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ABSTRACT

Motivated by the attention mechanism of the human visual system

and recent developments in the field of machine translation, we

introduce our attention-based and recurrent sequence to sequence

autoencoders for fully unsupervised representation learning from

audio files. In particular, we test the efficacy of our novel approach

on the task of speech-based sleepiness recognition. We evaluate

the learnt representations from both autoencoders, and conduct an

early fusion to ascertain possible complementarity between them.

In our frameworks, we first extract Mel-spectrograms from raw au-

dio. Second, we train recurrent autoencoders on these spectrograms

which are considered as time-dependent frequency vectors. After-

wards, we extract the activations of specific fully connected layers

of the autoencoders which represent the learnt features of spec-

trograms for the corresponding audio instances. Finally, we train

support vector regressors on these representations to obtain the

predictions. On the development partition of the data, we achieve

Spearman’s correlation coefficients of .324, .283, and .320 with the

targets on the Karolinska Sleepiness Scale by utilising attention and

non-attention autoencoders, and the fusion of both autoencoders’

representations, respectively. In the same order, we achieve .311,

.359, and .367 Spearman’s correlation coefficients on the test data,

indicating the suitability of our proposed fusion strategy.
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1 INTRODUCTION

Sleepiness is a state identified by reduced alertness that varies ac-

cording to a circadian rhythm, i. e., with the time of the day [16, 25].

Its detection is important for safety applications, as it has been

shown, for example, that sleepiness impacts driving performance,

even more so than fatigue [31, 34]. Most systems that aim to detect

a sleepy driver rely on signals derived from interaction with the

vehicle, such as abnormal steering behaviour, failures in lane keep-

ing or irregular use of the pedals [32]. Furthermore, in [20, 30] the

authors have demonstrated that sleepiness is one of the superven-

ing cause of an accident amongst the professional drivers. Various

studies could find a correlation between short sleep and a range of

disorders, such as breathing problems [37], obesity [22], and mental

disorders [33]. Moreover, in [44], Van Der Helm et al. have shown

that sleep deprivation negatively influences the ability to classify

the intensity of human facial emotions. Their findings have been

substantiated in [28].

Research dealing with automatic sleepiness recognition has in-

vestigated methods to derive the state based on different bio-signals.

Performing visual analysis of a subject’s face, e. g., measuring blink-

ing, can serve in assessing sleepiness but may be negatively affected

by changing environmental parameters, such as illumination [17].

While electroencephalography (EEG) has also been shown to be
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Figure 1: An overview of our framework for unsupervised representation learning with sequence to sequence recurrent au-

toencoders. Except for the SVR training, the approach is fully unsupervised. A detailed description of the procedure is given

in Section 3.

a robust approach to the problem [13], it is far more intrusive

and can only be achieved with special equipment and professional

setup. In contrast to this, performing acoustic analysis of speech is

non-obtrusive and does not need as much sensor application and

calibration effort [27].

In order to define a suitable target for the automatic analysis

of sleepiness, the state can be described by the Karolinska Sleepi-

ness Scale (KSS) in terms of ratings ranging from 1 to 9, sometimes

additionally extended by an extra category 10 for extreme sleepi-

ness. A binary classification of sleepy speech has been previously

performed as part of the INTERSPEECH 2011 speaker state chal-

lenge [39]. The sleepiness subchallenge of INTERSPEECH 2019’s

ComParE challenge deals with the detection of continuous sleepi-

ness, and the sleepiness of a speaker is assessed as a regression

problem [40]. In this challenge’s baseline, the problem was ap-

proached in a number of ways, including a traditional acoustic

feature extraction pipeline, Bag-of-Audio-Words (BoAW) [38], and

a deep recurrent autoencoder framework. Here, the unsupervised

sequence to sequence model auDeep [4, 18] achieved the strongest

results.

A profound analysis of unsupervised representation learning

techniques, including recurrent autoencoders and convolutional

generative adversarial networks for speech and audio signal pro-

cessing is given in [1]. Deep learning models, such as auDeep , that

process raw or low level inputs yield state-of-the-art results for a

wide range of machine learning problems [8, 21, 47]. Many of these

approaches consider inputs as a whole, treating every part with the

same importance. Often, however, some pieces of the input contain

more information pertinent to solving the task at hand than others.

