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ABSTRACT

Reliable systems for automatic estimation of the driver’s gaze are

crucial for reducing the number of traffic fatalities and for many

emerging research areas aimed at developing intelligent vehicle-

passenger systems. Gaze estimation is a challenging task, especially

in environments with varying illumination and reflection properties.

Furthermore, there is wide diversity with respect to the appearance

of drivers’ faces, both in terms of occlusions (e. g., vision aids) and

cultural/ethnic backgrounds. For this reason, analysing the face

along with contextual information ś for example, the vehicle cabin

environment ś adds another, less subjective signal towards the de-

sign of robust systems for passenger gaze estimation. In this paper,

we present an integrated approach to jointly model different fea-

tures for this task. In particular, to improve the fusion of the visually

captured environment with the driver’s face, we have developed a

contextual attention mechanism, X-AWARE , attached directly to

the output convolutional layers of InceptionResNetV2 networks.

In order to showcase the effectiveness of our approach, we use

the Driver Gaze in the Wild dataset, recently released as part of

the Eighth Emotion Recognition in the Wild Challenge (EmotiW)

challenge. Our best model outperforms the baseline by an abso-

lute of 15.03% in accuracy on the validation set, and improves the

previously best reported result by an absolute of 8.72% on the test

set.
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· Computing methodologies → Computer vision; Scene un-

derstanding; · Human-centered computing → Human com-

puter interaction (HCI).
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1 INTRODUCTION

According to the World Health Organization, 1.35 million people

worldwide lose their lives in traffic accidents each year, which is

currently the leading cause of death among young people aged

5-29 years [25]. Distraction is listed as a major contributing factor,

especially for novice drivers. In the interest of developing advanced

automatic driving and personal assistance systems, the importance

of taking into account the human factor, such as by capturing driver

and passenger behavioural indices, is well-established [12, 21, 22,

30]. A popular approach here is to gain some insight into the driver’s

mental state, for example by means of using head orientation and

pupil position, in order to assess driver attention [2, 21, 22, 42].

A non-invasive, non-contact approach towards driver distraction

estimation is by the analysis of visual signals [41, 42] recorded by

cabin-placed cameras (instead of head-mounted), as it refrains from

introducing additional distractions that might deteriorate driving

ability, or the integrity of the study. Since there can be a large

diversity in the facial characteristics of people in a gaze detection

dataset, as well as the background environment, there is an inherent

need to address gaze detection and eye tracking studies ‘in the wild’

[10, 20, 53]. Such a realistic setting is very desirable in the context

of driver gaze detection, due to the catastrophic costs of a system

failure in driving-related applications, and as such, ‘in the wild’

studies pose a great challenge of utmost importance.

In this paper, we focus on driver gaze estimation of nine coarse

regions in an ‘in the wild’ setting. We work with the Driver Gaze

in the Wild (DGW) dataset [11] released as part of the eighth Emo-

tion Recognition in the Wild Challenge (EmotiW) [1]. It exhibits

several modelling challenges, such as diverse ethnic background

among the subjects, varying illumination, and potential presence

of reflections in the face and environment. Moreover, there is an

imbalanced gender representation in the dataset, as well as the

fact that several drivers wear glasses, which may occlude parts of

the eye. Most importantly, each participant utilises a unique head-

eye coordination strategy, in order to focus on areas of interest.

Whereas a calibration step is traditionally applied on each specific
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user in order to accommodate for the latter issue [10, 20], there is a

trend in research for calibration-free methods [9, 53] that eschew

the need for collecting personalised training data; something that

can be prohibitive when one considers the truly diverse population

of drivers.

Whereas head pose, and eye tracking have long been considered

as main components of gaze detection [10, 42], an under-explored

source of information is the person’s environment, in this case the

passenger cabin. We hypothesise that instead of treating the envi-

ronment as unknowable, stochastic noise that can be discarded dur-

ing preprocessing, we can augment our understanding of the visual

scene by providing our classifier with explicit environment context

information. Alongside the estimation of the facial gaze as in [9],

we assume that continuously or sporadically visible car parts can

serve as learnable anchor points and enable the models to automat-

ically learn both, the position of the camera depending on the car

parts and the environmental context in a car. This idea represents a

first step towards an object- rather than purely human/face-centred

calibration approach that could eliminate several problems, such as

poor prediction quality in recognition algorithms trained on cul-

turally biased data. Furthermore, detecting gaze in an automotive

environment is not only limited to the driver and a fixed camera

setting. Other research areas, for example, passenger-vehicle in-

teraction [43] and multimodal sentiment analysis in the wild [36]

covering multiple passengers, un- and differently mounted cameras

and several perspectives.

