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Abstract—Traditional discrete-time Speech Emotion Recogni-
tion (SER) modelling techniques typically assume that an entire
speaker chunk or turn is indicative of its corresponding label. An
alternative approach is to assume emotional saliency varies over
the course of a speaker turn and use modelling techniques capable
of identifying and utilising the most emotionally salient segments,
such as those with higher emotional intensity. This strategy has
the potential to improve the accuracy of SER systems. Towards
this goal, we developed a novel hierarchical recurrent neural
network model that produces turn level embeddings for SER.
Specifically, we apply two levels of attention to learn to identify
salient emotional words in a turn as well as the more informative
frames within these words. In a set of experiments on the Interac-
tive Emotional Dyadic Motion Capture IEMOCAP) database, we
demonstrate that component-attention is more effective within
our hierarchical framework than both standard soft-attention
and conventional local-attention. Our best network, a hierarchical
component-attention network with an attention scope of seven,
achieved an Unweighted Average Recall (UAR) of 65.0 % and a
Weighted Average Recall (WAR) of 66.1 %, outperforming other
baseline attention approaches on the IEMOCAP database.

Index Terms—Hierarchical attention network, Speech emotion
recognition, Component-attention, Turn embedding

I. INTRODUCTION

Speech emotion recognition (SER), whose purpose is to
identify the emotional state of an individual from their speech,
continues to be a popular topic for researchers in human-
computer interaction (HCI) [1]-[3] and beyond. It exploits
the rich emotional content of speech, which has previously
been demonstrated by research in psychology and affective
computing [4]-[6]. Discrete SER tasks use machine learning
to label utterances, turns, or chunks of speech with a single
emotional label, such as happy, sad, or angry. Traditional
approaches do this by feeding ‘handcrafted’ audio features
from the speech signal into a suitable machine learning al-
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gorithm [7]-[9]. However, designing features that reflect the
emotional content of speech requires extensive research [10].
Furthermore, features of this kind that have been developed
to date arguably lack the specificity required for emotion
modelling.

Recently, neural network models have managed to outper-
form classic signal processing approaches in many speech-
related applications, including automatic speech recognition
(ASR) [11], [12], speech enhancement [13], [14], and speech
generation [15]. Recurrent neural networks (RNNs), which are
capable of capturing time-dependencies in sequential data, can
code speech into its high-level representations and have shown
promising results in many SER tasks [16]-[19].

A particular issue in discrete SER tasks is that each
particular chunk of speech has a single label. It is often
assumed that all input data in a given speaker turn or chunk is
indicative of its corresponding label, but this is not always
the case [20], [21]. Recent research has demonstrated that
attention mechanisms can enable machine learning models,
in particular RNNs, to focus on salient sections of their
input sequence. This approach has achieved overwhelming
success in neural language processing (NLP), especially for
neural machine translation (NMT) [22]-[24]. Moreover, the
promise of attention in identifying emotionally salient speech
segments, with the aim of improving SER performance, has
been demonstrated [25].

Hierarchical attention networks (HANs) exploit more than
one level of attention in a network with the aim of capturing
hierarchical structures present in the data being modelled [26].
They have been shown to be superior to non-hierarchical
networks in a range of tasks, e. g., in NLP, including document
classification [26], document summarisation [27], sentiment
analysis and sentiment detection [28]. The attention mech-
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Fig. 1. An overview of the proposed two-level hierarchical attention network. The frame-level encoder processes input word spectra via a bidirectional long
short-term memory (LSTM), followed by the frame-level attention layer to produce word embeddings. The word-level encoder processes the learnt word
embeddings, which is followed by the word-level attention layer, which produces turn embeddings.

anisms used in these works identified the most informative
sentences and the most important words in a given sentence
with respect to the networks’ learning objectives. However,
the use of HANSs for speech-related tasks, in discrete SER in
particular, has not yet been fully explored.

Since a speaker turn or chunk consists of multiple words
and each word corresponds to multiple speech frames, a two-
level HAN architecture is expected to be more effective than
a single-level attentive RNN [25]. Using this arrangement, the
first level can learn word embeddings from the corresponding
frames of low-level descriptors (LLDs). Based on the learnt
word embeddings, the second level can code the speaker turn
into turn embeddings.

Within a hierarchical approach, several attention mecha-
nisms exist that can be exploited. Conventional attention mech-
anisms, such as standard soft-attention and local-attention, as
used in sequence modelling, learn to assign attention weights
across time [29]. They take no account of any informative
distribution across the high-level features learnt by the RNN
at each time-step.

