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Abstract— Cardiovascular disease is one of the leading fac-
tors for death cause of human beings. In the past decade,
heart sound classification has been increasingly studied for
its feasibility to develop a non-invasive approach to monitor
a subject’s health status. Particularly, relevant studies have
benefited from the fast development of wearable devices and ma-
chine learning techniques. Nevertheless, finding and designing
efficient acoustic properties from heart sounds is an expensive
and time-consuming task. It is known that transfer learning
methods can help extract higher representations automatically
from the heart sounds without any human domain knowledge.
However, most existing studies are based on models pre-trained
on images, which may not fully represent the characteristics
inherited from audio. To this end, we propose a novel transfer
learning model pre-trained on large scale audio data for a heart
sound classification task. In this study, the PhysioNet CinC
Challenge Dataset is used for evaluation. Experimental results
demonstrate that, our proposed pre-trained audio models can
outperform other popular models pre-trained by images by
achieving the highest unweighted average recall at 89.7 %.

I. INTRODUCTION
Auscultation using a stethoscope is an efficient, inexpensive,

and convenient way for making an early diagnosis of cardio-
vascular disease (CVD), which accounts for approximately
45 % of all deaths annually in Europe [1]. Nevertheless, it is
time-consuming and inefficient to train a sufficient number of
physicians to be qualified in using a stethoscope for clinical
practice [2]. The components of a heart sound include the
first (S1) and the second sound (S2) as normal sounds, while
the third and the fourth heart sounds, i. e., S3 and S4, often
correspond to murmurs, and ejection clicks, usually refer to
some disease, or anomaly [3].
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Within the fast development in signal processing and ma-
chine learning, heart sound classification has been increasingly
studied in the past decades [3]. In recent feature extraction
approaches, wavelet analysis, time-frequency analysis using
short time fourlier transform (STFT), unsupervised learning
and other methods are often found [4]. As a classifier,
hidden Markov model (HMM), k-nearest neighbour, support
vector machines, random forest, multi-layer perceptron, deep
neural network, convolutional neural network, recurrent neural
network, and other classifiers have been used in previous
research [4].

Existing studies have shown encouraging results that may
lead into a promising future direction on developing non-
invasive methods for automatically monitoring the heart status.
On the other hand, finding and designing efficient acoustic
features for heart sounds needs expensive domain knowledge
of human experts. Moreover, to make the current machine
learning-based approaches feasible in clinical practice, a
large number of expert annotations are needed, which is
another difficult issue for almost all biomedical engineering
fields. Motivated by the success of transfer learning (TL) in
computer vision [5], natural language processing [6], and
speech recognition [7], TL-based methods are now proving
another paradigm for extracting higher representations from
heart sound without any human expert domain knowledge [8].
Nonetheless, most existing TL-based models are pre-trained
on images, such as ImageNet [9] rather than on audio data.
To explore the TL capacity of a most recently released deep
model pre-trained on large scale audio data, such as the
Large-Scale Pretrained Audio Neural Networks (PANNs) for
audio pattern recognition [10], we introduce PANNs for the
heart sound classification task. Our hypothesis is that the
deep model pre-trained on audio may catch more inherited
characteristics from heart sounds than models pre-trained on
images.

The main contributions of this work can be summarised as:
First, we introduce a novel deep learning model pre-trained on
large scale audio data into the paradigm of TL for heart sound
classification. To the best of our knowledge, it is the first
time an audio based pre-trained TL model is used for heart
sound classification. Second, we investigate and compare the
proposed models with other state-of-the-art TL models on
their capacity to extract higher representations from heart
sound. Third, we compare two popular inputs, the spectrogram
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and the Log Mel spectrogram, for their performance on the
interpretation of the heart status. This paper is organised as
follows: The database used and the method will be introduced
in Section II. Experimental results and discussion will be
given in Section III and Section IV, respectively. Finally, we
conclude this work in Section V.

II. MATERIALS AND METHODS

A. Dataset

In this study, the open-access heart sound database, Phys-
ioNet CinC Challenge database [11] is used. This database
was collected from nine medical centres, which includes 2 435
Phonocardiogram (PCG) recordings from healthy subjects and
1 297 PCG recordings from the patients suffering from a
variety of heart valve diseases and coronary artery diseases.
The length of the PCG recordings is ranging from several
seconds to minutes. Public data for training and private
data for scoring were used in the CinC Challenge. We used
the former one, including 3 240 PCG instances. Minimum,
maximum, and mean length of those PCG are 5.3, 121.9 and
22.4 seconds, respectively. All instances were resampled with
2 000 Hz.