Towards this goal, we propose a method to model various con-

founding environmental context features, potentially present in the

visual recording. Inspired by the success of attention mechanism

variations [27, 32], e. g., in modelling facial activity [38], we pro-

pose to utilise attention on top of convolutional layers for fusion at

the core of our method. Thereby, we aim to fulfill two desiderata:

a) important regions of the raw image ś not necessarily limited to

facial features ś are identified early during the image processing

architecture, and b) separate vision and feature stream representa-

tions, including environment context related ones, are fused in an

intelligent, data-driven manner. Our best method ś X-AWARE ś

outperforms the official challenge baseline, previous work, as well

as simpler interaction and fusion blocks we developed.

Since some parts of our method are specifically designed to ad-

dress and accommodate the input features made available for the

eighth EmotiW challenge, we first introduce the dataset and ex-

tracted features in Section 3, followed by the proposed approach in

Section 4, and our preliminary and fusion experiments in Section 5.

Finally, we discuss the results, point out possible improvements

of our work, and link gaze estimation to the field of multimodal

sentiment analysis in Section 6. The code and the weights of the

best model are publicly available on the project repository1.

2 RELATEDWORK

Related fields to gaze zone estimation, such as head pose estima-

tion [24] and gaze tracking [4], have a long history in computer

vision. Many apply Bayesian filtering achieving reasonable results

1https://github.com/lstappen/xaware

[13, 47]. However, most systems designed for controlled environ-

ments are not robust enough for the use in the context of human-

robot interaction and driving assistance systems. With this goal in

mind, [29] developed four Convolutional Neural Network (CNN)

architectures and evaluated them on ‘in the wild’ datasets. The

authors of [8] argue that with increasing distance to the person,

the face resolution deteriorates. This, combined with inaccurate

annotation, worsens prediction accuracy in the real world scenarios,

to which end they proposed an invasive annotation method using

eye-tracking glasses. To the best of our knowledge, [44] is the only

work that focuses on gaze zone estimation and evaluates perfor-

mance depending on different image crop regions. Some parts of

the face, the entire face, and the face with an enlarged bounding

box were used separately for training, whereby all of the different

CNN architectures tested achieved the best results with first.

One way to improve accuracy, especially in human-machine

interaction, is multimodal fusion of face images and poses using

deep learning as in [16]. Similarly, the authors of [23] suggested

the fusion of close facial images and depth signals. Recently, [50]

highlighted the importance of gaze as a weakly supervised signal to

attend regions in order to achieve better scene understanding, and

introduced a human intention-driven framework fusing gaze, as

well as distances between body joints and various object instances.

With regard to the driver’s gaze estimation, the study performed

in [6] reports state-of-the-art results on two gaze datasets in auto-

motive setup by including upper body poses in addition to the face

depth images. By merging them into an in-depth learning model as

well, the authors of [5] demonstrated the value of extended input

in dealing with the ‘in the wild’ factors present in the automotive

context.

In order to make use of eye and gaze tracking technology in

real environments, [18] emphasised the crucial importance of algo-

rithms for implicit calibration. Dynamic changes of environments

and distances usually require intrusive, user-specific calibration

methods for precise predictions, which are disliked by users, and are

impractical for daily use. The authors of [45] proposed an implicit

3D modelling method based on several eye-tracking principles,

e. g., that in most scenarios the fixations are concentrated on the

centre of the screen. For their proposed person-free calibration,

they used a hard expectation maximisation algorithm with good

results. Recently, in the study performed in [19], the detection of

probable eye targets for implicit calibration in order to take advan-

tage of static, surrounding objects was introduced. Here instead,

we utilised end-to-end deep learning from the raw images that in-

clude the cabin environment, in conjunction with Generic, optical

Car Part Recognition and Detection (GoCaRD ) [37] features, in an

attempt to allow for a similar neurally learnable implicit calibration.

All state-of-the-art vision architectures we used as a first com-

ponent for image processing are CNN-based. In the following, we

give a brief overview of the most common architecture(s) (building

blocks), also evaluated in our preliminary experiments in Section 5.3.

In 2014, theVGG16 andVGG19 networks, with 16 and 19 layers with

small convolution filters respectively, achieved substantial gains in

benchmarks for large-scale image recognition [35], and initiated

diverse research involving CNNs in the field of computer vision.

The addition of residual connections to the network [15] allowed

for training a deep network architecture called ResNet50with up to
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Figure 1: Example of pairs of full and cropped input images for the nine gaze zones for one participant in the Driver Gaze

in the Wild (DGW) dataset. Some challenging qualities of the task are noticeable here; the same subject is also in the dataset

without spectacles (illustrated for classes 6 and 8) and for class 7 the automatic face extraction failed. In cases such as the latter,

we expect that the full image representation stream will still serve as an adequate substitute of purely face related features,

especially due to the cross-stream attentional feature learning of X-AWARE. An example motivation for using the full image

along the cropped one is also shown here: there is a highly illuminated patch that appears on a different part of the subject’s

face; however, it is in the same place compared to the background.

