
Group-level Speech Emotion Recognition Utilising
Deep Spectrum Features

Sandra Ottl
sandra.ottl@informatik.uni-

augsburg.de
ZD.B Chair of Embedded Intelligence

for Health Care and Wellbeing
Augsburg, Germany

Shahin Amiriparian
shahin.amiriparian@informatik.uni-

augsburg.de
ZD.B Chair of Embedded Intelligence

for Health Care and Wellbeing
Augsburg, Germany

Maurice Gerczuk
maurice.gerczuk@informatik.uni-

augsburg.de
ZD.B Chair of Embedded Intelligence

for Health Care and Wellbeing
Augsburg, Germany

Vincent Karas
vincent.karas@informatik.uni-

augsburg.de
ZD.B Chair of Embedded Intelligence

for Health Care and Wellbeing
Augsburg, Germany

Björn Schuller
schuller@informatik.uni-

augsburg.de
ZD.B Chair of Embedded Intelligence

for Health Care and Wellbeing
Augsburg, Germany

ABSTRACT

The objectives of this challenge paper are twofold: first, we apply a
range of neural network based transfer learning approaches to cope
with the data scarcity in the field of speech emotion recognition, and
second, we fuse the obtained representations and predictions in an
early and late fusion strategy to check the complementarity of the
applied networks. In particular, we use our Deep Spectrum system
to extract deep feature representations from the audio content of
the 2020 EmotiW group level emotion prediction challenge data.
We evaluate a total of ten ImageNet pre-trained Convolutional
Neural Networks, including AlexNet, VGG16, VGG19 and three
DenseNet variants as audio feature extractors. We compare their
performance to the ComParE feature set used in the challenge
baseline, employing simple logistic regression models trained with
Stochastic Gradient Descent as classifiers. With the help of late
fusion, our approach improves the performance on the test set from
47.88 % to 62.70 % accuracy.
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1 INTRODUCTION

Emotions play a key role in human interactions and decision-
making. Affective computing [25], the interdisciplinary field con-
cerned with automatic detection of emotions and sentiment, has
received much attention in recent years due to the variety of re-
search and business opportunities it presents, e. g., for intelligent
user interfaces or empathetic digital assistants.

The proliferation of smartphones and other recording devices
has led to the availability of large quantities of video material online
in which people express emotions. This constitutes “in the wild”
data, i. e., data recorded with widely varying conditions (e. g., illu-
mination, occlusion, orientation in the visual, background sounds
and reverberation in the audio domain), different sensor charac-
teristics and noisy signals. Such data is more difficult to process
than footage of affect gathered under controlled conditions in a lab,
and models trained on the latter will usually not generalise well on
the former [21]. In addition, the behaviour of subjects in real life
situations is naturalistic, with spontaneous displays of affect and
complex temporal dynamics. The development of classifiers that
can cope with these difficulties is a major challenge in the field of
affective computing moving towards real world applications [14].

While many works have studied emotion recognition on the
level of individual subjects, in many real world settings people
express emotions while interacting with each other. The contextual
information contained in those interactions can provide a clue to
understanding the emotions of the participants of a conversation.
Thus, group level emotion recognition is a promising research field.

Following the creation of the Happy People Images (HAPPEI)
database [10], group level emotion recognition was introduced as
a subchallenge in the 2016 EmotiW challenge [12]. Variations of
the group level emotion recognition problem were featured in the
subsequent challenges [9, 11, 13], with the databases transitioning
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Figure 1: An overview of our proposed transfer learning approach with early and late fusion. First, features are extracted from

the raw audio both by openSMILE and by plotting spectrograms that are used as input for our Deep Spectrum system. An

SGD classifier is trained on each of the individual feature sets. Moreover, features of differentDeep Spectrum nets in varying

combinations are fused and later fed into an SGD classifier. Furthermore, the probabilities (𝑝) output by the classifiers are

fused.

from collections of images to videos. The current challenge uses
the Video level Group AFfect (VGAF) database from [30], which is
labelled in terms of group emotion and cohesion.

This paper represents our submission for the eighth Emotion
in the Wild “EmotiW 2020” Audio-video based Group Emotion
Recognition sub-challenge.