A popular approach that takes this notion into consideration can

be found with attention mechanisms, such as the one introduced

by Bahdanau et al. [10] for machine translation. Compared to reg-

ular sequence to sequence autoencoders where all information is

compressed into the last hidden state of the encoder, the dynamic

context vector in the attention model retains information about

all hidden states of the encoder and their alignment to the cur-

rent decoding step. Since their introduction, attention mechanisms

have also been adapted to speech recognition [11, 15], visual image

captioning [45] or question answering [9], and speech emotion

classification [24].

Motivated both by the effectiveness of recurrent autoencoders

for acoustic analysis of sleepiness from speech as well as by the

improvements to sequence to sequence models achieved with atten-

tion mechanisms, we evaluate the performance of our unsupervised

recurrent approaches and analyse the impacts of combining them

for the detection of continuous sleepiness on the respective 2019

edition of the INTERSPEECH ComParE sub-challenge.

The remainder of the paper is structured as follows. First, we

describe the dataset used for the experiments in Section 2. Our au-

toencoder fusion framework is then introduced in Section 3 where

we detail the feature learning process and both types of autoencoder

models trained on the sleepiness challenge data. We further discuss

our hyperparameter choices and experimental settings in Section 4.

In Section 5, we present the results achieved during the evalua-

tions before concluding our work and outlining future research

directions in Section 6.

2 DATASET

We use a subset of the SLEEP Corpus that was employed in the 2019

edition of the INTERSPEECH Computational Paralinguistics Chal-

lenge (ComParE) [40]. The corpus contains speech recordings of

915 individuals (364 females, 551 males) at varying levels of sleepi-

ness. The participants performed different pre-defined speaking

tasks and read out text passages. Furthermore, spontaneous speech

is included in the form of elicited narrative content. The sessions

which lasted up to an hour per participant were further held be-

tween 6am to 12pm in order to capture high variability in the levels

of perceived sleepiness. The resulting audio files have a sample rate

of 16 kHz with a 16 bit quantisation. Each file is annotated with a

KSS-score, ranging from 1 to 9, with 9 denoting extreme sleepiness.

The labels were derived by averaging self-report with the scores

of two external observers. The dataset is split into three partitions

with 5 564, 5 328, and 5 570 samples.

3 APPROACH

A high-level overview of our proposed approach is depicted in Fig-

ure 1. First, Mel-spectrograms are extracted from audio signals.

Recurrent autoencoders (AEs), both with and without attention

mechanism, are then trained on the Mel-spectrograms to find com-

pressed representations of the input data. Afterwards, the weights

of the AEs are frozen and learnt representations are obtained from

their hidden layers. As the final step, we fuse the representations

of both types of recurrent AEs and classify them.
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Figure 2: Schematic structure of our attention-based autoencoder with stacked encoder and decoder RNNs. Feature vectors

1 and 2 are extracted from the activations of the fully connected layer of the encoder RNN and the last hidden state of the

decoder RNN, respectively. A detailed account of the proposed architecture is provided in Section 3.3.

3.1 Spectrogram Extraction

First, the Mel-spectrograms of audio recordings are extracted us-

ing periodic Hamming windows with width 𝑤 and overlap 0.5𝑤 .

From these, a given number of log-scaled Mel-frequency bands

are then computed. Finally, we normalise the Mel-spectra to have

values in [-1; 1], since the outputs of the recurrent sequence to

sequence autoencoders are constrained to this interval. These spec-

trograms are further treated by the autoencoders as sequences of

one-dimensional frequency vectors, i. e., the networks process them

as time series data.

3.2 Autoencoder Architecture without

Attention

For this architecture, we utilise auDeep
1
[4, 18], our recurrent se-

quence to sequence autoencoder. For the representation learning

with this framework, we can adjust a range of autoencoder pa-

rameters, including the direction (e. g., uni- or bidirectional) of the

encoder and decoder RNNs, types of RNN cells, e. g., gated recur-

rent units (GRUs), or long short-term memory (LSTM) cells, and

the number of hidden layers and units. To use LSTM-RNNs in the

decoder, the LSTM cell is modified to work with a context vector

similar to the GRUs in the encoder-decoder model proposed by

Cho et al. [14]. The weight matrices 𝐶𝑖 ,𝐶𝑓 ,𝐶𝑜 , and 𝐶𝑧 are added

to the input 𝑧𝑡 , input gate 𝑖𝑡 , forget gate 𝑓𝑡 , and output gate 𝑜𝑡 to

enable an LSTM cell to work with the context vector:

