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Abstract— The high prevalence of chronic pain in society
raises the need to develop new digital tools that can automati-
cally and objectively assess pain intensity in individuals. These
tools can contribute to an optimisation of clinical resources, as
they offer cost-effective solutions for early detection, continuous
monitoring, and treatment personalisation by utilising Artificial
Intelligence techniques. In this work, we present our contribu-
tion to the Pain Intensity Estimation from Facial Expressions
task of the EMOPAIN 2020 Challenge. Specifically, we compare
the performance of Recurrent Neural Networks trained with
standard or Curriculum Learning (CL) approaches to predict
the pain intensity level of individuals reported in an 11-point
scale from facial expressions. The results obtained using the
test partition support the use of CL-based approaches in the
automatic prediction of pain from facial features. The best
model trained using a CL approach achieved a Concordance
Correlation Coefficient (CCC) of 0.196 in the test partition,
while the model trained using a standard approach, without
CL, achieved a CCC of 0.174. In terms of CCC, these results
respectively represent an improvement of 0.136 and 0.114 on
the best results of the baseline system reported by the Challenge
organisers using the test partition.

I. INTRODUCTION

Chronic pain is a major public health concern [11]. A study
conducted in 2003 reveals that the prevalence of chronic
pain among European adults is 19 % [5]. Similarly, the
prevalence of US adults suffering from chronic pain was
estimated in 2006 to be 20.4 % [7]. Therefore, there is a real
need to develop digital tools for the automatic detection
and recognition of pain. These solutions can contribute
to early detection, continuous monitoring, and treatment
personalisation for improving patients’ health state and
wellbeing.

Automatic pain detection has been widely investigated in
the literature; for a recent review, the reader is referred to [25].
Targeted populations have included adults [15], children [28],
and neonatal babies [6]. These studies have been undertaken
in a variety of different conditions, e. g. , in laboratory [15]
or Intensive Care Unit (ICU) settings [1].

Previous research in this area suggests that facial expres-
sions can be used as a reliable indicator of pain [27], [19],
[15]. In this direction, researchers have investigated the use
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of hand-crafted features [22], features extracted using deep
learning [21], and even the fusion of both [9] to encode the
information inferred from facial expressions for the automatic
detection or recognition of pain. Machine learning techniques
such as Support Vector Machines (SVM) [17], [12], [20]
or Random Forests [26], and deep learning techniques such
as Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN) [18], [24], [13] were explored in
this context.

Herein, we present our contribution to the Pain Intensity
Estimation from Facial Expressions task of the EMOPAIN
2020 Challenge1 [8]. In this work, we investigate the use
of specific Action Units (AUs) of the Facial Action Coding
System (FACS) [10] to train a RNN able to predict the pain
intensity on individuals reported on a continuous 11-point
scale. Specifically, we focus our analysis on the performance
comparison of systems trained using standard or Curriculum
Learning (CL) [4] approaches. To the best of the authors’
knowledge, this paper represents the first time a CL approach
has been considered in the automatic prediction of pain from
facial expressions.

The rest of the paper is laid out as follows. Section II
introduces the dataset utilised, while Section III describes the
methodology followed. Section IV then presents the results
obtained from the experiments performed. Finally, Section V
concludes the paper and highlights some potential future work
directions.

II. EMOPAIN DATASET

The data used in the current task of this Challenge belongs to
the EmoPain dataset [2]. This dataset provides fully annotated
multimodal data from individuals with Chronic Lower Back
Pain (CLBP) with high resolution multiple-view facial videos,
head-mounted and room audio signals, full-body 3D motion
capture, and electromyographic signals from back muscles
of both CLBP and healthy control participants (cf. Table II).

For the Challenge [8], only the features extracted from the
facial videos have been made available to participants. The
available facial features include facial landmarks, head pose,
Histogram of Oriented Gradient (HOG) features, action unit
intensity values and occurrence extracted with OpenFace [3],
and deep-learnt feature representations extracted using VGG-
16 [23] and ResNet-50 [14] pre-trained models.

1https://mvrjustid.github.io/EmoPainChallenge2020/

                                      
                              

  
  

  
  

  
  

  
   

  
  

  
  

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
  

  
  

  
  

  
  

   
  

  
 

  
  

  
   

  
  

  
  

  
  

  
  

  
  

  
  

  
  

 
  

  
   

  
   

 
 

   
  

  
  

  
  

  
  

  
  

  
  

  
  

                                                                                                                                               



TABLE I
SUMMARY WITH THE TOTAL NUMBER OF VIDEOS AND FRAMES AVAILABLE IN BOTH TRAIN AND VALIDATION PARTITIONS OF THE EMOPAIN DATASET,

IN ADDITION TO THE TOTAL NUMBER OF FRAMES ANNOTATED WITH ALL POSSIBLE PAIN INTENSITY SCORES.