152 layers, while keeping the number of parameters from growing

prohibitively high. In an attempt to avoid making a hard decision

on a single convolution filter shape, the authors of [40] introduced

the Inceptionmodule, i. e., the parallelisation of several convo-

lution operations of different shapes. To stabilise and accelerate

the training process, InceptionV3was initially updated by adding

batch normalisation, auxiliary classifiers and regularisation [40],

and then further by the employment of residual connections to-

wards the introduction of the InceptionResNetV2model [39]. The

authors of [7] developed Xceptionwhich outperformed Incep-

tionV3 significantly on a dataset consisting of 350 million images

and 17 000 classes. This can largely be attributed to the replacement

of the Inceptionmodules with depth-wise separable convolutions

that receive the input on multiple channels of the previous layer.

3 DATASET AND FEATURES

3.1 Study setting and dataset

The dataset was made available for the Driver Gaze Prediction in

the wild sub-challenge, as part of the eighth EmotiW. It consists of

50 thousand frames, partitioned in training, validation, and test set

(60-20-20 split) for driver gaze zone estimation. These images are ex-

tracted from 586 video recordings of the original DGW dataset [11].

The data collection process can be described as follows: 247 male

and 91 female subjects are seated in a car and look at different

directions at pre-defined zones as depicted in Figure 1. A Microsoft

Lifecam RGB is mounted in position frontally to the test person.

The participants indicate the targeted zone themselves by reading

aloud the class number on the signs attached to the nine zones.

In this purely voice-based labelling approach, relevant frames are

identified and automatically labelled by processing the videos us-

ing automatic speech recognition. The authors specify that the

participants are between 18 and 63 years of age, with most (over

90%) being between 18 and 35 years old. The participants were

not given any guidance on how to look at the zones, and thus, we

observe some movement of their head and/or eyes. As this study

is considered to be ‘in the wild’, several factors present in realistic

settings are considered. Firstly, 30 % of the participants are filmed

with and without wearing their spectacles (cf. Figure 1, class 6).

With regard to the environment, there is a diversity of backgrounds

(windows scenes) and illumination due to changes in parking posi-

tions, weather conditions, and day times (half during the day and

the other half in the evening). All our experiments use the officially

provided sets.

3.2 Image data preparation

We extract the faces from the images using the computer vision

libaries Dlib2 and OpenCV3 for an efficient and accurate face ex-

traction. In a two step procedure, we first use a linear classifier on

Histogram of Oriented Gradients features. The classifier detects

faces on 66% of all images. We then feed the remaining images

into a pretrained convolutional face detection network provided

by dlib, leaving us with a total of 0.002 % images without a face

detected. An example face detection failure is illustrated in Figure 1,

class 7. In order to train a stable model with these missing images,

we replace them by a matrix of the same size, initialised with the

smallest 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 value available on pytorch. Since the authors [11]

stated that an average face is represented by 179 x 179 pixels, we

re-scale the identified face areas to 150 x 150 before export. In a

random quality performance check, we visually inspected the ex-

tracted images and bounding boxes; no false positive recognised

faces were spotted, which underlines the high quality of this simple

face extraction method for this ‘in the wild’ dataset. The image

pixel values are first scaled to a range between 0 and 1 (dividing by

255) and then standardised using a mean and a standard deviation

value of 0.5 on each of the three channels [39].

3.3 Facial features

Over time, researchers have identified positions of expressive facial

features, such as, the corners of the mouth and eyes, tip of the nose

and pupil movement, which can be extracted from facial images

and used to estimate facial posture and direction. Based on the face

frameworks mentioned in the previous section, we obtain 138 facial

2http://dlib.net/python/index.html
3https://opencv.org/
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Figure 2: Most complex example configuration using the blocks introduced in Section 4. A full architecture has 4 main parts:

one InceptionResNetV2 each for extracting features from the full image and the face image; theGoCaRD feature extracted on

the full image; and somemanually crafted face features. The first to InceptionResNetV2 outputs are fused e. g., using multiple

grid (GA), and feature (FA) attention blocks, residual connections and auxiliary layers. In parallel, the extracted features are

enhanced and combined in a simpler fashion. Both fused streams are specifically fine-tuned using (auxiliary) CCE (categorical

cross entropy) losses while also combined for the final prediction output.

landmarks. We further extract the coordinates of all corners from

the eyes to calculate the center, origin, area, height, width, and a

ratio that can indicate whether an eye is closed or not. Given an

open eye, the position of the pupil is estimated by detecting the

iris. The pupil positions’ usage is manifold; firstly, a pupil detection

algorithm4 based on the relative spatial estimation that the iris

occupies in relation to the ocular surface is used to calibrate the

distance between camera and subject. Secondly, in order to deter-

mine the direction a person is looking at, a vertical and horizontal

ratio between 0 and 1 is calculated, so that a value of 0.0 reflects

the top, 0.5 the middle, and 1.0 the bottom level. A binary value

that represents left versus right oriented gaze is also derived by

comparing this value with fixed thresholds. We set our horizontal

threshold to 𝛽 = .35 (<= right, >= 1 − 𝛽 left). The final face feature

vector has 164 dimensions.