𝑧𝑡 = tanh (𝑊𝑧𝑥𝑡 + 𝑅𝑧𝑦𝑡−1 +𝐶𝑧𝑐 + 𝑏𝑧)
𝑖𝑡 = 𝜎 (𝑊𝑖𝑥𝑡 + 𝑅𝑖𝑦𝑡−1 +𝐶𝑖𝑐 + 𝑝𝑖 ⊙ 𝑐𝑡−1 + 𝑏𝑖 )

𝑓𝑡 = 𝜎 𝑊𝑓 𝑥𝑡 + 𝑅𝑓 𝑦𝑡−1 +𝐶𝑓 𝑐 + 𝑝 𝑓 ⊙ 𝑐𝑡−1 + 𝑏 𝑓
𝑜𝑡 = 𝜎 (𝑊𝑜𝑥𝑡 + 𝑅𝑜𝑦𝑡−1 +𝐶𝑜𝑐 + 𝑝𝑜 ⊙ 𝑐𝑡 + 𝑏𝑜 ) .

(1)

For each input sequence, the initial hidden state vector of the

encoder is zero-padded. The last concatenated hidden state vector

of the encoder ℎ𝑒
𝑇

=

[−→
ℎ 𝑇

←−
ℎ 𝑇

]𝑇
is then passed through a fully

1
https://github.com/auDeep/auDeep

connected layer with tanh activation which has the same number

of units as the decoder RNN. The output of this layer represents

the context vector and is used as the first hidden state vector of the

decoder ℎ𝑑
0
. During the feature extraction, the context vector also

represents the feature vector. The outputs of the decoder are passed

through a fully connected projection layer with tanh activation at

each time step in order to map the decoder output dimensionality

to the target dimensionality. The weights of this output projection

are shared across time steps. For the network training, the teacher

forcing algorithm [29] is applied. Following this method, instead

of feeding the decoder with the predicted output at time step 𝑡 − 1
(𝑦𝑡−1), the expected decoder output at time step 𝑡 − 1 (𝑦𝑡−1) is fed
as an input to the decoder. This means that the decoder input is the

same original spectrogram, only shifted by one step in time. Instead

of the first step, the zero vector is inserted and the frequency vector

at the last step is removed. During the training, the autoencoder

learns to reconstruct the reversed input spectrogram [4, 6, 43]. Mean

squared error (MSE) is used as the loss function to compare the

reversed source spectrogram with the concatenated spectrogram

obtained from the projection layer.

3.3 Autoencoder Architecture With Attention

In the second model, we add an attention mechanism to the au-

toencoder architecture. Here, encoder and decoder have almost

the same structure as the baseline autoencoder. The problem of

the sequence to sequence model is that the encoder must map all

essential information of the input sequence to a fixed-length vec-

tor. This may not be enough to represent a long input sequence.

To circumvent this, we adapt the attention mechanism introduced

by Bahdanau et al. [10] for our sequence to sequence autoencoder

architecture [4] (cf. Section 3.2). To the best of our knowledge, this

is the first time, that such a mechanism has been directly applied

for representation learning from the spectrograms of raw audio

signals.

At each time step of the decoder, the attention mechanism, which

includes dynamic computation of the context vector, enables to
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choose the hidden state vectors of the encoder that contain the most

significant information to generate the context vector 𝑐𝑡 which is

used to generate the output 𝑦𝑡 . This computation is based on all

hidden state vectors of the encoder and the last hidden state vectors

of the decoder. The context vector 𝑐𝑖 is the linear combination of

the hidden state vectors of the encoder ℎ𝑒
𝑗
:

𝑐𝑖 =

𝑇𝑥∑
𝑗=1

𝛼𝑖 𝑗ℎ
𝑒
𝑗 . (2)

Here, the weights 𝛼𝑖 𝑗 are numbers between 0 and 1 and define

which hidden states ℎ𝑒
𝑗
have the biggest influence on 𝑦𝑖 . 𝛼𝑖 𝑗 is

calculated with the softmax-normalised inner activation of the

alignment model 𝑒𝑖 𝑗 :

𝛼𝑖 𝑗 =
exp(𝑒𝑖 𝑗 )∑𝑇𝑥

𝑘=1
exp(𝑒𝑖𝑘 )

. (3)

The alignmentmodel 𝑒𝑖 𝑗 = 𝑎(ℎ𝑒
𝑖−1, ℎ

𝑑
𝑗
) is a small feedforward neural

network trained together with the sequence to sequence model

using backpropagation and is defined as

𝑣⊤𝑎𝑖 tanh 𝑊𝑎ℎ
𝑑
𝑖−1 +𝑈𝑎ℎ

𝑒
𝑗 , (4)

where 𝑣𝑎 ∈ R𝑙 is a weight vector, and𝑊𝑎 ∈ R𝑙×𝑛 and 𝑈𝑎 ∈ R𝑙×2𝑛
are weight matrices, and 𝑙 is the number of units in the alignment

model.

