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ABSTRACT
Approaches toward ordinal speech emotion recognition (SER)
tasks are commonly based on the categorical classification al-
gorithms, where the rank-order emotions are arbitrarily treated
as independent categories. To employ the ordinal information
between emotional ranks, we propose to model the ordinal
SER tasks under a COnsistent RAnk Logits (CORAL) based
deep learning framework. Specifically, a multi-class ordinal
SER task is transformed into a series of binary SER sub-tasks
predicting whether an utterance’s emotion is larger than a rank.
All the sub-tasks are jointly solved by one single network with a
mislabelling cost defined as the the sum of the individual cross-
entropy loss for each sub-task. Having the VGGish as our basic
network structure, via minimizing above CORAL based cost, a
VGGish-CORAL network is implemented in this contribution.
Experimental results on a real-world call center dataset and the
widely used IEMOCAP corpus demonstrate the effectiveness
of VGGish-CORAL compared to the categorical VGGish.

Index Terms— speech emotion recognition, ordinal clas-
sification, consistent rank logits, VGGish

1. INTRODUCTION

As a frontline function, customer call support is of great im-
portance for increasing a company’s customer retention. To
provide high-quality support, agents should not only answer
customers’ product-related questions professionally, but also
address customers’ negative emotions decently. Nowadays,
with the rapid progression of artificial intelligence technology,
there have been a growing trend to apply speech emotion recog-
nition (SER) technique to estimate emotions of customers or
agents from their conversations, thereby to help provide better
call support [1, 2, 3, 4, 5]. To the same end, in this paper,
we explore methods for developing an emotion estimator on
real-world call center data using acoustic cues. Noticeably,
we place special focus on detecting customers’ rank-order
negative behaviors. In contrast with the conventional categor-
ical SER tasks that classify affective behaviors into nominal
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categories (e.g., Happy, Sad, Angry, etc.) [6, 7, 8], or the
continuous SER tasks that recognize emotional behaviors de-
scribed by real-valued attributes (e.g., arousal, valence, etc.)
[9, 10, 11], we consider actually the ordinal SER task that rec-
ognizes emotional behaviors into ordinal labels measured on
an interval scale (e.g., 1-Non-negative, 2-Somewhat Negative,
3-Obviously Negative in this work).

Among previous works, ordinal SER tasks were often cast
as categorical classification problems [5, 12, 13, 14], where
the class labels were implicitly assumed to be independent
to one another, despite they had a strong ordinal relationship
in fact. Gradually, studies exploiting ordinal information in
SER appeared in the literature [15, 16, 17, 18, 19]. A popular
strategy in these studies was building a ranker modified from
well-known classification algorithms, such as Support Vector
Machine (SVM) based rankers in [17, 18] and Deep Neural
Network (DNN) based ranker in [19], to predict the rank or-
der of a set of samples on each emotional attribute. Indeed,
and although this strategy can predict the relative emotional
ranking between different samples, it cannot classify a sam-
ple’s emotion into an absolute rank. Given this scenario, it is
necessary to develop ordinal SER approaches that allow the
utilization of ordinal relationship between emotion labels to
improve prediction performance, plus the output of pre-set
ranks to tell the absolute emotional levels at the same time.

Early works focusing on ordinal classification can be found
in other domains [20, 21, 22]. Among them, the ordinal classi-
fication problem was normally reduced into a series of simpler
binary classification sub-problems. A benefit of this kind of hy-
brid approaches is that new generalization bounds for ordinal
classification can be easily derived from known bounds for bi-
nary classification, whereas a shortcoming is the unguaranteed
consistency among binary classifiers, that is, the predictions
for individual binary tasks can disagree. Lately, there were
works that explore end-to-end approaches based on DNNs
to address the ordinal classification problems and achieved
effective performance in age estimation tasks [23, 24]. One ap-
proach worth noting is the so-called COnsistent RAnk Logits
(CORAL) method. As approved in [24], in comparison with
the other hybrid approaches, CORAL can not only simplify
the model building procedure, but also theoretically guarantee
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the prediction consistency between sub-classification tasks.
Thus, in this paper, we aim to explore the use of CORAL

