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ABSTRACT
In this paper, we propose an adversarial network implementation

for speech emotion conversion as a data augmentation method, vali-
dated by a multi-class speech affect recognition task. In our setting,
we do not assume the availability of parallel data, and we addition-
ally make it a priority to exploit as much as possible the available
training data by adopting a cycle-consistent, class-conditional gen-
erative adversarial network with an auxiliary domain classifier. Our
generated samples are valuable for data augmentation, achieving a
corresponding 2 % and 6 % absolute increase in Micro- and Macro-
F1 compared to the baseline in a 3-class classification paradigm us-
ing a deep, end-to-end network. We finally perform a human per-
ception evaluation of the samples, through which we conclude that
our samples are indicative of their target emotion, albeit showing
a tendency for confusion in cases where the emotional attribute of
valence and arousal are inconsistent.

Index Terms— adversarial networks, data augmentation, end-
to-end affective computing, emotional speech synthesis

1. INTRODUCTION

An individual’s emotional state is among many human attributes
which are transferred via the speech signal [1], and the ability to
correctly recover the carried emotion is typically an unconscious task
for most humans [2]. Despite this, machine detection of speech emo-
tion is an unresolved domain with many challenges. The availability
of good quality annotated data is one major limitation, as the process
can have high monetary and time costs, requiring thorough planning
[3]. Recent developments in deep, end-to-end models that do not de-
pend on domain knowledge for feature design are promising [4, 5],
but such models are even more dependent on dataset sizes for learn-
ing features tailored to the case. Training a generative model on a
well-annotated training set in order to augment the original set has
shown to offer improvement for prediction results [6], suggesting a
promising way of addressing this challenge. Data augmentation via
generative adversarial networks (GANs) [7] may offer a solution for
this, and has been an expanding topic across domains of research
such as vision [8] and affective computing [9].

1.1. Related Work

Generation of emotional speech is a challenging research area that
has been approached in multiple ways: dedicated models for each
emotion [10], speaker [11] or each emotion-to-emotion transforma-
tion [12] have been used, or sometimes [10], [13], [14], the authors
make the very strong assumption of the availability of a parallel
dataset, i. e., one where each source sample is paired with a ground

truth target sample. We do not make this assumption as it requires
multiple times the number of annotated samples and we also aim
to train a unified model with all available data, a resource that is
already severely budgeted.

The cycle-consistency loss [15] was devised in the context of
GANs to overcome the need for parallel datasets. One attempts to
minimise a measure of distance between a real sample and a sample
generated by converting the same real sample to a target class and
then converting it back to the original. A CycleGAN has been used
for augmenting an affective computing dataset before, with positive
results [9]. The StarGAN [16] was an improvement upon the Cycle-
GAN [15] in that it requires only one generator/discriminator pair
that is parameterised by class (instead of a dedicated pair for each
class-to-class transformation as in a CycleGan [16]) and additionally
a domain classifier that verifies the class correctness of both real and
converted samples. The StarGAN framework has been used for gen-
erating images evocative of emotion [17] and also for speaker voice
conversion [18]. The StarGAN we use is similar to the one in [18],
albeit adapted to the particularities of emotional speech conversion.

1.2. Contributions

Many humans have the ability to manipulate their emotional expres-
sion, whilst keeping the lexical structure unchanged [19]. In this
study, we utilise a StarGAN that transforms real emotive speech
samples into different target emotions. This way, instead of apply-
ing computational perturbations on the signal (e. g., as proposed in
[20] or the addition of jitter in [5]), we utilise the available emo-
tion modelling information in the training dataset to bootstrap our
original samples into retaining as much as possible speech content
and mannerisms, but alter the carried emotion. We take great care
in evaluating the quality of the generated samples and we perform a
two-fold evaluation: a) we use the generated samples for data aug-
mentation in a multi-class affective computing task and b) we per-
form a human evaluation of a set of generated samples to ascertain
whether the StarGAN is indeed learning to imbue emotion into the
samples instead of learning to trick the classifiers (e. g., due to mode
collapse). For the purpose of reproducibility, we will provide an im-
plementation of the proposed method in the project’s GitHub page
upon acceptance, to preserve originality.