The difference to the autoencoder described in Section 3.2 is that

the context vector is calculated dynamically using the alignment

model and is not solely used as a feature vector. If we compute

the feature vector from the last hidden state vector of the encoder,

the attention mechanism will have less influence on the feature

extraction. The feature vector, however, should contain information

of all context vectors and, therefore, is extracted after their creation.

For this reason, an additional set of feature vectors is extracted

from the hidden state vector of the last decoder layer at the last

time-step. The attention mechanism in the sequence to sequence

model is visualised in Figure 2.

3.4 Fusion

As an optional final step before using the learnt features to predict

sleepiness from speech, we perform feature level fusion. We take

the representations extracted from trained recurrent AEs, with and

without attention, and concatenate them along the feature axis.

In this way, we want to evaluate if the information condensed in

these representations is complimentary, i. e., if the change in focus

introduced by the attention mechanism leads to different aspects

of the input being expressed by the features.

4 EXPERIMENTAL SETTINGS

For all experiments, we train autoencoder models on the sleepiness

spectrograms and then extract features for the three partitions.

These feature vectors are used to train a linear support vector

regressor (SVR) for which we optimise the complexity parameter

on a logarithmic scale of 10
−5

to 1. The complexity parameter is

chosen based on the Spearman’s correlation coefficient (𝜌) achieved

on the development partition.

Table 1: Performance comparison of the features obtained

from the fully connected layer of the encoder (fc𝑒𝑛𝑐 ) and the

last hidden state of the decoder (state𝑑𝑒𝑐 ) in our attention au-

toencoder. id: feature identifier, Dim.: feature dimensional-

ity.

Parameters fc𝑒𝑛𝑐 state𝑑𝑒𝑐

id Epoch Cell Dim. 𝜌𝑑𝑒𝑣𝑒𝑙 𝜌𝑡𝑒𝑠𝑡 𝜌𝑑𝑒𝑣𝑒𝑙 𝜌𝑡𝑒𝑠𝑡

1 20 GRU 512 .262 .308 .276 .294

2 25 GRU 512 .258 .308 .278 .298

3 30 GRU 512 .250 .314 .267 .292

4 35 GRU 512 .260 .312 .266 .298

5 40 GRU 512 .253 .307 .265 .288

6 20 LSTM 512 .293 .294 .318 .303

7 25 LSTM 512 .303 .276 .324 .311

8 30 LSTM 512 .298 .263 .322 .305

9 35 LSTM 512 .303 .285 .289 .304

10 40 LSTM 512 .307 .302 .288 .299

Our proposed autoencoder approaches contain a large amount

of adjustable hyperparameters (cf. Sections 3.2 and 3.3), which

prohibits an exhaustive exploration of the parameter space. For

this reason, we choose suitable values for the hyperparameters

in multiple stages, using the results of our initial experiments to

bootstrap the process. In preliminary experiments, we test differ-

ent configurations for the spectrograms that are used as input for

the autoencoders. We arrived at using Mel-spectrograms with 160

and {128, 256} Mel-bands extracted from the audio samples for our

autoencoders with and without attention, respectively. For the fast

Fourier transform (FFT), we apply Hamming windows of 40ms

width and 20ms overlap. We further experiment with the archi-

tecture of our recurrent autoencoder models. Here, we test one

and two layer variants for both encoder and decoder using either

GRU or LSTM cells with 128, 256, or 512 hidden units. Moreover,

bidirectional and unidirectional encoders are compared. For the at-

tention autoencoder, models with two-layer bidirectional encoders

and two-layer unidirectional decoders worked best with 512 hidden

units. For the results presented herein, we therefore settled on this

architecture with the choice of either GRU or LSTM layers (cf. Ta-

ble 1). Furthermore, we introduce an additional RNN layer in the

decoder that serves to produce hidden states for the attention mech-

anism. The architecture of those models is visualised in Figure 2.