3.4 GoCaRD features

Generic, optical Car Part Recognition and Detection [37] is a vi-

sual feature extractor designed specifically for the automotive

environment to robustly predict vehicle regions regardless of

make and model. It localizes 29 vehicle interior and exterior parts,

e. g., ventilation outlets, armrest, steering wheel, roof window, and

sun visor. In the challenge “Multimodal Sentiment Analysis in Real-

Life Mediaž (MuSe 2020) [36], which aims at a more profound

understanding of vehicle interaction, especially between human

emotions (sentiment) and vehicle environment, GoCaRDwas suc-

cessfully applied on ‘in the wild’ recordings of emotional vehicle

reviews (MuSe-CaR ). The architecture is based on a Darknet-53 as

the backbone [34] and jointly trained over two ‘in the wild’ datasets.

On the datasets introduced with the framework, the underlying

model achieves a mean average precision of 41.07 % on 1 124 video

4https://github.com/antoinelame/GazeTracking

frames of recordings which include human interaction and chal-

lenging illuminations. Since the number of detected parts varies,

we convert the prediction output into a feature vector of fixed size.

We obtain a 350-dimensional sparse vector by focusing on the 10

objects with the highest confidence (one-hot-encoding) and their

localisation coordinates (x, y, width, and height).

4 X-AWARE: DEEP, CONTEXT-AWARE GAZE
PREDICTION

This section introduces the underlying deep learning architectures

and related network blocks. Firstly, the building blocks enhancing

the features from Section 3.3 and Section 3.4 are explained in Sec-

tion 4.1. In Section 4.2, we introduce our chosen state-of-the-art

architecture and a fine-tuning classification block. This is followed

by a detailed description of X-AWARE individual components and

several alternatives illustrated in Figure 3 and Figure 4.

An illustration of one tested architecture configuration is de-

picted in Figure 2. The image processing component is designed

to analyse the full, raw image including the environment, as well

as the cropped face image in an end-to-end manner. The extracted

feature part in the lower part utilises the output of the facial

(cf. Section 3.3) and the GoCaRD (cf. Section 3.4) feature extrac-

tion frameworks. Both parts are combined in a way such that

the face and environment information interact via co-processing

by the network. In order to create context aware representations,

we experiment with several network block choices, while the X-

AWARE attention blocks are the most sophisticated in terms of

modelling.

4.1 Feature enhancement

Since theGoCaRD features are very sparse after extraction, they are

compressed in a simple compression block. As shown in Figure 3
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Figure 3: Architectural blocks to enhance, compress and fuse

the GoCaRD and facial features.

the compression is made in two steps, each using a combination of

linear, Parametric Rectified Linear Unit (PReLU), and dropout layers.

The compression block for the face features, face features block, is

similarly structured but only compresses one time. Depending on

the experiment settings, both can have either a PReLU or sigmoid

activation function before fusion.

In addition, two naive fusion blocks are used. The first

one, called Interaction block, concatenates three representations

squashed by a sigmoid function. The concatenated vector is fed

into a 3 blocks, each consisting of a dropout, a linear, and a PReLU

layer, reducing the neurons towards the end to force interaction.

The second one called Fusion block is shown in Figure 3, which

follows the same principle but only concatenates two feature sets,

followed by a dropout and a linear layer.

4.2 State-of-the-art vision architectures

4.2.1 Core networks. As an initial image processing component,

we opted to leverage a top performing computer vision architecture.

After performing a preliminary comparative experiment (see Sec-

tion 5.3) among a selection of architectures [7, 15, 35, 39, 40], we

finally selected the InceptionResNetV2 [39] model to be our core

vision component before any fusion operations are applied.

4.2.2 Enhancement head. In order to perform the preliminary ex-

periments of Section 5.3, we require all competing architectures to

be expressed by a function 𝑦 = 𝐹 (𝑥), where 𝐹 (𝑥) denotes a non-

linear function (the neural network), 𝑥 an input image, and 𝑦 the

classes. The architectures described above, have a pooling operation

(e. g., average, max) to reduce the dimensions of the convolution

filters before applying the dense prediction layer. A common tech-

nique in transfer learning is to remove the top layer, and replace it

with a new neural block ‘head’ that is to be fine-tuned to the class

set specific to the new task [46]. Alternative pooling operations

are often considered in these heads, that can potentially lead to

increased performance. Towards the design of a reasonable base-

line, we use such a custom head on top of the last convolution

layer. The first layer of the head has 1024 filters, a kernel size of

3 × 3 and strides of 1, followed by a flattening operation, and the

application of dropout with rate equal to 0.5. Finally, two dense

layers (1024 and 256 neurons respectively) with sigmoid activation

functions further compress the representation for the final predic-

tion. This type of baseline is used in the preliminary experiments

in Section 5.3. However, within the context of our full model, the

best-performing InceptionResNetV2model outputs a hidden fea-

ture vector, to be further processed by the more elaborate X-AWARE

fusion components.