based ordinal learning in estimating ordinal emotions. First,
we choose the Audio Set VGGish [25] to be our basic network
structure. Then, we utilize the CORAL formulation to guide
label encoding and network learning. Specifically, instead of
the typical one-hot label encoding for categorical classification,
our emotional labels are encoded following a non-orthogonal
recipe to reflect ranks. Taking advantage of the encoded labels,
the conjunction of each output unit and all the previous lay-
ers can be viewed as a distinct binary SER classifier which is
trained according to whether the emotional rank of an utterance
is greater than a certain level. These binary SER classifiers
share the same weight parameters excluding the bias units of
the final layer. Such setting combined with a cross entropy
based loss ensures greater penalty to larger classification errors,
as well as the rank consistency among the binary classifiers.
Moreover, a task importance weighting strategy is employed
during the loss calculation in order to relief the data imbalance
issue. Finally, the effectiveness is validated in a freshly col-
lected middle-scale real-world call center database, together
with the widely employed IEMOCAP corpus [26].

2. RELATED WORK

So far, less attention was paid on the ordinal SER tasks.
Schuller et al.’s work in [12] and Deng et al.’s work in [13]
can be recognized as bi-ordinal SER tasks actually. The for-
mer mapped emotion categories to Low/High arousal/valence
and used SVM as the classifier. The latter mapped emotions
to Negative/Positive valence and trained a sparse autoencoder
for classification. In addition, there were also works coping
with multi-class ordinal SER which mainly existed in the field
of call center monitoring, though. Gupta et al. [3] predicted
emotions on a 3-point scale, namely Happy, Neutral, and An-
gry, with Gaussian Mixture Models, from call center data.
Lately, Li et al. [5] measured emotions in call center dialogs
on a 5-point scale: Clearly/Somewhat Positive/Negative and
Neutral. They combined several classifiers processing differ-
ent acoustic and lexical features to achieve the final decision.
We also notice that Zhang et al. [14] classified emotional
attributes on a 3-point scale from the corpus IEMOCAP. A
DNN based end-to-end framework was directly used on the
raw audio signal. However, in the above works, no matter
what kind of classifiers the authors constructed, no ordinal
information between emotions were considered yet. Another
possible but seldom used solution to model the ordinal SER
task could be the regression-based approaches modelling con-
tinuous emotion, since the real-valued regression results could
be quantized to ranks with multiple thresholds, however the
threshold selection is tricky. In our approach, the boundary
thresholds are actually transformed to the network’s output
biases, which can be well learned during the network training.

Recently, a group of researchers started to attach impor-
tance to the ordinal nature of emotions. In [27] , Yannakakis

Table 1. Data distribution, duration and Fleiss’ κ for each
emotional label in the call center database.

Label Count Duration [h] κ

Non-negative 2, 317 1.5 0.93
Somewhat Negative 1, 701 1.1 0.68
Obviously Negative 519 0.4 0.75
In Total 4, 537 3.0 0.79

et al. recommended to annotate emotions in an ordinal way,
and then model the ordinal labels with preference learning
approaches. Following this, Parthasarathy et al. [19] used
a deep learning ranker implemented with the RankNet algo-
rithm to evaluate emotional preference between sentences in
terms of attributes. Perhaps our focused problem is most sim-
ilar to Parthasarathy et al.’s [19], but there is a fundamental
difference we would like to underscore. They evaluated the
emotional ranking between each pair of samples, but did not
classify emotions directly into pre-set ranks described on an
interval scale as our work requires.

3. DATA COLLECTION AND ANNOTATION

The database is created from recorded customer support calls
in Chinese (8 kHz, mono). It consists of 129 conversation
sessions in total. Each session involves a customer and an
agent, but we only concern the speech from customer side
in this work. Before emotion annotation, customer speech is
segmented into utterances automatically. Then, each utterance
is labeled by 10 annotators on a 3-point scale: 1-Non-negative,
2-Somewhat Negative, and 3-Obviously Negative. Additionally,
2 more labels are designed for utterances that are not part of
the emotion task: Non-speech for non-speech audio and Non-
understandable Speech for poor-quality or heavily accented
speech audio. To select utterances with consistent enough
annotations, we follow the procedure described below:

(i) Discard the utterances marked as Non-speech or Non-
understandable Speech by a majority of the annotators.

(ii) For the set of remaining utterances, delete those annota-
tors’ annotations whose Pearson’s correlation with the
averaged annotations are below 0.6.

(iii) For each remaining utterance, calculate its mean and
standard deviation of remaining annotations. If an an-
notation is farther than one standard deviation from the
mean, this annotation is discarded.