We evaluate features extracted from both the last hidden state of

the encoder and decoder. All attention models are trained using a

batch size of 256 with the Adam optimiser [26] and the learning rate

set to 10
−4

for a maximum of 40 epochs. The model checkpoints

at 20, 25, 30, 35, and 40 epochs further serve as feature extractors.

For the auDeep experiments (cf. Section 3.2), we found the best

configuration with 2 hidden layers each with 256 hidden units. We

then optimise the direction of the encoder and decoder and adjust

the RNN cell type. Additionally, we filter some of the background

noise in the recordings by clipping amplitudes below {-40, -50, -60,
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Table 2: Results obtained from our autoencoder without attention. id: feature identifier, windowwidth: width of the Hamming

window, Mel-Bands: number of Mel-bands, Clip-Level: clipped amplitudes below a certain threshold to filter some noise from

audio, Dimension: dimensionality of each feature set, Direction: direction of the encoder-decoder RNN.

Autoencoders without attention

id window width [s] Mel-Bands Clip-Level Cell Type Dimension Direction 𝜌𝑑𝑒𝑣𝑒𝑙 𝜌𝑡𝑒𝑠𝑡

1 0.08 256 fused GRU 4 096 uni-bi .286 .338

2 0.08 256 -70 dB GRU 1 024 bi-uni .283 .359

3 0.06 256 -70 dB GRU 1 024 bi-uni .281 .357

4 0.08 256 -60 dB GRU 1 024 uni-bi .278 .331

5 0.04 256 -70 dB GRU 1 024 uni-bi .278 .340

6 0.06 256 fused GRU 4 096 bi-uni .277 .346

7 0.06 256 -70 dB GRU 1 024 uni-bi .277 .348

8 0.06 128 -70 dB LSTM 1 024 uni-bi .277 .317

9 0.08 128 -60 dB GRU 1 024 bi-uni .275 .324

10 0.04 256 -60 dB GRU 1 024 uni-bi .275 .336

-70} dB thresholds, and fuse them together resulting in five different

feature vectors for each data partition. In [2, 7, 12], we have shown

that our amplitude clipping approach can effectively eliminate un-

wanted audio effects and lead to a better overall performance of the

machine learning system in various audio classification scenarios.

5 RESULTS AND DISCUSSION

All results obtained with our autoencoders and their early fusion are

shown in Tables 1 to 3. In the attention model (cf. Table 1), features

from the fully connected layer of the encoder RNN (fc𝑒𝑛𝑐 ) generalise

better when GRUs are applied (𝜌𝑑𝑒𝑣𝑒𝑙 = .250, 𝜌𝑡𝑒𝑠𝑡 = .314), and the

features from the last hidden state of the decoder RNN (state𝑑𝑒𝑐 )

perform better with LSTM cells (𝜌𝑑𝑒𝑣𝑒𝑙 = .324, 𝜌𝑡𝑒𝑠𝑡 = .311). From

both autoencoder approaches, the recurrent model without atten-

tion shows the best performance on the test partition (𝜌𝑡𝑒𝑠𝑡 = .359),

whilst the attention model achieves the highest results on the de-

velopment partition (𝜌𝑑𝑒𝑣𝑒𝑙 = .324). The result implies possible

overfitting of the attention model on the development data. This

issue is not strongly present in our model without attention, and we

hypothesise that this is mainly because of the filtering of some of the

background noise found in the audio data by clipping amplitudes be-

low a certain threshold. In Table 2, we provide the highest achieved

results with various thresholds and hyperparameter combinations.

Furthermore, we fuse the best performing attention feature set on

the development set (𝜌𝑑𝑒𝑣𝑒𝑙 = .324, 𝜌𝑡𝑒𝑠𝑡 = .311) with all non-

attention (auDeep) features to analyse the complementarity of the

learnt representations. The results in Table 3 demonstrate an im-

provement of all results after early fusion. The highest improvement

on the test partition after fusion is achieved when the best attention

feature set is combined with the fourth auDeep feature with GRUs,

and the unidirectional encoder and bidirectional encoder trained on

Mel-spectrograms with 256 Mel-bands (FFT window width of 80ms

and overlap of 40ms) and -60 dB amplitude clipping (cf. Table 3).