Grid

attention (GA)

Feature map

attention (FA)

Linear 

layer

Sigmoid 

layer

PReLU

layer

Flatten

layer

ConV

layer

Adaptive 

Average 

Pooling 
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Legend
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Element-

wise

product

Element-

wise

product

Figure 4: Architectural blocks of X-AWARE .

4.3 X-AWARE attention fusion

In the following, the individual blocks that comprise theX-AWARE

context information fusion approach are described. These blocks are

depicted in Figure 4. In order to facilitate gradient backpropagation,

we also utilise residual connections between the input and the

output of these blocks.

4.3.1 Grid attention block. Consider a convolutional representa-

tion 𝐹 with 𝐷 filter channels (depth slices, grids) and a symmetrical

𝑊 × 𝐻 grid, where the slices contain different learnt features. To-

wards extracting slice-specific importance values (and reduce the

amount of parameters), we apply a 2D adaptive average pooling

operation and receive a 𝐷 × 1 × 1 feature map:

𝑚𝑑 =

1

𝐻 ×𝑊

𝐻∑
𝑖=1

𝑊∑
𝑗=1

𝑋𝑑 (𝑖, 𝑗), (1)

where 𝑋𝑑 (𝑖, 𝑗) represents a value of d-th slice at position (i,j). Next,

we transform𝑚𝑑 to receive the attention weights of the slices:

𝛼𝑑 = 𝜎 (Conv (𝛾 (Conv (𝑚𝑑 )))) , (2)

using convolution layers (Conv) in combination with an outer,

bounding sigmoid (𝜎) and an inner, PReLU (𝛾 ) activation function.

Similar to the Leaky ReLU, PReLU introduces leakage to allow a non-

zero gradient flowing when inactive via a learnable parameter [14].

As usual, these weights 𝛼𝑑 are applied to the input representation

by element-wise multiplication resulting in 𝐹 ′. Inspired by the suc-

cess of a squeeze-and-extend mechanism [17] and block attention

[48], to enhance the calibration and representational power, es-

pecially when modelling interdependencies between depth slice

relationships, the first convolution of our block squeezes the filter

number by a factor of 16 before extending it again in the second

convolutional operation to the original input size.

4.3.2 Feature attention block. Apart from filter-specific attention

weights, it may be worth learning element-specific weights for each

filter slice, as they might encode features of varying informative
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value. With respect to the usual output of a convolutional layer 𝐹 ∗

with a shape of 𝐷 ×𝐻 ×𝑊 , we calculate an attention weight matrix

with a shape equal to 1×𝐻 ×𝑊 by using two convolutional layers:

𝛼 𝑓 𝑒 = 𝜎
(
Conv

(
𝛾
(
Conv

(
𝐹 ∗

) ) ) )
, (3)

where 𝜎 denotes the sigmoid, and 𝛾 the PReLU activation functions,

respectively. We then multiply 𝐹 ∗ with the attention weights 𝛼 𝑓 𝑒

in an element-wise manner to yield our output 𝐹 ∗
′
similiar to [32].

Similar to the grid attention block, we also utilise here the squeeze-

and-extend mechanism.

4.3.3 Combined grid attention block. Multiple outputs 𝐹𝑚 of the

same depth size 𝐷 can also be combined (e. g., 𝐹1 and 𝐹2 for

𝑚 ∈ {1, 2}) as depicted in the later, cross-stream fusion part in Fig-

ure 2. Firstly, both are concatenated to a representation shape of

(𝑚 ·𝐷)×𝑊 ×𝐻 , and passed through the grid attention block yielding

the cross-context depth slices shaped𝑚 ·𝐷 × 1× 1. The 2D pooling

operations introduce some translational invariance to the filters, as

well as spatial local correlation. Next, the resulting 𝛼𝑚∗𝑑 feature vec-

tor is transformed back intomultiple slices of shape𝑚×𝐷×1×1, and

they are multiplied with the corresponding 𝐹𝑚 in an element-wise

manner. For improved representation, another feature attention

block can be added after the grid fusion block (cf. Figure 2). This

can be followed by either a Pool or Flat operation as illustrated in

Figure 4. The former flattens the output of the previous 2D block

into a 1D representation, and compresses it further by using two

consecutive linear layers. The latter reduces the 2D representation

first, using an adaptive average pooling layer.

