, AU-ROC, and Recall with p<0.05,
and F1 with p<0.01; contradicting [21], but in line with [22, 20].

As for embedding pooling, we first observe that the simple
avg-max method used in [23] performs worse than simple aver-
age pooling in all measures (p<0.05 for Recall). We thus have
already offered a solid improvement upon the ResNet method
proposed in [23], both in the core architecture, as well as in
sequence pooling considerations. Single-head attention outper-
forms average pooling (AU-PR and AU-ROC with p < 0.05),
as well as the better prediction pooling methods (AU-PR and
AU-ROC with p < 0.01), going against previous comparisons
[20, 21]. The application of adaptive temperature also performs
in a similar manner to att-1, with no significance.

As for multi-head attention, the best method, which leads
to the best result in this study, is the simple concatenation att-

4. It is significantly better than double-att-4 [30] with p<0.05
at all measures except for Recall. We thus opted to compare
further variants of att-4. However, att-4 proved to be better than
the multiresolution based att-4-mul/res (AU-PR p < 0.1) and
our adaptive variant (AU-PR p < 0.05, F1 p < 0.1); although
att-4-auto performs better in Recall (p ≮ 0.1). The classic att-
4 outperformed att-4-std in all measures (however p ≮ 0.1).
Finally, att-4 was better than average pooling in all measures,
with p < 0.01 for AU-PR, p < 0.05 for AU-ROC, and p < 0.1
for F1, thus validating the purpose of this series of experiments.

5.5. Discussion – on significance of results

We realise that our results may have limited effect compared to
studies utilising larger datasets. Despite that, it was the larger
models, and the parameter-heavy pooling methods that were the
best performers overall, contrary to the conjecture made by in
[23] that larger datasets are required to train them. That being
said, these results are meant as they are: the comparative study
of models and pooling methods on a smaller dataset (due to
the rarity of the spider monkey and extensive specialist labour
required for recording/annotation). Thus, we performed rigorous
statistical significance testing, and are modest with our claims.
Among previous pooling comparison studies [20, 22], only [21]
reported number of trials and errorbars; no significance testing.

6. Conclusions & Future Work
We have achieved a two-fold computational improvement on
the first machine learning study on spider monkey whinny call
detection in the actual, Costa Rican wild: our SE-ResNet28 sig-
nificantly outperformed the baseline [23], and, after extensive
comparisons, we also gained further improvement by selecting
a multiple head attention (with concatenation) embedding pool-
ing method for sequence pooling. Surprisingly, we found that
many of the recent tricks relating to attention based embedding
pooling (including related to multi-head attention), were not
better than this conceptually simpler approach. Adding the orig-
inal definitions of the Wavegram joint spectrogram/waveform
block [23], as well as the gated attention mechanism [17] on our
SE-ResNet28, increased the model memory footprint beyond
the capacity of the GPUs available to us, so we leave further
adaptation considerations for future work. Another tangent to
follow is a strong and weak joint supervision, similar to [38].
Finally, using the abundance of spider monkey call predictions
as a proxy index of species abundance can unlock the potential
for estimating population abundance. It is essential that we find
new methods that allow for studying this species at a larger scale,
enabling us to make robust conservation decisions [39].
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