2. EMOTIONAL SPEECH STARGAN

StarGAN [17] is an adversarial network model for non-parallel data,
that allows for multi-class to multi-class domain conversion. The
generator G, given an input sample x and a target domain label c,
outputs a translated version of x, conditioned on c. The discrimina-
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tor D, given a real or fake sample x with label c, outputs the prob-
ability of x being real. The input of the classifier is either a real or
fake sample x and its output is the softmax probability of the sample
being of the correct class. The loss functions for G, D and C are:

LG = LG
adv + λclsLG

cls + λcycLcyc + λidLid, (1a)

LD = −LD
adv, (1b)

LC = LC
cls, (1c)

where L{G,D}
adv , L{G,C}

cls , Lcyc and Lid are the adversarial loss, aux-
iliary classifier loss for a real or fake input sample, cycle-consistency
loss and identity loss, respectively, and λcls, λcyc and λid are reg-
ularisation parameters for the losses. The superscripts denote the
relevant component. The losses are defined as follows:

LD
adv = −Ex∈Xreal [log(D(x, cx)]

− Ex∈Xreal,c∈C [log(1−D(G(x, c), c)],
(2a)

LG
adv = −Ex∈Xreal,c∈C [log(D(G(x, c), c)], (2b)

LC
cls = −Ex∈Xreal,c∈C [log(C(x)], (2c)

LG
cls = −Ex∈Xreal,c∈C [log(C(G(x, c))], (2d)

Lcyc = Ex∈Xreal,c
′∈C,c′ 6=c∈C [||x−G(G(x, c), c′)||1], (2e)

Lid = Ex∈Xreal,c∈C [||x−G(x, c)||1], (2f)

whereXreal is the set of real data in the training partition, and || · ||1
represents the L1 vector norm. Lcls is the auxiliary classification
loss for the set of either real or fake samples. Lcyc is the cycle-
consistency loss and Lid is the identity loss, i. e., a measure of dis-
tance between the source sample and itself after being converted to
the source class. The classifier, discriminator and generator are up-
dated every 1-1-3 epochs, respectively. We follow the model archi-
tecture as given in [18] and use Wasserstein gradient penalties [21].

2.1. Speech Sample Conversion

The harmonic frequency content contains emotional indices [22, 1];
thus, we opted for our StarGAN to learn how to transform the spec-
tral envelope, approximated by a set of 36 cepstral coefficients,
which are then min-max normalised. In order to perform a source-
target conversion, we use the WORLD [23] vocoder decomposition
and synthesis functions. For each source sample, we extract three
feature groups: a) aperiodicity parameters, b) the 36 cepstral co-
efficients, and c) the fundamental frequency (f0) contour. Before
synthesising, we transform the cepstral coefficients using our trained
StarGAN and also the logarithm Gaussian normalised transforma-
tion (LGNT) [24] for the f0 contour, as in [18] for voice conversion,
which requires the calculation of first order statistics of log(f0) for
each speaker in the dataset. In our paradigm for emotion conversion,
there are both different speakers and emotions, so we do not want
to average across speakers in order to calculate the statistics per
emotion. If, instead, we calculate them per emotion per speaker,
then we rely on speaker identity information for conversion, which
makes the process inapplicable to new speakers in testing.

We propose the relative LGNT of the f0 contour for converting
an utterance from emotion e1 to emotion e2:

log(f0new) = log(f0)−µ(f0)
σ(f0) + ∆σe1,e2

σ(f0)
+µ(f0)+∆µe1,e2 ,

(3)

(a) sad original (b) angry converted (c) sad converted (d) happy converted

(e) happy original (f) angry converted (g) sad converted (h) happy converted

Fig. 1: Spectrogram representation of two source speech ut-
terances from the IEMOCAP database and the conversions to
all three target emotions, including the original. Male voice
(Ses03M impro06 M008) is shown in the top row and female
voice (Ses03M impro07 F000) in the lower.

where µ(f0) and σ(f0) are the within-utterance mean and variance
of log(f0). ∆µe1,e2 is the average difference in the mean log(f0)
between emotions e1 and e2 and is calculated by finding the average
difference in the mean log(f0) value between utterances of emotion
e1 and emotion e2 for each speaker independently, then averaging.
∆σe1,e2 is the average change in the variance of log(f0) between
utterances of emotion e1 and emotion e2.