4.4 (Auxiliary) Loss

The softmax categorical cross entropy loss (CCE) used, weights the

loss with a precalulated 𝑤𝑐 corresponding to the number of the

class 𝑐 occurring in the training set. It can be expressed by:

L𝑔 = 𝑤𝑐
©«
−𝑥𝑐 + log

©«
∑
𝑗

exp(𝑥 𝑗 )
ª®¬
ª®¬
, (4)

given 𝑥𝑐 is the model linear output for class 𝑐 . The sample-specific

losses are averaged in a weighted manner according to 𝑤 across

observations for each minibatch. Auxiliary losses are well known in

computer vision for stabilising downstream layers. The total loss is

equal to the sum of the weighted, averaged (auxiliary) losses across

all observations for each minibach:

L𝑡𝑜𝑡𝑎𝑙 =

𝐺∑
𝑔=1

𝑤𝑔 ∗ L𝑔 , (5)

where 𝐺 is the number of losses and 𝑤𝑔 the scalar weight corre-

sponding to the 𝑔-th loss.

5 EXPERIMENTS AND RESULTS

5.1 Experimental settings

The challenge permits participants to submit predictions up to five

times for an evaluation on the test set, so in the following, we limit

our reporting of results to the development set, and to the test set

only for the later stage models we submitted. In addition to the

official metric of the challenge ś accuracy (ACC), we report the

macro-averaged F1 score, as well as the Unweighted Average Recall

(UAR) for our preliminary experiments, in order to provide a more

comprehensive summary of the results, taking into account the

class representation factor. Our experiments are performed using

a Tesla V100 graphics processor with 32GB GPU-RAM. We used

Python for data preprocessing and external API integration, and

Pytorch [28] for most implementations related to deep learning.

5.2 Baseline

The organisers report an official classification baseline of 56.00%

ACCon the validation set using an Inception V1 network. No further

details are given regarding the input data, training procedure, and

classification heads/tasks. In the accompanying paper describing

the data collection, a set of results is reported on the challenge

data partitions. This ACC baseline ranges from 56.25 % (Alexnet) to

61.46 % (Inception-V1 + Illumination Robust Layer) on the validation

set. The addition of an attention layer to the latter architecture leads

to a further gain of 3 % in ACC to 64.46 %, as well as an F1 score

of 52.00, which is also reported as the final result of the proposed

approach. On the test set, the ACC is slightly lower at 62.90 %,

while the F1 score is identical to the validation set. When mixing

training and validation set together, these scores improve to 59.00

and 64.31 % for F1 and ACC, respectively on test.

5.3 Preliminary experiments and results

In a series of preliminary experiments, we evaluate the performance

of two static feature sets (facial andGoCaRD ), find themost promis-

ing network architecture, and derive sensible hyperparmeters.

In order to quantify the effectiveness of the hand-crafted face

features and GoCaRD representations, we train Support Vector

Machines (SVM), often used for such a task with high-dimensional

feature sets [3, 26, 49], using complexity values (𝐶) between 10−5

and 1. The best SVM model resulted in an F1 score of 34.29 on

the normalised (𝐶=1, UAR: 33.72%, ACC: 34.29%), and 42.13 on

the unnormalised features (𝐶=10−5, UAR: 43.50 %, ACC: 46.21 %). If

solely the GoCaRD functions are used to predict the driver’s gaze,

the result is only slightly above the chance level in all settings,

which is reasonable due to the lack of any facial information.

To obtain a first performance overview of the core architectures

for image classification, we carry out a naive series of experiments

where all networks are fully trainable. Gradient vanishing is a

common issue when training very deep networks from scratch. We

initialise the networks with the pretrained ImageNet weights for

the respective networks in this preliminary stage. We utilise the

latter technique to avoid performing hyperparameter optimisation

on every architecture in this preliminary stage, and to achieve a

reduction of training time. The models are trained using a batch

size of 64 and an initial learning rate of 1−5, reducing the learning

rate every 2 epochs by a factor of 0.2 when a plateau is reached, for

a maximum of 100 epochs (early stopping patience is set to 3).

As summarised in Table 1, models trained on the cropped facial

images scored higher than those trained on the full ones. Here,

InceptionV3 achieved the best results with 68.12% ACC, closely

followed by InceptionResNetV2 . On the full images, the lat-

ter outperformed all other models by 2 %, achieving 62.79% ACC.

VGG16 and VGG19 produce relatively competitive results using

the cropped face image, but fail to learn using the full image input.

                                                                                                                         

863



Table 1: Results of face gaze estimation using a) the full im-

age including the environment and faces (full), and b) exclu-

sively on the cropped faces (face) of several unfrozen com-

puter vision architectures on the development set.We report

F1, ACC, andUAR, as well as the number of trainable param-

eters in millions.

full faces # param.

F1 UAR [%] ACC [%] F1 UAR [%] ACC [%] trainable

InceptionResNetV2 60.58 61.03 62.79 66.42 67.14 68.09 72.3

InceptionV3 58.15 58.41 60.10 67.31 68.31 68.12 28.9

ResNet50 55.55 56.35 57.62 64.72 64.65 66.49 94.0

VGG16 2.86 11.11 14.76 66.17 65.90 68.08 71.0

VGG19 2.86 11.11 14.76 66.72 67.08 68.06 76.3

Xception 55.90 56.84 58.02 64.20 64.94 66.37 144.8

However, this could be amended if the training settings were to be

specifically finetuned to each model, a process we omitted since,

at this stage, we intended a simple comparative study among the

different base components. Based on these initial findings, we se-

lected InceptionResNetV2 as our primary architecture. Although

such a weight initialisation may come with some drawbacks (details

cf. Section 6.2), we believe that it is serviceable in this particular

challenge setting: we decided to trade off a potential better final pre-

diction performance for a shorter training durationwhich allowed

for a faster experimental throughput, so that we could perform a

broader assessment and focus on the fusion of human and environ-

mental information streams.