B. Transfer Learning from Images

Convolutional neural networks (CNNs) have given good
results in the computer vision field in recent years, but they
need a high amount and variety of data to train with high
computing costs. On this background, TL is commonly used
with CNNs pre-trained on large datasets like ImageNet. There
are several available pre-trained models for image tasks:
VGG [12], MobileNet [13], ResNet [14], and ResNeXt [15].
In the ImageNet 2014 challenge, the model known as VGG
reached the second place in the classification track with
3×3 convolution filters [12]. This model is deeper than the
previous models at that time with 16 ˜ 19 convolutional layers.
Residual blocks are proposed on the background that deeper
CNNs achieve higher performance while it is challenging to
train them due to vanishing gradient [14]. Residual blocks are
composed of two pathways: via the convolutional layer, and
via direct input as a shortcut. The shortcut path takes no extra
parameters and matrix calculation, making backpropagation
easier at the same time. In the ResNets, convolutions with 3×3
filters cost heavily on computing. To reduce the computational
cost, MobileNet V1 factorised a standard convolution into
two convolutions: Depthwise convolution and pointwise
convolution by 1×1 filters [13]. Inverted residual blocks,
known as bottleneck layers, were added in MobileNet V2
[16]. MobileNet V2 has fewer parameters than MobileNet
V1. To obtain stronger representational power than ResNet,
ResNeXt [15] added group convolutions and reduced channel-
wise compression rate, keeping the number of parameters on
par with ResNet. Weakly supervised learning with ResNeXt
was proposed in [17]. It is pre-trained in a weakly-supervised
fashion on 940 million public images with 1.5 k hashtags
matching with 1 000 ImageNet1K synsets, followed by fine-
tuning on ImageNet1K dataset.

TABLE I: Topology of the PANN CNN14 model.

Log Mel spectrogram
120000 frames × 64 mel bins

(3×3@64, BN, ReLU )×2, Pooling 2×2

(3×3@128, BN ,ReLU )×2, Pooling 2×2

(3×3@256, BN ,ReLU )×2, Pooling 2×2

(3×3@512, BN ,ReLU )×2, Pooling 2×2

(3×3@1024, BN ,ReLU )×2, Pooling 2×2

(3×3@2048, BN ,ReLU )×2 , Global pooling

FC 2048, ReLU

FC 2, Softmax

C. Transfer Learning from Audio: PANNs

To provide a generalised model in the audio pattern
recognition field, large-scale pre-trained audio neural networks
(PANNs) were proposed [10]. A wide range of convolutional
neural networks were pre-trained on to classify 527 sound
classes. Particularly, a 14-layer CNN was transferred and
fine-tuned on several audio pattern tasks. Their CNN pre-
trained on AudioSet is generalised well in many audio pattern
recognition tasks. We used CNN14 from [10] which has five
blocks of 3 x 3 convolutional filters, batch normalisation and
ReLU as shown in Table I. The number of frames and output
size were modified to fit the CinC dataset. The number after
symbol @ indicates the number of feature maps. “BN” and
“FC” indicate batch normalisation and fully connected layer,
respectively. The whole system structure is shown in Fig. 1.
The loss function with which all of those CNN models are
fine-tuned is binary cross-entropy or log loss which is defined
as:

LogLoss =−1
n

n

∑
i=1

[yi log ŷi +(1− yi) log(1− ŷi)] , (1)

where n is the number of instances, ŷi is the predicted
probability of abnormal label, yi is 1 if label is abnormal and
0 if label is normal.

III. EXPERIMENTAL RESULTS

A. Pre-processing

There were two pre-processing methods to obtain feature
maps from raw waveform inputs used in the CinC Challenge
2016: spectrogram and Log Mel spectrogram. The input
wave and the pre-processed feature maps are shown in Fig.
2. In order to get frequency features without losing temporal
change, the spectrogram was obtained by splitting waveform
data into a window length, choosing the first split waveform,
calculating short-time Fourier transform (STFT) and executing
accordingly to the end of the split waveform. This pre-
processing was used for example in the CinC Challenge
2016 [18]. After reaching a spectrogram representation by
the process above, the Log Mel spectrogram is obtained by
multiplying the Mel filter bank with the spectrogram and
applying the logarithm. The Mel filter bank increases the size
of the passing frequency range as the frequency increases.
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Fig. 1: Diagram of the TL-based method for heart sound classification. The original heart sound audio data is transformed to
Log Mel or ‘normal’ spectrograms as the inputs at first. Then, the pre-trained deep models containing multiple convolutional

layers will be used to extract higher representations from the inputs. Finally, the prediction will be made by a fully
connected (FC) layer and a softmax layer for targeting the inputs to the classes of heart sound, i. e., ‘normal’ or ‘abnormal’.