(iv) Discard also utterances without majority agreement.
This procedure results in a reduction from 5,270 to 4,537

utterances, each of which retains annotations from 4–9 annota-
tors (4,129 with 9 annotations, 408 with 4-8 annotations). To
analyze the reliability of agreement between the 9 annotators.
Fleiss’ κ is computed and shown in the 4th column of Table
1. The results reveal that annotators reach the highest agree-
ment (κ = 0.93) on the annotation of Non-negative data. It is
reasonable since Non-negative, which involves both Positive
and Neutral actually, is more coarse-grained than Somewhat
Negative and Obviously Negative. Therefore, this is relatively
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easier for annotators to identify. One should also note that
a κ of 0.79 on the entire database indicates good agreement
between annotators. Distribution and duration of the retained
data for each label are also shown in Table 1, where a heavy
data imbalance can be noticed.

4. ORDINAL LEARNING WITH CORAL

Formally, let S = {xi, yi}Ni=1 be the training set consisting of
N samples, where xi ∈ X is the i-th input utterance and yi ∈
Y = {r1, r2, . . . , rK} is its corresponding emotional rank. For
the K ranks we have r1 ≺ r2 ≺ · · · ≺ rK , where ≺ denotes
the ascending ordering. The goal of the ordinal SER task is
to learn a mapping from utterances to emotional ranks N (·) :
X 7→ Y such that a predefined loss function L is minimized.
As mentioned, in order to improve the performance of ordinal
SER, we explore the strategy of complementing a VGGish
with the CORAL formulation (VGGish-CORAL). Figure 1
illustrates the framework evolution from the VGGish classifier
(Figure 1(a)) to our proposed VGGish-CORAL ranker (Figure
1(b)). By contrast, two main modifications are made on label
encoding and network learning respectively.

4.1. From VGGish to VGGish-CORAL

VGGish is a network pretrained on a large-scale Audio Set,
and so potentially have stronger discriminative ability [25].
When it is applied for categorical classification tasks, a one-
hot encoding method is commonly utilized. Unlike, we convert
a rank label yi into a vector consisting of K − 1 binary labels
(y1i , · · · , y

K−1
i ), where yki (k = 1, 2, · · · ,K − 1) indicates

whether yi exceeds rank rk(i.e., y
k
i = 1{yi > rk}). The

boolean test 1{·} equals 1 if the inner condition is true, and
0 otherwise. The underneath thinking is to transform the K-
rank ordinal classification task into K− 1 binary classification
tasks. Providing the extended binary labels as goal outputs, we
thus reconstruct the VGGish structure with K − 1 units in the
output layer (cf., Figure 1(b)). Each output unit corresponds
to a distinct binary classification task. Then, the network can
be viewed as a hybrid of K − 1 binary classifiers.

According to the CORAL method [24], if letW denote the
weight parameters of the neural network excluding the bias
units of the final layer, bk denote the bias corresponding to the
k-th output unit, and s(z) = 1/(1 + exp(−z)) be the logistic
sigmoid function, the predicted empirical probability for task
k is defined as:

P̂ (yki = 1) = s(g(xi,W ) + bk), (1)

where g(xi,W ) is the input of the output units. Note that, in
VGGish-CORAL, each task k shares the same weight parame-
ters W but has independent bias units bk. For model training,
we minimize the loss function:

L = −
N∑
i=1

K−1∑
k=1

λk[log(s(g(xi,W ) + bk))y
k
i

+ log(1− s(g(xi,W ) + bk))(1− yki )],

(2)
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Fig. 1. Framework evolution from the VGGish based classifier
(a) to our proposed VGGish-CORAL ranker (b).

which is the weighted cross entropy of the K− 1 binary classi-
fiers. A detailed description in regard to task weighs {λk}K−1

k=1

is presented in the next subsection. Here, loss L is designed
to weight larger classification errors more, because more of
the individual cross entropy terms corresponding to binary
classifiers will be violated.

Based on the binary task responses, the predicted rank for
an input xi is obtained via:

h(xi) = rq, q = 1 +

K−1∑
k=1

fk(xi), (3)

where fk(xi) ∈ {0, 1} is the prediction of the k-th binary
classifier, and defined as:

fk(xi) = 1{P̂ (yki = 1) > 0.5}. (4)

By minimizing the loss L defined in Eq. (2), the {fk}K−1
k=1

are rank-monotonic, i.e., f1(xi) ≤ f2(xi) ≤ · · · ≤ fK−1(xi),
which makes sure that the predictions are consistent. For more
information regarding the theoretical demonstration for the
classifier consistency, please refer to [24].