5.4 Advanced and fusion models

The following models are optimised using a batch size of 32 and an

initial learning rate of 0.0001. The results of our more advanced ar-

chitectures are summarised in Table 2 for four different architecture

settings, each with various pooling and input data options. Com-

pared to the preliminary experiments, adding the proposed grid and

attention mechanisms to the core architecture improved individual

ACC performance for the full (68.00%) and cropped face (70.81%)

image inputs. The naive concatenation of the full and face images

and all four stream representations (all) combined with the en-

hancement, and the interaction blocks, decreases the performance

compared to our single image baseline experiments in Table 1. The

addition of X-AWARE blocks results in improvement in all settings

by almost 5% points compared to the naive fusion approach, and

Pool outperforms Flat by at least one percent. By using only the

full and face images, we achieve our overall best result of 72.37%

ACC on devel (71.62 % on test) and an F1 score of 70.26.

In the last setting, we try to improve the results on all inputs

employing auxiliary loss(es) either on the combined image streams

only (images) or on both (feature stream and image stream) as

illustrated in Figure 2. Here, the Pool operation seems also slightly

more effective than Flat . Adding an auxiliary layer after the image

fusion improves the result by approximately one percentage point.

With two auxiliary layers both after the image fusion, and after the

feature fusion, our best performing model, utilising all data, yields

an ACC of 71.43%, and an F1 score of 69.88 on the development set

(Pool ).

Table 2: Face gaze estimation results comparing the blocks:

grid (GA) and feature (FA) attention in sequence on a single

input stream (either the full or face images), as well as the

interaction, X-AWARE , and X-AWAREplus auxiliary losses

(AUX.) for fusion. Latter architectures use either the full

combined with face images (images) or these two in com-

bination with the facial and GoCaRD features (all). All ex-

periments utilising the auxiliary layers are conducted using

all four inputs, while the auxiliary can either be taken from

the fused alone (all+images) or from both streams (all+both)

as depict in Figure 2. We report F1 and ACC on the develop-

ment, and ACC on the test set.

Configuration Metrics

Fusion Input F1 (dev.) ACC [%] (dev.) ACC [%] (test)

GA + FA

ś full image 65.61 68.00 ś

ś face image 69.15 70.81 ś

INTERACTION block

concat images 62.77 64.91 ś

concat all 63.72 66.28 ś

X-AWARE

Flat
images 67.30 69.14 68.73

all 67.84 69.09 70.22

Pool
images 70.26 72.37 71.62

all 68.47 70.65 ś

AUX. Layer X-AWARE + AUX.

Flat
all+images 65.78 68.07 ś

all+both 69.51 71.07 71.15

Pool
all+images 67.14 69.32 ś

all+both 69.88 71.43 71.28

6 DISCUSSION AND FUTUREWORK

6.1 Quantitative results discussion

All our trained models considerably outperformed the reported

baselines summarised in Section 5.2. Besides the experimental setup,

we attribute this to several network-related factors: a) all trained

networks utilise a larger number of parameters (cf. Section 5.3).

The smallest network InceptionV3 has 5 times more parameters

(the original has 23 millions, including our head this is raised to

approximately 29 millions) than the Inception V1; b) our utilised

head as well as the other attention heads allow improved “fine-

tuningž of the model; and c) the weight initialisation leads to a

stable training. Although this last technique can also be exploited

for training on large datasets, it often comes at the disadvantage of

a reduced maximum performance. Inversely, by training on large

amounts of data with randomly initialised weights, more descrip-

tive, problem-specific low-level filters can be learnt, and the risk of

rapid overfitting avoided, albeit at increased training time.

In line with other research, the attention modules have led to

improved results for models with only one image stream (more

than 5% for full images) as well as for the fused image streams.

Furthermore, we experimented with completely separated attention

modules in the early stage of the image streams as well as with

shared weights (cf. Figure 2), whereby the performance of the latter

was better.
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The experiments showed no clear evidence that the additional

facial features (combined with the auxiliary losses) significantly

enhances the overall performance. However, the class-specific ac-

curacy seems to be slightly more balanced, especially with regard

to the more difficult left side of the vehicle, which led to more con-

fusion within these classes in the purely image-based approaches.

We speculate that the head is turned more actively, but also the

targeted points are further away, therefore requiring less movement

of the pupils. Alternative explanations include the possibility of

overfitting, or of learning confounding, biased dataset features.