Fig. 2: Waveform (top), spectrogram (middle), and Log Mel
spectrogram (bottom) of the heart sound audio samples (in
4 s) annotated as ‘abnormal’ (left), and ‘normal’ (right).
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Hence, features in higher frequency range in the spectrogram
are relatively coarse as compared to those in lower frequency
with respect to spectral resolution. This pre-processing was
used for example in the CinC Challenge in [19]. The raw heart
sound waveform, spectrogram, and Log Mel spectrogram are
shown in Fig. 2.

B. Experimental Setup

The length of the CinC data ranges from several seconds to
several minutes. To make it the same length, we cut the start
and end of records when their length is longer than 60 seconds,
and if the length is shorter than 60, we padded it at the centre.
We split them into 3:1:1 as train, development, and test
datasets, keeping in each dataset the same normal/abnormal

ratio with the original data at about 4:1. In order to train
CNNs successfully, each label was sampled equally. Hyper
parameters were kept the same among all CNNs: learning rate
= 0.0001, STFT window size = 400, STFT window stride
= 400, and the number of Mel bins = 64 under 1000 Hz.
Considering the imbalanced data distribution of the PhysioNet
CinC Challenge database, we use specificity, sensitivity, F1
score and the unweighted average recall (UAR) [20] as the
evaluation metrics. UAR is defined as:

UAR =
∑

Nc
i=1 Recalli

Nc
, (2)

where Nc is the number of classes (Nc = 2 in this study).

C. Results

The experimental results are shown in Table II and Table III.
CNNs except PANNs accept spectrogram and Log Mel
spectrogram as an input, while PANNs accept a raw waveform.
PANNs include the STFT layer and the Mel filter bank layer in
their weights pre-trained on AudioSet. Therefore, we cannot
remove the Mel filter bank layer, and the results of PANNs
with spectrogram input in Table II and Table III cannot
be filled. In this study, the proposed PANN-based model
achieves the highest UAR at 89.7 %, specificity at 88.6 %,
and sensitivity at 96.9 %.

IV. DISCUSSION

The proposed PANNs-based model could extract the
most efficient higher representations in recognising heart
sounds (see Table II). MobileNet-based model performed
second best in this study (at UAR of 86.1 %). A significant
difference (p < .05 by one-tailed z-test) in performance is
observed when comparing the PANNs-based model with
this second place. We also find that, ResNeXt-50, ResNeXt-
101, and ResNeXt-101+WSL, which share a comparable
number of parameters as PANNs, failed to reach the best
performance. This suggests that, deep models pre-trained by
audio (e. g., PANNs) may extract more useful characteristics
inherited in audio data than models pre-trained on images
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TABLE II: Experimental results (UARs in [%]) achieved by
different TL models on the test set. The number of parameters
in each TL deep model is shown as “# Params.” with an unit
of million.

Test UAR [% ]

Model Name # Params. Log Mel Spectrogram

mean std. mean std.
VGG16 14.7 85.6 1.3 85.3 1.3
VGG19 20.0 86.0 0.9 85.7 1.3
MobileNet V2 2.2 86.1 2.2 84.5 2.1
ResNet18 11.1 82.1 10.3 74.9 8.6
ResNeXt-50 22.9 76.2 7.4 78.0 4.3
ResNeXt-101 86.7 65.3 1.6 79.9 1.3

+ WSL 86.7 71.0 2.5 59.9 9.2
PANNs CNN14 80.7 89.7 1.5 —– —–

TABLE III: Experimental results (specificy, sensivity, and F1
in [%]) achieved by different TL models.

Model Name Log Mel Spectrogram

Spec Sens F1 Spec Sens F1
VGG16 74.9 93.7 79.0 75.2 93.7 78.0
VGG19 76.2 94.0 79.2 76.4 94.0 78.1
MobileNet V2 80.2 94.7 75.9 77.6 94.1 73.8
ResNet18 74.3 93.9 67.1 57.3 89.8 59.8
ResNeXt-50 63.0 90.5 61.6 70.1 92.4 63.6
ResNeXt-101 52.2 89.6 39.7 71.4 92.7 67.7

+WSL 69.8 52.6 55.1 53.7 87.5 33.0
PANNs CNN14 88.6 96.9 79.1 —– —– —–

for the heart sound classification task. Further, Log Mel
spectrograms outperformed the ‘normal’ spectrograms. This
result is consistent with the observation that human hearing
is sensitive to sounds in the mel scale frequency [21].

V. CONCLUSION

In this study, we proposed a novel transfer learning model
for heart sound classification pre-trained on large scale audio
data for heart sound classification. We investigated and
compared the proposed model with other popular models pre-
trained by images, and found that the PANNs-based model
can reach the highest UAR (89.7 %) in recognising normal
or abnormal heart sounds in the open-access PhysioNet CinC
Challenge database. We can conclude that deep learning
models pre-trained on audio may help more in extracting
higher representations from heart sounds than the models
pre-trained on images. Future work should study the features
learnt from PANNs when transferring them for heart sound
recognition.
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