To address this issue, we built a hierarchical component-
attention based RNN for SER, referred to herein as HiCAN.
To the best of our knowledge, this is the first time this approach
has been applied to a discrete SER task. The rest of this paper
is laid out as follows: Section II describes the structure of
HiCAN, Section III describes the experiments used to test the
approach and an accompanying evaluation, and Section IV
details conclusions based on our results.

II. PROPOSED METHODOLOGY

Our hierarchical component-attention network consists of
two encoding levels to produce word embedding and turn

embedding. Each level comprises a bidirectional long short-
term memory (LSTM) layer and a component-attention layer.
We split each input turn into individual words as described
in Section III-C. Using the spectrogram of a turn, we identify
and isolate the frames belonging to each word within the turn;
these frames are referred to herein as word spectra. The first
level of our network then processes the word spectra as the
input and produces word embeddings. The second level learns
a turn embedding based on the learnt word embeddings as the
context representation of the turn.

Component-attention mechanisms are applied for both lev-
els, referred to as frame-level attention and word-level at-
tention, to place attention weights across both the time and
frequency dimensions of the spectra. The framework of the
network is shown in Figure 1. In the following section, we
provide an overview of the hierarchical attention network and
derive the component-attention mechanism step by step.

A. Overview of HAN

Suppose a turn (T) consists of n words, and each word
contains m frames. Let T = (wy, wa, ...w, ), where w;(1 <
i < n) denotes the ith word, and w; = (f;1, fi.2s--fim)s
where f;+(1 <t <m) is a d-dimensional vector representing
the tth frame in the ith word. The input word w; is encoded
by concatenating the forward LSTM and the backward LSTM
outputs reads from f; 1 to f; p:

hiy = DSTM (fi, hig_1) (1)
hriw = LSTM (fi, hig_1) @)

i = [ishis] ©)

)



An attention mechanism takes the hidden state as input and
yields the frame-level attention weights:

QG = Att (hi,t) . (4)

We then obtain the word embedding as the attention weighted
sum of hidden states:

w; = Zai,thi,t- )
t

Turn embeddings are obtained analogously given the word
embeddings w; to w,; the concatenation of the bidirectional
LSTM is obtained by

hy = LSTM (w, hi1) (©)
hs = LSTM (w;, hi 1) ™
hi = [his hal ®)
with the general form of word-level attention weights
a; = Att (h;) . 9)

The turn embedding s is a high level representation of the turn
and is formulated as
S = Z Oélhl

Finally, the turn embedding is projected onto the discrete
emotion categories through a fully-connected layer.

As the choice of attention mechanism can influence SER
performance, we investigated standard soft-attention, local-
attention, and component-attention, as described in the fol-
lowing sections.

(10)

B. Standard Soft-attention

As introduced in [23] for an RNN encoder-decoder
sequence-to-sequence model, attention weights are determined
by the compatibility between key, the encoder hidden states,
and query, the previous hidden state of the decoder. As discrete
SER is a sequence-to-one modelling task, the query is set to be
an external trainable context vector e,. The alignment score
between the encoder hidden states and the query determine
the attention weights. If we denote the complete output of a
bidirectional LSTM as

H = (h1,h,...hy) . (11)

The alignment score and attention weights can be calculated
as

€[1,n] = tanh(W H + b), (12)

explefy 6q) "

= S expleTey) 42

where we use the subscripts in [, ;) *THERE IS NO x OR

a IN THESE EQUATIONS?* to denote [T, Zqt1,..-2p). W

and b are trainable parameters, and e, is the trainable query
vector with the same dimension as e;(1 <i < n).

Note, when e, is not employed as a query as in [27],

[30], but as a normal trainable vector, the above attention

mechanism is also regarded as a kind of self-attention, because
computation of the attention weights only depends on the
encoder hidden states. This self-attention is different from
the one defined in [22], which also requires no external
context information to train attention weights, but conducts
connections between two source positions directly.