# Videos # Frames Pain Intensity Instances

0 1 2 3 4 5 6 7 8 9 10

Train 66 869 452 646 634 39 694 31 032 61 148 41 286 17 122 16 958 9 140 3 734 626 2 078
Validation 48 607 928 475 717 20 731 31 697 25 613 20 765 15 416 7 425 9 972 198 176 218
∑

114 1 477 380 1 122 351 60 425 62 729 86 761 62 051 32 538 24 383 19 112 3 932 802 2 296

TABLE II
EMOPAIN DATASET CHARACTERISTICS REGARDING THE NUMBER OF

CLBP AND HEALTHY CONTROL PARTICIPANTS AVAILABLE IN THE TRAIN,
VALIDATION AND TEST PARTITIONS.

CLBP Participants Healthy Participants
∑

Train 8 11 19
Validation 3 6 9
Test 3 5 8
∑

14 22 36

Pain intensity levels on the recorded individuals were
annotated in a continuous 11-point scale. On this scale, scores
of zero are assigned to healthy participants, while scores of
one to ten, both inclusive, are assigned to CLBP participants.
The distribution of the annotations in the reported scale from
both training and validation sets is summarised in Table I.

III. METHODOLOGY

This section describes the methodology followed in this work.
Section III-A details the data conditioning performed, while
Section III-B presents the architecture of the Neural Network
implemented with the two different approaches considered.
Finally, Section III-C details the post-processing applied to
the predictions before the actual performance evaluation of
the trained models.

A. Data Conditioning

Based on previous research suggesting the reliability of facial
expressions as pain indicators [27], [19], [15] and despite the
different facial feature sets available to the participants of the
Challenge, we decided to focus this analysis exclusively on
the use of the facial features representing the intensities of
the Facial Action Units (FAUs) AU1, AU2, AU4, AU5, AU6,
AU7, AU9, AU10, AU12, AU14, AU15, AU17, AU20, AU23,
AU25, AU26, and AU45. Although multiple cameras with
different points of view were used during data collection, in
this work, we treat the FAUs extracted from the different
data sources equally.

In order to capture the dynamics of the facial expressions
that contribute to the current pain intensity level, we select

TABLE III
DISTRIBUTION OF THE ANNOTATIONS SELECTED IN THE THREE

DIFFERENT LEVELS FOR THE THREE DIFFERENT CONFIGURATIONS

INVESTIGATED DURING NETWORK TRAINING WITH A CURRICULUM

LEARNING APPROACH.

First level Second level Third level

C1 [1,2,9,10] [1,2,3,4,7,8,9,10] [1,2,3,4,5,6,7,8,9,10]
C2 [1,2,9,10] [1,2,3,4,7,8,9,10] [0,1,2,3,4,5,6,7,8,9,10]
C3 [0,9,10] [0,1,2,7,8,9,10] [0,1,2,3,4,5,6,7,8,9,10]

a window of features to model each pain intensity annota-
tion, i. e. , in a many-to-one prediction manner. Specifically,
features from previous and current 290 frames, which
approximately corresponds to 5 minutes of the video signal,
are used to predict the current annotation. Zero-padding on
the features is used when accessing previous frames to the
actual beginning of the recording. This strategy can contribute
to an augmentation of the available data.

Pain intensity annotations are clearly imbalanced
(cf. Table I) and, as a consequence, could risk the models’
overfitting to the most populated class. In order to overcome
this issue during training, we downsample the generated
windows of features, without changing the information
encapsulated inside, for every video separately. Specifically,
we select as many samples as the least populated class for
all reported pain intensity annotations in each video and their
corresponding windows of features. For healthy participants,
which only have 0-score pain intensity annotations, we select
1 % of the samples in each video.

B. Neural Network Architecture

To model the time dependencies of the facial expressions in
the automatic prediction of pain, we implement a RNN with
two consecutive Long Short-Term Memory (LSTM) RNN
networks, with a dropout probability of 20 % between them,
and followed by a fully connected layer. The implementation
has been performed using the framework PYTORCH [16].
The first LSTM receives 17 features and learns an embedded
representation of the input features in a 128-dimensional space.
The second LSTM RNN receives this representation and
learns a second embedded representation in a 64-dimensional
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Fig. 1. Diagram of the baseline approach. Input data is firstly conditioned to predict the current pain intensity score in a many-to-one manner, and
downsampled to overcome the imbalanced data. The resulting windowed features are then fed into a recurrent neural network followed by a fully connected
layer to predict the current pain intensity score. The predicted scores are upsampled before model assessment to undo the effect of the downsampling
performed in the data conditioning stage.
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Fig. 2. Diagram of the Curriculum Learning approach. In this approach, as opposed to the baseline one, annotations are divided into different levels,
starting from the most extreme annotations and progressively adding the intermediate and most complex ones. During training, each subset of the annotations
and their corresponding windows of features are progressively fed to the recurrent neural network to learn a correlation between pain intensity scores and
sequences of facial action units.