3. THE IEMOCAP DATASET

We use the widely applied Interactive Emotional dyadic MOtion
CAPture (IEMOCAP) database, which contains approximately 12
hours of audio-visual recordings of acted emotion in five sessions;
a different pair of experienced actors interacting within each [25].
The recordings are segmented in utterances and annotated by at least
two different annotators as being examples of five emotions; includ-
ing neutral. We utilise utterances both from scripted and improvised
recordings and retain only the ones for which a majority vote exists
such that a ground truth label can be defined. The sampling rate of
all recordings is equal to 16 kHz.

4. QUANTITATIVE EVALUATION

We evaluate quantitatively the quality of the samples generated by
StarGAN, by using them in two multi-class emotion classification
experiments using a variant of a state-of-the-art, deep, end-to-end
model [4]. A three-class emotion (angry-sad-happy) StarGAN is
trained with manual stopping when the domain classifier loss reaches
a plateau, with sessions 1-3 used for training. Afterwards, each train-
ing sample is converted into all 3 emotions, including the original.
The spectrograms of such generated samples1 in comparison to the
original are depicted in Figure 1.

As for end-to-end model training, we normalise all utterances
to zero mean and unit standard deviation, calculating these statis-
tics from sessions 1-3. The normalised raw waveform is then input

1The converted samples can be found in the project page:
https://github.com/glam-imperial/EmotionalConversionStarGAN
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Train Val Test
∑

Happy 387 65 143 595
Sad 696 143 245 1,084
Angry 606 327 170 1,103∑

1,689 535 558 4,040

Table 1: Speaker independent Train, (Val)idation, and Test partitions
used for the baseline method in our emotion classification with data
augmentation experiment. Created from the IEMOCAP dataset.

Train on %Micro-F1 %Macro-F1
Sessions 1-3 (79.5) 61.6 (56.8) 50.4
Converted (53.2) 60.0 (45.4) 51.7
Sessions 1-3 + Converted (65.1) 63.7 (55.9) 56.4

Table 2: Results of the end-to-end emotion classification with data
augmentation experiment on the IEMOCAP dataset. Validation and
testing were performed on sessions 4 and 5, respectively. We report
both validation (in parentheses) and testing set measure values.

into a temporal pattern extraction component, which is then followed
by a sequence modelling component. The former consists of three
stacked one-dimensional convolutional neural network (CNN) lay-
ers and the latter of two stacked bidirectional, long short-term mem-
ory recurrent neural network (LSTM-RNN) layers. The number of
filters and widths of the convolutional layers are 64-128-256 and 8-
6-6, respectively, and each one is followed by a max pooling layer
that undersamples at a rate and stride of 10-8-8. The hidden units of
both the RNN layers are equal to 256. The hidden state sequences
produced by the two directional RNNs are merged by summation. In
the study performed in [4], the authors utilised an attention layer for
merging the hidden state sequence, but we achieved slightly better
results by applying global max pooling. Finally we pass the result
through a dense layer with 3 outputs to produce the logits. We use
the softmax cross-entropy loss for training. For evaluation we opt
for two means of averaging the F1 score, i. e., the harmonic mean of
precision and recall: a) Micro-F1, by calculating the harmonic mean
of the overall precision and recall scores and b) Macro-F1, by per-
forming an unweighted average of class-specific precision and recall
scores. We evaluate test set performance with the best model based
on the validation set with respect to the Macro-F1 score, in order to
place equal emphasis on each of the classes, regardless of respec-
tive number of samples and additionally report Micro-F1. We set the
batch size equal to 10. All results are averaged across 10 trials.