C. Local-attention

Unlike standard soft-attention, which places attention on
all hidden states to derive a context vector, local-attention
only places attention on a small subset of the hidden states.
Shrinking the attention scope enhances the attention to focus
on local information [29]. For discrete SER, local attention
has the potential to focus on particular regions of a speech
signal that are more emotionally salient. Local attention is
implemented using a sliding window, with the attention weight
being inferred from the current target state and the source
states within the window. Specifically,

€ft—r t+r] = @nh(WHy_ ;417 + ) (14)
. exp(el .. eq)
Glpr i) = Lo (15)

ST Pl o)

where the centre value ¢; is the alignment score for time-step
t and the other 27 values are ignored.

After acquiring the alignment scores for all time-steps by
shifting sliding window, softmax is applied again to keep the
sum of attention values equal to 1,

) = exp(&[l,rj]) '

7 2. exp(as)
Note that e, in Equation (15) is different from that described
for standard soft-attention in the sense of scope view. The

local-attention e, is trained to be the external query vector,
which has the same scale as the local-attention scope.

(16)

D. Component-attention

Similar to [31], the component-attention model proposed
here considers a small subsequence of hidden features rather
than the entire sequence, as is the case for local-attention.
In addition, instead of applying the same attention weight to
all features extracted from one frame, we allocate attention
weights to each spatial feature component of the frame. This
strategy results in an attention vector being generated for each
frame, rather than just a single attention value.

The weights of each component in the component-attention

mechanism are computed for each frame as follows:
Cft—rttr),f = tanh(WHpy_o o0 ¢ + D), (I7)

where f denotes the fth feature component. We then nor-
malise these weights across the time-step axis:
T
& eXP(Clt—r,r47],7)
t—7t+7],f — T
>t exp(

; (18)
li—rtrl.f)

where & ¢ is the centre alignment vector and the other align-
ment vectors are neglected. Finally, all the resulting alignment
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vectors are normalised across the time-step axis a second time
as
- exp(a[1,n). 1)
17/[‘)/ - = __ /~ N
Zs exp(asaf)

Meanwhile, since features are individually treated in
component-attention, the final output of the attention mech-
anism s can be computed similar to Equations (5) and (10):

§ = Zatf X Mg 5.
t

19)

(20)

The component-attention mechanism enables our system to
learn individual attentions for all components in the LSTM
hidden states. The component-attention is therefore more de-
tailed than the attention learnt by the soft and local approaches,
which only focus on the importance of a hidden state as a
whole. This extra characteristic should enhance the accuracy
of our HICAN system as it has the versatility to automatically
emphasise which components from which hidden states are
more informative.

III. EXPERIMENTS AND RESULTS

We conducted a series of experiments to evaluate the
effectiveness of our proposed model. Its performance was
compared with state-of-the-art baseline approaches in an SER
task using the Interactive Emotional Dyadic Motion Capture
(IEMOCAP) database [32].

A. Data Description

IEMOCAP is a corpus comprising audio-visual data and
accompanying transcriptions from recordings of paired actors
in five dyadic sessions [32]. Emotional responses were elicited
from the actors through the use of scripts and improvisation. In
our experiments, we only used the improvised speech in order
to reduce the potentially confounding effect of semantic infor-
mation disturbance. In a limitation of the improvised speech
dataset, however, the distribution of these instances across
the five annotated emotion classes is heavily unbalanced. We
therefore incorporated the excited turns into the happy class,
as in [33], resulting in four emotion categories for training and
evaluation: angry, happy, sad, and neutral (Figure 2).

B. Baselines

We used two baseline systems from the literature and two of
our own systems to assess the performance of our model. The
first of the four, described in [25], was a single-level (frame-
level) local-attention network based on an RNN architecture,
which the authors tested on the IEMOCAP dataset for SER.
The second baseline was a hierarchical soft-attention network,
described in [34]. For comparability, we took the results from
their audio-only model. The third and fourth baselines were
hierarchical attention networks with standard soft-attention
(HiSAN) and local-attention (HiLAN), respectively.

C. Experimental Setup

We used several pre-processing steps to prepare the speech
data for input to our model, such that all inputs had a uniform
structure, consisted of the same number of words and each
word comprised the same number of frames. Firstly, we di-
vided the recordings of the speaker turns into individual words,
according to the word boundaries provided by IEMOCAP. The
boundaries were estimated using a forced-alignment technique.
The log magnitude spectrum was then extracted from each of
the word samples by applying a short-time Fourier transform
(STFT), using a 25 ms Hanning window shifted by 10 ms. The
sampling frequency of the audio files was 16kHz, therefore
each frame consisted of 400 samples, and its resulting feature
vector comprised 201 frequencies. To make all words and
sentences the same length, we zero-padded all sequences to
the overall maximum length of the words from all speaker
turns.