space. Finally, the fully connected layer receives the last 64-
dimensional embedded representation to output a single value
corresponding to the pain intensity label. The network is
trained using the Concordance Correlation Coefficient (CCC)
as the loss function to optimise with Adam as the optimiser,
which uses a learning rate of 0.001. Network parameters are
updated using a batch size of 16. Models are trained with a
maximum of 50 epochs and an early-stopping method to stop
training when the loss has not improved for 10 consecutive
epochs.

1) Baseline Approach: This section describes the standard
approach that we use as a baseline for our experiments
(cf. Figure 1). Based on the data conditioning described in
Section III-A, we use all the available downsampled samples
as a whole to train the network. This is a standard approach
with no particularities.

2) Curriculum Learning Approach: This approach uses
a CL methodology [4], which is based on progressively
adding complexity to the system to benefit the generalisation
capabilities of the trained models. The models are trained
iteratively with subsets of the annotations, and their corre-
sponding features, starting from the easiest annotations to
recognise to the most difficult ones.

In the context of our problem, this approach can be
implemented by starting the network training with extreme
annotations such as 0, 9, and 10, and then progressively adding
the intermediate annotations. For this study, the annotations
have been organised in three different groups or levels.

Furthermore, in order to investigate performance differences
in the organisation of the labels, we test three different
configurations: C1, C2, and C3. The organisation of the
labels for these three different configurations is summarised
in Table III.

The procedure implemented to train neural networks with
a CL approach is as follows (cf. Figure 2). First, we select
the windows of features corresponding to the annotations
belonging to the first level of labels, downsample them as
described in Section III-A, and feed them to train the network.
After convergence, either because of a local minimum in
the validation partition or if the number of epochs allowed
for training is exceeded, we select the windows of features
corresponding to the second level and resume the training. As
the last step and after model converge on the second level of
annotations, we select the windows of features corresponding
to the third and final level of labels and resume the training
for the last time.

C. Post-processing
As the annotations do not change drastically over time, to
speed up the time required to compute the outputs of the
trained models, we downsample the data belonging to the
validation and test partitions by selecting 1 in every 36
samples, which approximately corresponds to 38 seconds
of the video signal. Due to the nature of the annotations,
we aim to minimise the information loss by using this
downsampling factor. The predictions are then replicated,
so they are upsampled to match the length of the original

                                                                                                                                               



TABLE IV
MEAN ABSOLUTE ERROR (MAE), ROOT MEAN SQUARED ERROR

(RMSE), PERSON CORRELATION COEFFICIENT (PCC), AND

CONCORDANCE CORRELATION COEFFICIENT (CCC) COMPUTED

BETWEEN THE ACTUAL AND PREDICTED PAIN INTENSITY SCORES IN

BOTH VALIDATION AND TEST PARTITIONS WITH THE DIFFERENT

APPROACHES INVESTIGATED.

Approach Partition MAE RMSE PCC CCC

Baseline Approach Validation 1.761 2.446 .175 .163
Test 1.641 2.058 .187 .174

CL Approach - C1 Validation 2.048 2.600 .168 .125
Test 3.269 3.881 .071 .026

CL Approach - C2 Validation 2.072 2.608 .203 .147
Test 1.600 2.122 .216 .196

CL Approach - C3 Validation 2.711 3.183 .196 .097
Test – – – –

annotations. Finally, the performance of the trained models
is assessed by computing the Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), Pearson Correlation
Coefficient (PCC), and Concordance Correlation Coefficient
(CCC) between the actual and predicted pain intensity scores.

IV. EXPERIMENTAL RESULTS

The results obtained on the validation partition highlight
the significance the configuration of the annotations in the
different levels have in the system performance when using
CL approaches (cf. Table IV). The model trained with C3
configuration, which uses data from healthy participants from
the beginning of training, obtained the worst performance
with a CCC of 0.097. This result highlights the importance of
using balanced data to train neural networks, as overusing the
most common class might bias the model performance. The
C1 configuration improves the performance of the trained
model, with a CCC of 0.125. Our strongest CCC score is
obtained using the C2 configuration, which achieved a CCC
of 0.147.

