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Abstract— There is a growing interest in affective computing
research nowadays given its crucial role in bridging humans
with computers. This progress has recently been accelerated
due to the emergence of bigger dataset. One recent advance in
this field is the use of adversarial learning to improve model
learning through augmented samples. However, the use of latent
features, which is feasible through adversarial learning, is not
largely explored, yet. This technique may also improve the
performance of affective models, as analogously demonstrated
in related fields, such as computer vision. To expand this
analysis, in this work, we explore the use of latent features
through our proposed adversarial-based networks for valence
and arousal recognition in the wild. Specifically, our models
operate by aggregating several modalities to our discriminator,
which is further conditioned to the extracted latent features
by the generator. Our experiments on the recently released
SEWA dataset suggest the progressive improvements of our
results. Finally, we show our competitive results on the Affective
Behavior Analysis in-the-Wild (ABAW) challenge dataset.

I. INTRODUCTION

Affective computing has recently attracted the attention
of the research community, due to its applications in
multiple and diverse areas, including education [7] or
healthcare [25], among others. Furthermore, the growing
availability of affect-related datasets, such as SEWA [23]
and the recently introduced Aff-Wild2 [21], enable the
rapid development of deep learning-based techniques, which
currently hold the state of the art [22], [23], [18].

In computer vision tasks, such as natural image
generation[31] and image classification[29], adversarial
learning techniques from the family of generative models
have been extensively investigated [31], [29], [5]. This learn-
ing technique enables rapid progress, not only to create addi-
tional data, but also to improve the performance of predictive
models. Nevertheless, in the context of affective computing-
related applications, this technique is still young and confined
to its usage for data augmentation purposes [13].

To expand the investigation of generative models in the
field of affective computing, we investigate the use of latent
features that are extracted in adversarial manners to improve
the predictive capabilities of our model estimations. Specif-
ically, we extract the visual latent features of the generator,
which are then used to condition the discriminator on its esti-
mations. Furthermore, we also aggregate the audio modality
during training. We later show in our experiments on the
SEWA [23] and Aff-Wild2 [21] datasets the benefits of our
proposed approach with our competitive results. Specifically,
the contributions of this work are:

1) We are the first to introduce the utilisation of latent
features arranged in an adversarial way to improve
affect-related model estimates.

2) We show the progressive improvements on our proposed
works on the SEWA and Aff-Wild2 datasets and achieve
competitive results on both datasets.

II. RELATED WORKS

Early approaches on automatic affect estimations involved
the use of classical machine learning techniques with some
degree of success. Several techniques explored include lin-
ear and partial least square regression [30], and support
vector machines [28]. Furthermore, given the number of
available modalities (e. g. video, audio, and bio-signals),
several fusion techniques were also introduced to improve
affect-related estimates. Different examples of these methods
include early, late, model, and output-associative fusion [37].
Diverse affective information has been progressed, starting
from Action Units detection, emotion detection, to more
recently continuous valence and arousal estimation[22], [23].

Current progress relates to the emergence of big data
that creates the opportunity to introduce large scale datasets
in many fields, including affective computing. Examples of
these datasets are SEMAINE [26], AVEC [32], AFEW [22],
RECOLA [33], SEWA [23], and the recently introduced Aff-
Wild2 dataset [21], [20], [36], [16]. These datasets enable the
development of powerful deep learning models that improve
the accuracy of current state of the art [22], [19], [18]. The in-
vestigations of deep learning-based techniques onto affective
computing include the introduction of Convolutional Neural
Networks (CNN) [4], incorporation of Recurrent Neural
Network (RNN) [23], and recently the fusion with Tensor-
based methods [27].

Adversarial learning [31] as a generative approach has
been intensively studied in other machine learning research,
especially in computer vision [5]. Given its potential, this
method has also been explored in the field of affective
computing, usually to augment the training data available for
training [13]. However, there is another aspect of generative
models that is largely unexplored in this field, which is
the use of latent features to improve the models estima-
tions, as shown in previous works from other fields, such
as computer vision [35], machine learning [11], and bio-
signal analysis [6]. This inspired us to investigate the use
of adversarial learning to improve our proposed models’
performance through extracted latent features.