The two bidirectional LSTMs used in our model contained
600 hidden units, 300 for each direction. Additionally, we
applied /[2-normalisation when implementing LSTM to reduce
the potential issue of over-fitting. All trainable parameters in
the model were initialised by truncated normal initialisers.
In the local-attention and component-attention models, the
hyperparameter 7 was tuned with three different settings, 3, 5
and 7, which led to attention scopes of 7, 11 and 15 (2x7+1,
including the centre frame and its left and right-side 7 frames).

During the training phase, the batch size was set to 32, and
the network parameters were optimised by minimising cross-
entropy loss between the predicted labels and the ground-truth
labels, using the Adam optimiser with $; = 0.9, S = 0.999,
and a fixed learning rate of 0.01.

We adopted leave-one-session-out  cross-validation
(LOSOCV) to train and evaluate our model, which is
the standard training and evaluation method used on
IEMOCAP. For each round of cross-validation, four of the
total five sessions in IEMOCAP were used for training.
Using the remaining session, the turns from one speaker
was served as development set for determining the network
hyper-parameters, and the remaining turns were used as the
test set.

D. Results and Discussion

We used the unweighted average recall (UAR) as an eval-
uation metric in this work, as it is suitable for assessing
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Fig. 3. Confusion matrix results of hierarchical attention network with
different attention strategy

TABLE I
COMPARISON OF UNWEIGHTED AVERAGE RECALL (UAR) AND WEIGHTED
AVERAGE RECALL (WAR) EVALUATION METRICS. HISAN, HILAN, AND
HICAN ARE HIERARCHICAL ATTENTION NETWORKS WITH STANDARD
SOFT-ATTENTION, LOCAL-ATTENTION AND COMPONENT-ATTENTION,
RESPECTIVELY.

Network Attention Scope UAR WAR
1-level RNN+Attention [25] global 61.8% 56.3%
Baseline HiSAN [34] global - 62.5%
HiSAN global 62.0%  62.6%
7 61.6%  62.9%
HiLAN 11 623%  64.4%
15 62.5%  63.4%
7 65.0% 66.1%
HiCAN 11 64.3%  65.3%
15 64.5%  63.9%

performance in unweighted distributions. For a fair comparison
with the HiSAN baseline, the weighted average recall (WAR)
was also calculated.

The hierarchical attention networks largely outperformed
the single-level attentive RNN, which achieved a 61.8% UAR
and a 56.3% WAR (Table I). Comparing UAR values, the
HiLAN with the two higher attention scope settings out-
performed the HiSAN implemented in [34] and this work.
Comparing WAR values, the best performing HiLAN, which
had an attention scope of 11, achieved an improvement of
1.8 percentage points over HiISAN. HiCAN performed best,
achieving optimal performance of a UAR of 65.0% and a
WAR of 66.1% when its attention scope was reduced to 7.
This demonstrated a significant improvement over the baseline
systems (p < 0.05) in a one-tailed z-test.

The classification results of hierarchical attention networks
with different attention strategies and their best scope settings
are depicted in the confusion matrices in Fig. 3. Compared
to classic soft attention, the hierarchical attention network
with local attention enhances the recognition of ‘neutral’
emotion. However, with the increase of correct classification of
‘neutral’, more ‘happy’ turns were misclassified into ‘neutral’,
leading to a worse classification rate of ‘happy’. HiCAN
achieved the best classification accuracy for ‘neutral’ and
‘anger’ emotions, and performed slightly worse than HiSAN
for ‘happy’ and ‘sad’. In addition, the ‘sad’ turns are the most
accurately classified, achieving an accuracy higher than the
average of the four emotion classes.

IV. CONCLUSIONS

We have proposed a hierarchical component-attention net-
work for SER. The hierarchical architecture models the
structure of speaker turns, and the frame- and word-level
component-attention enable the network to focus on the salient
time steps and features for discrete SER. Our proposed model
considerably outperformed the existing baseline models in
experiments. However, a potential limitation of component-
attention is increased computations due to the generation of
more trainable weights and hyperparameters. Moreover, as
this approach requires the accurate identification of word



boundaries using forced-alignment, its performance might be
limited by the associated automatic speech recognition (ASR)
system. In our future work, we will explore the hierarchical
component-attention network based turn embedding for con-
tinuous emotion recognition.
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