Analysing these results, one can claim that the assignation
of the annotations in the different levels impacts the system
performance. Furthermore, one can argue that it is important
to use samples from all classes represented in the dataset,
and that imbalanced data might negatively impact system
performance. In terms of MAE, RMSE and CCC, models
trained with CL approaches obtain worse results than the
baseline, which does not use CL. Nevertheless, the C2 and
C3 configurations surpass the baseline in terms of PCC.
Our results are not directly comparable to those reported by
the Challenge organisers [8], as we have evaluated different
features. Nevertheless, our results do not beat the best baseline
system of the Challenge organisers, which achieved a CCC
of 0.180 using the validation partition.

As participants in the Challenge, we were able to submit
three different models for evaluation with the test partition.
We submitted the model trained using the baseline approach,

and the CL models trained using C1 and C2 configuration
labels, as these are the models that achieved the highest
CCC scores when assessed using the validation partition. The
models submitted to the Challenge use data from both train
and validation partitions for training.

Analysing the results obtained using the test partition
(cf. Table IV), we can observe that the model trained with
CL and C1 configuration obtained the worst result, with
a CCC of 0.026. The baseline model, which does not use
CL, achieved a CCC of 0.174, and was surpassed by the
model trained using CL and C2 configuration with a CCC
of 0.196. Furthermore, the C2 configuration model surpasses
the baseline approach in terms of MAE and PCC. Despite
not being directly comparable, our best model also surpasses
the baseline system of the Challenge organisers evaluated
using the test partition, which achieved a CCC of 0.060.

V. CONCLUSIONS AND FUTURE WORK

This paper outlined our contribution to the Pain Intensity
Estimation from Facial Expressions task of the EMOPAIN
2020 Challenge, in which we investigated the automatic recog-
nition of pain from a specific set of FAUs. We focused this
study on analysing the effect of training neural networks with
CL approaches. The results obtained using both validation
and test partitions on models trained with CL approaches
highlight the importance of organising the annotations in the
different levels of training, as they impact the overall system
performance. Although the model trained without CL obtained
the best CCC score using the validation partition (0.163), the
best CCC score using the test partition was achieved by a
model trained with CL (0.196). Therefore, we can conclude
that the use of CL in the automatic prediction of pain from
facial expressions is advantageous.

Further directions to keep on this research include the
use of other facial features to study the effect that different
feature sets with different dimensionalities have on the system
performance. Adding levels in the labels’ configuration in
order to increase the progressive training of the networks can
also be investigated, in addition to the use of upsampling
strategies to overcome the data imbalance.
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T. B. Moeslund, and F. X. Roca. Deep Pain: Exploiting Long Short-
Term Memory Networks for Facial Expression Classification. IEEE
Transactions on Cybernetics, 2017. preprint, 11 pages.

[22] S. D. Roy, M. K. Bhowmik, P. Saha, and A. K. Ghosh. An Approach
for Automatic Pain Detection through Facial Expression. Procedia
Computer Science, 84:99–106, 2016.

[23] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition. In Proceedings of the 3rd International
Conference on Learning Representations, San Diego, CA, USA, 2015.
ICLR. 14 pages.

[24] J. Soar, G. Bargshady, X. Zhou, and F. Whittaker. Deep Learning
Model for Detection of Pain Intensity from Facial Expression. In
M. Mokhtari, B. Abdulrazak, and H. Aloulou, editors, Proceedings
of the 16th International Conference on Smart Homes and Health
Telematics, Designing a Better Future: Urban Assisted Living, pages
249–254, Singapore, Singapore, 2018. Springer.

[25] R. A. Virrey, C. D. S. Liyanage, M. I. bin Pg Hj Petra, and P. E. Abas.
Visual data of facial expressions for automatic pain detection. Journal
of Visual Communication and Image Representation, 61:209–217, 2019.

[26] P. Werner, A. Al-Hamadi, R. Niese, S. Walter, S. Gruss, and H. C.
Traue. Automatic Pain Recognition from Video and Biomedical
Signals. In Proceedings of the 22nd International Conference on
Pattern Recognition, pages 4582–4587, Stockholm, Sweden, 2014.
IEEE.

[27] A. C. d. C. Williams. Facial expression of pain: An evolutionary
account. Behavioral and Brain Sciences, 25(4):439 – 455, 2002.

[28] X. Xu, K. D. Craig, D. Diaz, M. S. Goodwin, M. Akcakaya, B. T.
Susam, J. S. Huang, and V. R. de Sa. Automated Pain Detection in
Facial Videos of Children Using Human-Assisted Transfer Learning.
In Proceedings of the International Workshop on Artificial Intelligence
in Health, pages 162–180, Stockholm, Sweden, 2018. Springer.

                                                                                                                                               