It is worth mentioning that the dimensionality of the attention

features are either 1/2 or 1/8 of the auDeep features, leading to a

Table 3: Results of our early fusion experiments with the

best attention result (id𝑎𝑡𝑡 = 7) and all results provided in Ta-

ble 2. id𝑎𝑡𝑡 and id𝑎𝑢𝑑𝑒𝑒𝑝 : identifiers for the attention feature

and auDeep features which are fused. 𝐶𝑆𝑉𝑅 : Complexity of

the SVR which is optimised on the development partition

after fusion.

Early fusion

id𝑎𝑡𝑡 id𝑎𝑢𝑑𝑒𝑒𝑝 𝐶𝑆𝑉𝑅 𝜌𝑑𝑒𝑣𝑒𝑙 𝜌𝑡𝑒𝑠𝑡

7 1 10
−3

.315 .359

7 2 10
−2

.336 .360

7 3 10
−2

.334 .365

7 4 10
−1

.320 .367

7 5 10
−2

.333 .349

7 6 10
−3

.319 .363

7 7 10
−2

.326 .361

7 8 10
−2

.333 .341

7 9 10
−2

.340 .351

7 10 10
−2

.339 .357

faster classifier training. Moreover, the training process with atten-

tion autoencoders can be performed faster, as the encoder RNN is

relieved from encoding all information in the whole input sequence

of the Mel-spectrograms into a fixed-length vector [1]. We further

compare our best performing approaches with the best challenge

baselines [40], the winner of the challenge who combined Fisher

vectors with baseline features [19], and the runner-up who utilised

a fusion of convolutional neural networks (CNNs) and RNNs [46]

(cf. Table 4).
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Table 4: Comparison of our best performing models with

best performing challenge baselines and the challenge win-

ner. 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛: feature dimensionality of each system, 𝜌𝑑𝑒𝑣
and 𝜌𝑡𝑒𝑠𝑡 : Spearman’s correlation coefficients on develop-

ment and test partitions. *) It should be noted that the re-

sults provided by the challenge winner [19] only contain

test results after the fusion with the challenge baselines

ComParE and/or BoAW.

System Dimension 𝜌𝑑𝑒𝑣 𝜌𝑡𝑒𝑠𝑡

Challenge Winner* [19]

ComParE + BoAW + Fisher vectors – – .383

Runner-up [46]

CNNs and BLSTMs with attention – .373 .369

Best Challenge Baselines [40]

ComParE 6 373 .251 .314

Bag-of-Audio-Words 500 .250 .304

Autoencoders 1 024 .243 .325

Late fusion of best – – .343

Best of Our Proposed Approaches

With attention 512 .324 .311

Without attention 4 096 .286 .338

Early fusion 4 608 .320 .367

6 CONCLUSIONS AND FUTUREWORK

In Section 3.3, we have introduced a novel attention mechanism

for unsupervised representation learning from spectrograms of

audio signals with recurrent sequence to sequence autoencoders
2
.

We have demonstrated the suitability of two fully unsupervised

representation learning techniques for continuous sleepiness recog-

nition, and their superior performance to engineered, supervised

features, such as ComParE and semi-supervised methods, such as

Bag-of-Audio-Words (cf. Table 4). Furthermore, we have conducted

a feature fusion strategy and demonstrated the complementarity

of the learnt representations from both autoencoder architectures

(cf. Section 5). The autoencoder training process in the attention

architecture can be performed faster than auDeep as the encoder

RNN does not need to encode all information in the whole input

sequence of the Mel-spectrograms into a fixed-length representa-

tion. Moreover, the smaller dimensionality of the attention features

(either 1/2 or 1/8 of the auDeep features) could lead to a faster clas-
sifier training. During the training process, we have observed that

the attention-based autoencoder achieves a better performance on

the development partition than auDeep, however, it is not highly

distinguished by its performance on the unseen test set, implying

its possible overfitting on the development data. Therefore, for the

future work, we plan to add amplitude clipping into the attention

autoencoder – similar to the auDeep architecture – to reduce the

potential overfitting problems. We further plan to evaluate our sys-

tems over a wide range of audio recognition tasks, including speech

2
Our audio-based attention framework (auttention), and all codes to reproduce the

attention results are provided here: https://github.com/auttention/SleepyAttention

emotion recognition [23, 42], sentiment analysis [35, 41], and music

emotion classification [5]. We also want to utilise dimensionality

reduction techniques [3] to cope with the high-dimensionality of

our autoencoder features. Finally, we want to combine our methods

with CNN-based representation learning systems, such as deep

convolutional generative adversarial networks [36].
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