                                      
                              

  
  

  
  

  
  

  
   

  
  

  
  

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
  

  
  

  
  

  
  

   
  

  
 

  
  

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
  

  
   

  
   

 
 

   
  

  
  

  
  

  
  

  
  

  
  

  
  

                                                                                                                                               



Fig. 1. Complete architecture of our proposed models which incorporate two main networks: first is an Auto-Encoder-based Generator (AEG) which
denoises the image and creates robust latent features. Second is a Conditional Discriminator-based affect estimator (CD) that aggregates both sounds and
image input which is conditioned by latent features from the CD to estimate both real/fake and valence/arousal values.

III. LATENT-BASED ADVERSARIAL NETWORKS

We build our model based on the Star-GAN network[5],
with architectural modifications to allow the extraction of la-
tent features and use of the audio features. Figure 1 shows the
overview of our proposed network. Our model operates by
aggregating two main modalities: facial and audio features.
There are two main sub-networks involved in our overall
networks as already outlined above: the Auto-Encoder-based
Generator(AEG), and the Conditional Discriminator-based
affect estimator (CD) [24]. The main role of the AEG is
to produce cleaned images from noisy images to fool the
discriminator, while simultaneously extracting robust latent
features. On the other hand, the CD tries to recognise the
fake images created by the AEG, and, at the same time,
estimates the actual valence and arousal values. We train the
AEG and CD in an adversarial way as below:

Ladv =Ex [logCDadv(x)] +

Ex[log (1− CDadv(AEG(x̂)))],
(1)

where x corresponds to the noisy image and x̂ is the cleaned
input image approximated by the AEG. We use similar noise
introduction methods as in [3], which consist of four different
types of artifacts: Gaussian blurring, Gaussian noise, image
downsampling, and colour scaling.

A. Auto-encoder-based generator

Given the noisy input image, x, the AEG will approximate
the cleaned version of the input image, x̂. This is done by
utilising coupled mirrored convolutions and deconvolutions
with intermediate 2D bottleneck latent kernels; i. e. without
skip connections. This scheme enforces the AEG to create
latent robust features in order to effectively clean the input
image. To improve the denoising and reconstruction process,
we use the cycle loss [5], [15] defined below :

Lrec = Ex[||x−AEG(AEG(x̂))||]. (2)

B. Conditional discriminator-based affect estimator

The CD employs both facial and audio features to identify
the real/fake status of the current input and the corresponding
valence and arousal values of θ̂. The facial features corre-
spond to the cleaned image (denoised or reconstructed from
the generator and the corresponding latent features of z.
From the audio modality, we use the low-level descriptors
(LLDs) of the EGEMAPS feature set[8] (cf. Section III-D).
Both latent and audio features are combined through late
fusion [12], [34], [37] alongside the main RGB input images.
Specifically, the audio features are merged by feeding them
into a 1D fully connected layer to enlarge its dimension
and converting it to a single 2D kernel, which is then
concatenated with the denoised image. The latent features
are combined in middle pipelines of the CD by concatenating
them with intermediate kernels.

To detect both real and fake status and estimate valence
and arousal values, we add another classifier[29] on top of
the main classifier, which consists of a 2x2 pixels layer[14].
In the adversarial training, the CD will be optimised using
real (r) and fake (f ) images to minimise the affect loss
(Lafc) that judges the accuracy of the estimated valence and
arousal values (cf. Equation 5). The corresponding loss of
training the CD for both real (Lr

va) and false examples (Lf
va)

can be seen below :

Lr
va = Ex,θ[−Lafc(θ

′|x)], (3)