Our approach focuses on speech emotion recognition (SER),
where the construction of suitable, robust features is an active area
of research [27, 33]. We use our own Deep Spectrum toolkit [1,
4] to learn deep representations from audio spectrograms. Deep
Spectrum features have been previously shown to achieve com-
petitive performance on a range of audio recognition tasks [2, 6]
while showing resistance to noisy recording conditions [5]. In this
process, we employ various popular Convolutional Neural Network
(CNN) architectures pre-trained for image recognition. Additionally,
we use openSMILE [15] for extracting handcrafted audio features.
Finally, we combine deep and handcrafted features using early and
late fusion.

The rest of this paper is structured as follows: In Section 2, we
describe the dataset. Our method is explained in Section 3. We
report our experimental settings in Section 4. The results and their
discussion are contained in Section 5. Finally, we give a conclusion
and suggestions for future work in Section 6.

2 DATASET

The data given by the challenge organisers contains videos that
have been downloaded from YouTube with a creative commons
license [30]. The videos feature groups of people speaking and are
differing in various aspects such as video quality, number of people
and setting. The videos of the train and validation set are labelled
in terms of emotional valence with three distinct values (positive,
neutral and negative), and it is required to classify the videos of the
test set accordingly.

3 APPROACH

A general overview of our CNN-based approach is depicted in Fig-
ure 1. First, the mp4 videos are converted into wavs. Then, fea-
tures are extracted from the audio by openSMILE . More features
are acquired by plotting spectrograms and feeding them into our

Deep Spectrum system. Next, each of those individual feature sets
is used for training a Stochastic Gradient Descent (SGD) classifier.
Additionally, features of different combinations of Deep Spectrum
nets are fused and afterwards, an SGD classifier is trained on them.
Finally, the probabilities of all results are fused, again in varying
combinations.

3.1 Feature Extraction

Features are extracted from the videos in two different ways. As
described in the first Deep Spectrum part, Mel-spectrograms from
the audio instances are used to extract deep representations with
different CNN architectures. Secondly, features are extracted with
the help of the open-source openSMILE feature extractor [15].

3.1.1 DeepSpectrum. We use the Deep Spectrum system [1, 4] for
extraction of deep image-based descriptors from the audio content
of the challenge’s video recordings. Deep Spectrum is motivated
by the efficacy of off-the-shelf CNN descriptors for various visual
recognition tasks [24, 29, 35], transferring knowledge from the
image domain to audio recognition. The framework has an open-
source implementation in the form of a Python toolkit which can be
found on GitHub1. The first step for this approach is computingMel-
spectrograms from the audio instances. Here, Mel-spectrograms
are created by calculating the fast Fourier transform (FFT) on over-
lapping segments of the audio instances with a width of 2 048
samples and a hop size of 1 024 samples. Reducing the dimensional-
ity of the log-magnitude spectrum with a Mel-filter leads to these
Mel-spectrograms. To form the Mel-bands, we use 128 filter banks
equally spaced on the Mel-scale:

2595 · log10
(
1 + 𝑓

700

)
· (1)

This scale used for displaying frequencies is based on the human
perception of frequencies that can disitinguish lower frequencies
with a higher resolution [31]. In order to be compatible with image-
classification CNNs, the obtained Mel-spectrograms are plotted
with the python library Matplotlib [19] and are created with the
python library Librosa [23]. Moreover, colour map viridis is used for

1https://github.com/DeepSpectrum/DeepSpectrum
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Figure 2: Example Mel-spectrograms (a – c) computed from audio instances of the train set with ids 12_2, 10_1 and 18_4.

visualising the log-magnitudes in the spectrograms. Example Mel-
spectrograms from each of the target classes can be seen in Figure 2.

To extract deep representations from these Mel-spectrograms,
we use various CNN architectures that will be described in Section 4.
All of those networks have been trained on the ImageNet [8] corpus
for the task of object classification. The plots of the spectrograms
then form the input for these networks and a forward pass is per-
formed for each of them. The neuron activations of a specific layer
finally form the audio feature representations for the downstream
classification of group level emotion. The choice of feature layer
depends on the model architecture but, generally, one of the final
layers is used.

3.1.2 openSMILE. Our second approach to extract features is achieved
with openSMILE [15]. Here, we use a feature set containing 6 373
features first used in the INTERSPEECH ComParE
challenge 2013 [28]. These include voice quality features such as jit-
ter and shimmer, and spectral, ceptral (MFCC), and voicing related
low-level descriptors (LLDs). These features are the same ones as
used in the challenge baseline, but here, we evaluate them with
the same classification models as our Deep Spectrum features for
comparison purposes.