4.1. StarGAN for Data Augmentation

We assess whether the generated samples can be used for the pur-
pose of increasing the predictive performance in emotion classifica-
tion via data augmentation. For the purpose of this experiment, as
a baseline, we treat the IEMOCAP sessions 1-3 as the training set,
and sessions 4 and 5 as validation and testing, respectively, conform-
ing to the study performed in [4]. In Table 1, we summarise the class
sizes for the partitions. We compare with the case of training only on
the StarGAN generated data based on the sessions 1-3 as a training
set and one final time using both the original and the generated train-
ing sets. We denote the three aforementioned methods as Sessions
1-3, Converted, and Sessions 1-3+Converted, respectively. We want
the model to learn from a comparatively similar amount of data, so
the corresponding number of epochs for which we train each method
is 40, 14, and 10. The results are summarised in Table 2.

Test on %Micro-F1 %Macro-F1
Sessions 1-3 (75.4) 67.5 (60.7) 58.9
Converted (75.4) 48.9 (60.4) 43.1

Table 3: Results of the end-to-end emotion classification of the gen-
erated samples experiment on the IEMOCAP dataset. Training and
validation were performed on sessions 5 and 4, respectively. We re-
port both validation (in parentheses) and testing set measure values.
The converted samples are correctly classified to a degree.

4.2. Machine Classification of Generated Samples

We now look at this evaluation from an opposite standpoint and mea-
sure the testing predictive performance of the end-to-end classifier
on the converted samples. Here, sessions 5 and 4 are used as the
training and validation sets, respectively, and the generated samples
from the StarGAN model trained using sessions 1-3 are used for test-
ing. We also test on the original session 1-3 data. We train for 100
epochs in order to adhere to the amount of samples seen by the model
in the previous subsection. The results are summarised in Table 3.

4.3. Quantitative Evaluation Results & Discussion

In the data augmentation experiment, we observe that we achieve
absolute improvements of 2 % and 6 % in Micro- and Macro-F1, re-
spectively. In the presence of class imbalance, we consider Macro-
F1 to be the more meaningful performance measure, as it places
equal weight for each class in the averaging of F1 scores. How-
ever, Micro-F1 is also important, and with this kind of augmentation
we observe a larger portion of correctly classified samples overall
and strong indications that this behaviour holds with respect to each
class individually. By training the model only on the generated sam-
ples, we note that even though the Micro-F1 score is lower than the
baseline, it is still not insignificant. Furthermore, we achieve higher
Macro-F1, which may at least partially be justified by the fact that
the training set is now perfectly balanced.

In the reverse experiment, we achieve much higher than random
or majority-vote performance when testing on the converted samples
based on sessions 1-3, which is another quantitative indication that
these samples carry emotion information, although the performance
is lower than when testing on the original data from 1-3. On its own,
this might be indicative that the generated data are sampled from a
different latent probability distribution than the original. However,
their great usefulness in data augmentation, even when solely used,
shows us that there is valuable emotion information within this set.

5. QUALITATIVE EVALUATION

Given that emotion is typically perceived on a human-specific, sub-
jective basis, we perform a human evaluation to observe how effec-
tively the converted audio samples convey their intended emotions.
27 fluent English-speaking participants were asked to evaluate 70
audio samples; 30 source samples, 10 generated by a two-class emo-
tion model, and 30 from a three-class emotion model, trained on all
the IEMOCAP data.

5.1. Human Evaluation Experimental Design

For each sample, the participants were given a pair of emotions
(i. e., angry and sad) and asked to rate it between two emotions on
a Likert scale from -2 to 2, the extremes corresponding to source
class and target class. For example, if the angry-sad pair is perceived
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as definitely angry or somewhat sad, these correspond to ratings of
-2 and 1. Overall, the ordering of the emotion pair and sample order
was randomised to remove any bias. Firstly, the subject is provided
with a source sample, e. g., of the angry class and a paired emotion
is given as well. There were 5 questions for the pair angry-sad and
5 questions for angry-happy, and then accordingly for utterances of
the sad and happy classes. Next, the participants were asked the
same questions but using the converted versions of each sample. For
example, if a listener rated an angry source sample on the scale be-
tween angry-happy, then the next sample provided would be angry
converted to happy. This process was applied for both the two-class
emotion model and the three-class emotion model samples. We at-
tempted to assess the degree to which samples with altered perceived
emotions will be rated further towards the target end of the scale.