Lf
va = Ex,θ[−Lafc(D(θ|G(x)))], (4)

where θ̂ is the ground truth valence/arousal value, and
the affect loss, Lafc, corresponds to the amalgamations
of multiple affect metrics: Mean Square Error(MSE) (Eq.
6), Correlation(COR) (Eq. 7), and Concordance Correlation
Coefficients (CCC) (Eq. 8), [22], [21] :

Lafc =
N∑
i=1

ni

N
(LMSE + LCOR + LCCC) (5)

                                                                                                                                               



LMSE =

√√√√ 1

n

n∑
i=1

(θ̂i, θi), (6)

LCOR =
E[(θ̂ − μθ)− (θ − μθ)]

σθ̂σθ
(7)

LCCC = 2x
E[(θ̂ − μθ)− (θ − μθ)]

σ2
θ̂
+ σ2

θ

, (8)

where ni is the total number of instances of discrete va-
lence/arousal class i, and N is the normalisation factor[1]
for the total valence/arousal class. This normalisation factor
is crucial given considerably unbalanced class instance on
the Aff-Wild2 dataset[17].

C. Overall objective

Finally, the overall objective functions to train both AEG
and CD are expressed as follows:

LD = −Ladv + λafc Lr
afc, (9)

LG = Ladv + λafc Lf
afc + λrec Lrec, (10)

in which λafc and λrec are the regulariser parameters for
affect estimations and reconstruction loss.

D. Audio feature extraction

One of the first challenges when combining audio and
video signals is the difference in term of sampling rates be-
tween both modalities. To overcome this issue, we first gen-
erate audio frames from the original audio signal by selecting
the portions of the audio signal corresponding to one frame
of video. We then enlarge the audio frame with the samples
corresponding to the previous and future video frame to en-
sure information overlap between consecutive audio frames.
We finally extract the LLDs of the EGEMAPS [8] feature
set using OPENSMILE [9], and concatenate the first two sets
of LLDs for further analysis. These LLDs are extracted from
windows of 0.060 seconds with a step size of 0.010 seconds.
Selecting the first two sets of LLDs only, we ensure the
same dimensionality of the audio features in spite of videos
recorded at different sampling rates.

E. Model training

To train our model, we use the respective training subset of
each dataset. On the Sentiment Analysis in the Wild dataset
(SEWA)[23], we followed original person-independence pro-
tocols, and apply the feature extraction techniques described
on previous sections. Moreover, we also use the external
tracker of [2] to refine the given bounding box. We also
includes the experiments on Aff-Wild2 dataset as part of
the Affective Behavior Analysis in-the wild (ABAW) 2020
Competition to provide more actual analysis of our models
performance. In this dataset, we only utilise the training
subset to obtain our validation results. We then use the full
available data (training and validation) to train our final mod-
els to produce our test results. Specifically, we used the crop-
aligned samples provided by the organisers as facial features,
in addition to the audio signals from the available videos.

For both datasets, we trained our model progressively to
allow us to analyse the impact of each proposed step. We
first train both of generator and discriminator together, and
proceed by adding the extracted latent z features alongside
the audio features. Our models were trained using an
NVIDIA Titan X GPU and it took approximately two days
to converge. The source code of our models is available at
our github page1

IV. EXPERIMENTS

A. Datasets and Experiment Settings

In this section, we describe our results on SEWA[23] and
recently introduced Aff-Wild2 [17] datasets to confirm the
advantages of each of our proposed approaches.

• The SEWA dataset[23] is a recently published affect
dataset which consists of video and audio recording
involving 398 subjects from multiple cultures. It is split
into 538 sequences with various meta-data (e.g. subject
id, culture etc) are available alongside the actual affect
ground truth of valence/arousal and liking/disliking.