Regarding the effectiveness of the GoCaRD features as environ-

mental anchors, no clear influences on the performance could be

observed. We suspect that the lack of suitable anchor points as pre-

diction classes for the model we used resulted in extremely sparse

representation, and prevented the full potential of this idea to be

exploited. We expect it becomes more apparent when the cameras

are statically mounted in different locations or not at all. We discuss

this point more thoroughly in Section 6.3.

6.2 Future work

We can conceive further extensions and orthogonal improvements

on our proposed framework regarding the data, training procedure,

and modelling to be explored in order to improve performance and

increase understanding. For example, we did not perform data aug-

mentation (crop, horizontal or vertical flip, etc.), or denoising of the

hazy images, something that might bolster the final prediction. As

shown in other studies [23, 33], performance gains can be achieved

by sequential modelling of consecutive frames. Therefore, meta-

data marking successive frames has the potential to significantly

improve the model and also allows for studying a more realistic, ‘in

the wild’ driving setting, in which changes in illumination might

only be temporary for milliseconds during a drive.

Our training procedure also has room for improvements; for

example, the learning rate scheduler was applied at the end of each

epoch. Since the dataset is of considerable size, a step-wise reduction

during the epoch (e. g., every x00 steps) might reduce overfitting

significantly. Furthermore, freezing and unfreezing certain parts of

the underlying core network (e. g., the low-level features) might be

worth exploring, such that we utilise transferred knowledge from

the pretrained weights.

We also plan to further explore the interaction between environ-

ment and face gaze using parts of the proposed X-AWARE fusion in

different experimental settings. A straightforward approach would

be to mask the face area out of the full pictures, and, as such, anal-

yse an image solely containing environment information. Using

purely modelling techniques, similar effects can be achieved com-

bining cross-attention with a penalty loss pushing the model to

focus on learning different high-level representations of the face

and environment. In addition to X-AWARE , we performed prelimi-

nary experiments with the self-attention solution of [27] in which

we augmented the output of the convolution in later layers before

fusion. This approach also showed slight improvements compared

to the attention-free block (68.73% ACC and 66.64 F1), however,

due to the minimal improvement and time constraints, we decided

to not pursue this approach. Nevertheless, we acknowledge the

importance of a comparison with (purely) attention-based architec-

tures to reduce the number of parameters, and plan to explore it

further in the future.

6.3 Proposing further extensions of the gaze
estimation in the wild task

Gaze estimation in the wild has so far almost exclusively been

discussed in relation to the development of vehicle assistance sys-

tems. In this section, we want to point out the advantages of a

deeper integration of the context into the field of gaze estimation.

Besides assistance systems, gaze estimation is of immense interest

to the emerging field of multimodal sentiment analysis in the wild

[31, 51, 52], e. g., in the car video review setting [36], which stud-

ies the recognition of emotions and interaction in user-generated

video content. Compared to previous work linking human-object

interaction and gaze estimation [16], it has to deal with additional

‘in the wild’ factors, such as different camera equipment, changing

of the camera position, and inconsistent distance to the subject. In

addition, driver assistance systems would also potentially benefit

from deeper research in this direction: classifiers that are trained on

such datasets or explicitly model the environment would be more

generic and robust, which is of particular interest in the automotive

context, where camera systems and distances to the passengers

depend strongly on makes and models. A potential starting point

towards this direction might be the use of ground-truth visual anchors.

For example, the upper anchorage of the safety belt might be a

good anchor point to estimate the camera position in the driver

cabin. These anchors can be extracted by localisation networks; for

example, an extend framework of the GoCaRD extractor we used

in this study.

7 CONCLUSION

In the presented work, we examined the gaze estimation in the wild

task on the new Driver Gaze in the Wild dataset. Starting with a

broad evaluation of state-of-the-art vision models, we developed a

novel modelling approach to integrate environmental context of the

face in the gaze estimation in the wild task. To do so, we developed

several X-AWARE fusion components that we evaluated in our ex-

periments. Our multi-stream fusion approach, combining the face

with environment images, outperforms the baseline’s accuracy by

15.03% on the development set and achieves 71.62% on the test set.

Furthermore, we investigated the integration of manually derived

facial features, such as the eye aspect ratio, as well as a vehicle part

location extractor (GoCaRD ) that might serve as potential anchor

points to more easily calibrate and map the human in relation to

the car cabin environment. Our holistic approach fusing all four

inputs yields an improved 71.28% accuracy. Based on these promis-

ing results, we also link the two ‘in the wild’ fields of multimodal

sentiment analysis and gaze estimation, and propose to also con-

sider in the future varying camera settings, e. g., positioning, and

equipment. We expect that this extension would further improve

generalisation; also for related applications, such as human-object

interaction. In our work, we merely focused on examining the im-

provement brought by image input and context fusion ś leaving

room to improve the usage of data and training settings to further

improve the performance to which we provide several suggestions.
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