5.2. Human Evaluation Results & Discussion

The results for this evaluation are shown in Figure 2. For each emo-
tion pair, the source emotion is−2 on the y-axis, and the target emo-
tion is 2. For example, the original samples score towards the nega-
tive end of the scale as no conversion has been applied there.

The two-class emotion model (angry and sad) shows a tendency
towards successful conversions. We note that the scores skew to-
wards the positive end of the scale, showing that, on average, the
listeners were able to correctly identify the intended emotion. We
observe similar performance for angry-sad and sad-angry, albeit
slightly better for the former.

The three-class emotion model (angry, sad, and happy) actually
performs better than the two-class emotion model for the two com-
mon transformations between them, i. e., angry-sad, and sad-angry.
It scores 0.12 points higher on angry-sad and 0.33 higher on sad-
angry, indicating that the participants generally found the three-class
emotion model samples represented the intended target emotions
better than those of the two-class model. Our hypothesis for this be-
haviour is that it has to do with the overall increase in training data
for the three-class emotion model: while it had the same amount
of training samples of the sad and angry classes, the StarGAN was
also trained on the happy samples, which could be the reason for the
higher emotion fidelity performance. When converting between the
remaining emotion pairs, the three-class emotion model has mixed
results. It struggles when converting sad-happy as seen by the score
of−1.27, meaning that most participants thought the converted sam-
ples were still sad. On the other hand, the score for converting from
happy to sad is 0.77, the highest of all emotion pairs. For both angry-
happy and happy-angry, the converted samples were generally per-
ceived as the same emotion as the source clip. The results for happy-
angry are particularly interesting, as even the source happy samples
were perceived by the participants as less happy, and towards angry,
scoring an average of -0.56 on the scale. Both of these emotions are
on the high arousal half of the two-dimensional emotion circumplex,
and this type of misclassification between them has been previously
observed in a computational comparison based on acoustic features
[22]. The above results indicate a certain difficulty on the part of the
model for converting to high arousal samples, if the valence content
needs to be changed as well.

We note that both for the more and the less successful conver-
sions, the magnitudes of the scores compared to the baselines are
lower. It is noteworthy that something similar happened in our ma-
chine classification of the coverted samples, when compared to the
source samples (see subsection 4.2). One explanation for this is that
the converted samples suffer from lower audio quality where most of
the words cannot be interpreted clearly, and therefore lexical mean-
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Fig. 2: Mean score of the human perception evaluation experiment.
From a 5 point Likert scale (-2 = Definitely the source emotion, and
+2 = Definitely the target emotion), the average scores for each emo-
tion pair are depicted. The scores for the baseline (i. e., the uncon-
verted samples), along with the the two-class emotion model, as well
as the three-class emotion model are shown side-by-side for each
emotion pair. We expect baseline samples to have negative scores,
whereas successfully converted samples should have positive scores.

ing cannot be used as an additional guide, thus leading to less confi-
dent ratings and misclassifications. On the other hand, even for the
less successful conversions, this might be an indication that the con-
version process has at least somewhat altered the emotional tone of
the audio in the intended way.

6. CONCLUSION & FUTURE WORK

In this paper we have applied a StarGAN for emotional speech con-
version with the goal of improving performance in a deep, end-to-
end 3-class classification experiment. We have additionally exam-
ined the quality of the samples through a human perception exper-
iment. The insights gathered show that samples generated by our
approach do indeed carry valuable emotion indices that contribute
to the achievement of higher predictive performance. The samples
are to a lesser degree successful in conveying the target emotion to
humans, as we have identified a tendency for the model to confuse
e. g., high arousal emotions as targets.

One possible avenue for future work would be the substitution of
the StarGAN components such that we move further away from the
need for feature engineering. For example, in [9] the authors propose
the usage of a CycleGAN that is applied on spectrograms and the
recent developments in applying networks on the raw waveform [4,
5] make this a compelling route for exploration. In this study, we
formalised the problem as a 3-class classification task, but seeing
as in our human perception experiment we saw indications that the
quality of generated samples is correlated with the arousal-valence
dimension values, it might hold value to work directly on this two-
dimensional circumplex, or even adopt a multi-task framework to
use all the available annotation information.
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