• The Aff-Wild2 challenge dataset is being published as
part of the first ABAW 2020 competitions[17] which
consists of three main challenges : valence-arousal,
basic expression and eight action units. Aff-wild2 is
considered to be the current, largest affect in the wild
dataset with more than 558 videos and 458 total number
of subjects. Specific on the valence and arousal chal-
lenge, there are 545 annotated videos with 2.786.201
frames which is split into three subsets : 346 videos of
training, 68 videos of validation and 131 videos of test.

In each experiment, we provide the results from the
variant of our models to highlight the important of each
approach. First is the method Disc which corresponds to our
results utilizing only plain Discriminator (CD) trained using
standard �2 loss. Second is method AEG-CD that constitute
to our model which uses adversarial training for both of
AEG and CD. Lastly, the AEG-CD-ZS shows the results of
our previous model trained with the inclusion of both latent
features z from AEG and the mapped audio features.

We use MSE, COR and CCC metrics to evaluate the
quality of each affect estimations[23], [32], [27], [17].
That on the Aff-Wild2 dataset, we compared our results
on the validation stage against the baseline provided by the
organizers [17]. While for the SEWA dataset, we report our
results from original five cross validation settings [23] and
compared them with the respective baseline[23] and recent
state of the art of [27]

B. Experiment Results

Table I provides our results on the SEWA dataset, where
we can see that our models able to produce quite competitive
results, with a quite high accuracy on the arousal dimension.
Specifically, we observe a relatively high accuracy obtained
by our discriminator (Disc) that is enough to outperform the
current baseline, albeit still lower than the results of [27].

1https://github.com/deckyal/ALN

                                                                                                                                               



TABLE I
EXPERIMENT RESULTS ON SEWA DATASET

Methods MSE COR CCC
Val Aro Val Aro Val Aro

Baseline [23] - - 0.322 0.4 0.195 0.427
Tensor [27] 0.334 0.380 0.503 0.439 0.469 0.392
Disc 0.336 0.399 0.395 0.457 0.349 0.379
AEG-CD 0.329 0.394 0.429 0.467 0.380 0.429
AEG-CD-SZ 0.323 0.350 0.442 0.478 0.405 0.430

TABLE II
EXPERIMENT RESULTS ON AFF-WILD2, ABAW CHALLENGE DATASET.

THE VALUES IN PARENTHESES DENOTE THE TESTING RESULTS

Methods MSE COR CCC
Val Aro Val Aro Val Aro

Baseline [17] - - - - 0.14 (0.11) 0.24 (0.27)
Disc 0.44 0.30 0.07 0.19 0.07 0.20
AEG-CD 0.42 0.28 0.10 0.22 0.08 0.22
AEG-CD-SZ 0.42 0.28 0.11 0.29 0.10 (0.17) 0.26 (0.16)

Using the adversarial training further improve the accuracy
which conforms the previous findings of the benefit in using
the adversarial learning upon standard l2 loss[5], [29], [10].
Another potential explanation of this improvement can be
attributed to the generated images that may reduce the avail-
able noises on the input images (cf. Section IV-C). Finally,
incorporating both of the latent and audio features improves
the overall accuracy of our results, surpassing the current
state of the art on this dataset on the arousal dimension,
highlighting the benefit of incorporating such features.

We also found similar findings in our results on the
Aff-Wild2 dataset as shown in Table II. In this dataset, we
observe identical improvements toward our results on the
validation stage, with the lowest accuracy produced by our
Disc model and progressively increased to the best accuracy
of AEG-CD-SZ, attaining superior accuracy on arousal
domain compared to the baseline. In the test set however,
we found that AEG-CD-SZ produces a quite balanced
accuracy for both valence and arousal, with higher accuracy
against the baseline on the valence domain. This may be a
result from the incorporation of the validation split in our
training, that further altered the distribution of valence and
arousal instances.