3.2 Classification Models

We classify both the Deep Spectrum and openSMILE features by
training Stochastic Gradient Descent (SGD) [34] models tominimise
either logistic regression or modified Huber losses to which we
further add a parameter regularisation term. The models are trained
for a total of 1 000 epochs to minimise the combined loss term.

3.3 Fusion

In order to improve on our results with single model approaches,
we apply early and late fusion. For early fusion, we fuse our Deep
Spectrum and openSMILE descriptors for each the train, valida-
tion and test sets by concatenating them along the feature axis.
Afterwards, we train the same model as before with those combined
features. For late fusion, we observe the class probabilities obtained
from each single model on different Deep Spectrum networks and
openSMILE features. We perform mean fusion of these probabili-
ties and arrive at the final class predictions by selecting the highest
probability.

4 EXPERIMENTAL SETTINGS

We use different ImageNet pre-trained CNN architectures for the ex-
traction of deep feature representations from Mel-spectrograms, as
described in Section 3.1.1. First of all, we evaluate the AlexNet [22]
and VGG architectures which are composed of standard convolu-
tion and maxpooling layers. For VGG, both the 16 and 19 layer
variants are tested and for all three networks, the penultimate fully
connected layer serves as feature descriptor. Compared to these
networks, ResNet50 [17] introduces residual connections which
allow for information found in low-level features of early layers to
flow upwards through the computation graph and promotes better
gradient propagation. DenseNets [18] go a step further by each
layer receiving the outputs of all previous layers via feature map
concatenation. This allows for the networks to have a more com-
pact architecture which uses fewer feature maps on each layer. For
Deep Spectrum , we use three variants with increasing number of
dense blocks, denoted by the authors as DenseNet-121, DenseNet-
169, and DenseNet-201. Further, we investigate two networks
that are built for parameter efficiency, MobileNetV2 [26], and
SqeezeNet [20]. Finally, Xception [7] is a CNN which builds on
Inception [32] by replacing the inception modules with depthwise-
separable convolutions.

All of the Deep Spectrum features are min-max normalised to
the range of [0, 1] based on the statistics of the training partition.
We further experimented with mean standardisation and no feature
scaling at all, but found those to lead to worse results.

For the SGD classifiers, we optimise the choice of training loss –
either logistic regression or modified Huber – and the weight and
type of parameter regularisation based on validation unweighted
average recall (UAR). For regularisation, the squared euclidean
norm l2 or the absolute norm l1 of model parameters are added
to the training loss function with a specific weight factor 𝛼 . This
weight is further optimised on a logarithmic scale from 10−6 to
10−2 in five steps.

As described in the challenge baseline, accuracy is used as eval-
uation metric for the task of emotion classification. As the data is
unbalanced, we use unweighted average recall (UAR) to find the
best model parameters.

Grand Challenge Paper: Emotion Recognition in the Wild Challenge ICMI '20, October 25–29, 2020, Virtual Event, Netherlands

823



Table 1: Comparison of our best performing models with challenge baseline. Performance on validation set (𝑉𝑎𝑙) and test set

(𝑇𝑒𝑠𝑡 ) is measured in terms of both unweighted average recall (UAR) and accuracy.
+
: significantly better than ComParE on

validation (𝑝 < 0.05 ). ++: significantly better than ComParE on validation (𝑝 < 0.01). As per challenge procedure we evaluated

only five of our systems on the test set.

System Val Test

UAR Accuracy UAR Accuracy

Challenge Baseline [30] – 50.05 – 47.88

ComParE 53.43 52.48 – –
DenseNet-121 59.06 56.27 59.89 62.43
Early Fusion of all Deep Spectrum nets 59.17 56.40 – –
Early Fusion of DenseNet-121 and VGG19 + 59.61 56.79 58.54 60.45
Late Fusion of DenseNet-121 and VGG19 + 59.75 57.57 59.54 61.91
Late Fusion of DenseNet-121 and VGG19 and ComParE ++ 59.33 57.70 – –
Late Fusion of all Deep Spectrum nets ++ 59.48 58.09 60.72 62.70

Late Fusion of all Deep Spectrum nets and ComParE ++ 60.91 59.40 59.90 62.30

Table 2: Comparison of ourDeep Spectrum models.𝑉𝑎𝑙 : Re-

sults on validation set, measured in both unweighted aver-

age recall (UAR) and accuracy. We observe the best perfor-

mance for DenseNet-121 and VGG19.