C. Latent Feature and Visual Analysis

In this section, we further visualize the learned latent
kernel features to explain the observed progressive
improvement of our models. Figure 2 shows the examples
of original input images and their denoised (cleaned)
versions, followed by randomly selected six latent kernels.
In regards to the denoising quality, we found that our model
manages to clean the underlying noise on the input image
considerably well. Furthermore, we notice the consistency
of the learned latent features, i.e their spatial structures
are not drastically altered, regardless the input conditions.
These robust representations help the Discriminator in its
inference as complementary features [6] resulting in overall
higher accuracy, as shown on the previous section.

Fig. 2. Example of denoised images and the corresponding latent kernels
(selected randomly). As we can see, the denoised images are quite cleaned,
and the latent kernels are also consistent across different input conditions.

Fig. 3. Visualization of the results from of our model variants. Notice
that the results from AEG-CD-ZS, both in Valence and Arousal domain
are the most closely resemble to the ground truth compared to the others.
Furthermore, the denoised image appear to be clearer than the original input

Furthermore in Figure 3, we can also see the continous
results of our model variants. By observing this, we
could concur that AEG-CD-SZ produces the most
accurate predictions compared to the rest indicated by
their resemblances to the ground truth. Also notice that,
the denoised input images are also clearer and sharper
compared to the original input, which demonstrates the
real-life applicability of denoising functions of our model.
Finally, these cleaned inputs, may also further aids the
discriminator training in conjunction with learned latent
features, hence improved its overall results.

V. CONCLUSION

In this paper, we presented the first investigation using
latent features extracted through adversarial learning in
Affective Computing domain. Specifically, we performed

                                                                                                                                               



progressive training on our generator to extract robust
features given noisy inputs paired with a discriminator
through adversarial learning. Then, we employed a
conditional discriminator to aggregate several modality’s
inputs to achieve our affect estimations. We tested the
performance of our models on two datasets: SEWA and
Aff-wild2. In our experiments, we observed progressive
improvements made by each of our approaches ultimately
leading to competitive results on both datasets. In the
future, we seek to incorporate temporal modelling to further
increase the accuracy of the proposed models.
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I. Wood, C. Robin, and L. Lamel. Multimodal emotion recognition for
avec 2016 challenge. In Proceedings of the 6th International Workshop
on Audio/Visual Emotion Challenge, AVEC ’16, page 75–82, New
York, NY, USA, 2016. Association for Computing Machinery.

[31] A. Radford, L. Metz, and S. Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks.
arXiv preprint arXiv:1511.06434, 2015.

[32] F. Ringeval, B. Schuller, M. Valstar, N. Cummins, R. Cowie, L. Tavabi,
M. Schmitt, S. Alisamir, S. Amiriparian, E.-M. Messner, et al. Avec
2019 workshop and challenge: state-of-mind, detecting depression
with ai, and cross-cultural affect recognition. In Proceedings of the
9th International on Audio/Visual Emotion Challenge and Workshop,
pages 3–12, 2019.

[33] F. Ringeval, A. Sonderegger, J. Sauer, and D. Lalanne. Introducing
the recola multimodal corpus of remote collaborative and affective
interactions. In 2013 10th IEEE FG, pages 1–8, April 2013.

[34] C. G. Snoek, M. Worring, and A. W. Smeulders. Early versus late
fusion in semantic video analysis. In Proceedings of the 13th annual
ACM international conference on Multimedia, pages 399–402, 2005.

[35] M. Trumble, A. Gilbert, A. Hilton, and J. Collomosse. Deep autoen-
coder for combined human pose estimation and body model upscaling.
In ECCV, September 2018.

[36] S. Zafeiriou, D. Kollias, M. A. Nicolaou, A. Papaioannou, G. Zhao,
and I. Kotsia. Aff-wild: Valence and arousal ‘in-the-wild’challenge.
In IEEE CVPRW, 2017, pages 1980–1987. IEEE, 2017.

[37] Z. Zeng, M. Pantic, G. Roisman, and T. Huang. A survey of affect
recognition methods: Audio, visual, and spontaneous expressions.
IEEE T Pattern Anal, 31(1):39–58, 2009.

                                                                                                                                               