Deep Spectrum System Val

UAR Accuracy

AlexNet 55.18 52.87
DenseNet-121 59.06 56.27

DenseNet-169 56.19 53.13
DenseNet-201 55.82 53.79
MobileNetV2 53.47 50.52
ResNet50 55.18 53.66
SqeezeNet 56.59 54.96
VGG16 51.78 50.00
VGG19 57.15 54.56
Xception 53.60 51.04

5 RESULTS AND DISCUSSION

We want to focus on the performance of our Deep Spectrum
features rather than the classifier. For this purpose, as a first step,
we try to compare the success of our system to the features of the
baseline by training an SGD classifier on ComParE features we
extracted with the help of openSMILE . As depicted in Table 1, this
system achieves 53.43 % UAR and 52.48 % accuracy on the valida-
tion set, which is slightly higher than the baseline’s results on the
validation set.

Training an SGD classifier on Deep Spectrum systems employ-
ing different CNN architectures achieved UAR and accuracy val-
ues shown in Table 2. In terms of UAR, almost all Deep Spectrum
descriptors lead to better classification performance than the
ComParE acoustic feature set when used as training input for the
SGD classifier. These results indicate the suitability of using image-
based CNN descriptors for speech emotion recognition in a noisy,
in-the-wild, group setting where acoustic parameters are more

varied and difficult than in single-speaker speech emotion recogni-
tion. The best performing feature representation is extracted from
DenseNet-121 arriving at 59.06 % UAR and 56.27 % accuracy on the
validation set, and 59.89 % UAR and 62.43 % accuracy on the test set,
see Table 1.DenseNets withmore dense blocks,DenseNet-169 and
DenseNet-201, fall behind. This is contrary to their accuracy on
ImageNet [18], where deeper versions achieve higher performance.
For speech emotion recognition on the other hand, the features
learnt by these networks might be too specific to object recognition.
The next best system is accomplished by training an SGD classifier
on features coming from VGG19. This results in 57.15 % UAR and
54.56 % accuracy on the validation set. Using VGG16 with 3 less
layers than VGG19 arrives only at 51.78 % UAR.

For early fusion, we combined the features of allDeep Spectrum
nets and the features of subsets of those. Here, best results were
achieved when fusing features obtained with DenseNet-121 and
VGG19, resulting in 60.45 % accuracy on the test set, see Table 1.

After training an SGD classifier on all individualDeep Spectrum
and ComParE feature sets, we performed mean fusion of their pre-
dicted class probabilities. Overall, we can discern that late fusion
leads to better results than early fusion on the test set, see Table 1,
indicating better generalisation capabilities. Fusing the results for
the DenseNet-121 and VGG19 systems achieved 61.91 % accuracy
on the test set. Taking ComParE features into this fusion does not
improve performance. Fusing the results of all Deep Spectrum
systems and ComParE features system arrives at 59.40 % accuracy
on the validation set and 62.30 % on the test set. Leaving the
ComParE features out of the fusion, the system performs slightly
worse on the validation set with an accuracy of 58.09 %. This, how-
ever, outperforms the fusion including ComParE features on the
test set with 62.70 % accuracy. During validation, we further used
a McNemar test for significance, comparing each result against
our own ComParE baseline which should be similar to the method
employed in the official challenge baseline. We performed the tests
at both 𝑝 < 0.05 and 𝑝 < 0.01 and these statistics can be found
in Table 1.
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6 CONCLUSIONS AND FUTUREWORK

In our contribution to the EmotiW 2020 challenge, we showed the
suitability of applying pre-trained image recognition CNNs to audio-
based group level emotion recognition.With ourDeep Spectrum system,
we extracted deep feature representations from the audio content of
the challenge dataset using 10 different CNN architectures. Already
on their own, most of these representations proved more effective
than the challenge baseline’s ComParE feature set. Moreover, we
could improve the generalisation capabilities and performance of
our systems by employing early and late fusion. While we focused
on the audiomodality, performance improvements could potentially
be made to our system by additionally taking the visual content of
the videos into account. Furthermore, fusing Deep Spectrum with
other unsupervised deep representation learning techniques, such
as recurrent autoencoders [3, 16], e. g., auDeep 2 is worth inves-
tigating for group level emotion recognition. Finally, we chose to
use a relatively simple classification method in our experiments
to facilitate fast evaluation of a wide range of Deep Spectrum
features. In future work, we want to evaluate combining the Deep
Spectrum system with more involved classifiers, such as recur-
rent neural networks that could help with processing longer audio
segments.
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