4.2. Task importance weighting

Let Sk =
∑N

i=1 1{yki = 1} be the number of instances whose
ranks exceed rk. Note that, by the rank ordering, we have
S1 ≥ S2 ≥ · · · ≥ SK−1. Let Mk = max(Sk, N −Sk) be the
size of the class with more instances in each binary task. Our
importance of the k-th task is defined as the scaled

√
Mk:

λk =

√
Mk

max1≤i≤K−1

√
Mi

. (5)

Under this weighting scheme, the label imbalance for each
binary classification task after extending the original ranks into
binary label vectors is taken into account.

5. EXPERIMENTAL EVALUATION

In this section, we evaluate our approach for ordinal SER on
the call center dataset, as well as the highly popular IEMOCAP
corpus (16 kHz, mono) [26] for reproducible experiments.

5.1. Data preparation
The call center dataset is speaker-independently divided into
three partitions with a 8:1:1 split (i.e., 3,655 utterances for the
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training set, 458 for the development set, 424 for the test set).
We use the development set for hyperparameter tuning and
early stopping, and the test set for results reporting. When
it comes to the IEMOCAP, since this corpus provides only
categorical labels and real-valued attributes originally, a label
transformation is required in advance to fit the ordinal SER task
(cf., Section 4). Specifically, having a special focus on valence
prediction, we discretize the real-valued valence ratings rang-
ing from 1 to 5 (1-negative, 5-positive) to the integer-valued
ranks used in call center data annotation: 1-Non-negative con-
tains ratings in the range (3, 5], 2-Somewhat Negative contains
rating in the range (2, 3], and the 3-Obviously Negative con-
tains ratings in the range [1, 2]. By this, the set of leveraged
5,531 utterances from 5 emotional categories (i.e., Angry, Ex-
cited, Happy, Neutral, Sad) consists of 1,944 utterances for
1-Non-negative, 2,022 utterances for 2-Somewhat Negative,
and 1,565 utterances for 3-Obivously Negative, respectively.
Moreover, IEMOCAP signal is downsampled to 8 kHz for
alignment with the call center data. Then, we perform a leave-
one-speaker-out cross validation scheme on it.

5.2. Setup details
Before feeding into the networks, each utterance is fixed to 8 s
by zero padding if shorter, while random cropping if longer.
Then, Mel-scaled spectrograms are extracted as network input.
We use Librosa [28] for extraction with a window size of 256, a
hop size of 128, and a number of Mel bands of 96. Given the 8
kHz sampling rate of raw signal, the network input vector is of
shape 96x501 for each utterance. As a baseline system, we use
a pre-trained VGGish [25] for classification as shown in Figure
1(a). It contains 4 blocks of convolutional and max pooling
layers, 2 fully-connected layers, and 1 softmax output layer
with 3 units corresponding to 3 emotional ranks. For more
detailed information on the VGGish structure, please refer
to [25]. For comparison, our implemented VGGish-CORAL
adopts the same structured layers with the VGGish above,
except that the output layer has 2 sigmoid units (always 1 less
than the number of emotional ranks) and the loss function is
CORAL based as described in Section 4. Both, the unweighed
average recall (UAR) and the root mean squared error (RMSE),
along with the equal error rate (EER) for Obviously Negative
detection, are used for evaluation.

5.3. Results and analysis
Table 2 summarizes the obtained results from different meth-
ods. When integrating the CORAL formulation into VGGish
(VGGish-CORAL), one can note that the system performance
is generally improved on both the call center dataset and the
IEMOCAP corpus. Higher UARs and lower RMSEs suggest
that the VGGish-CORAL does not only assign more labels
correctly, but also tends to assign numerically closer labels
in those incorrect classification cases. This is because, with
the CORAL strategy, larger classification errors are inherently
given greater penalty during the network training, whereas
simply doing categorical classification of the rank-order labels

Table 2. Performance comparison (UAR [%]: unweighted av-
erage recall, RMSE: root mean squared error, EER [%]: equal
error rate) between the different methods. IEMOCAP-Val
denotes the valence prediction on IEMOCAP. VGGish is the
baseline method. VGGish-CORAL is our proposed method.
TIW denotes that the Task Importance Weighting strategy is
added during network training. Note that the presented EERs
correspond to Obviously Negative detection.

Methods Call Center Dataset IEMOCAP-Val
UAR RMSE EER UAR RMSE EER

VGGish 71.4 0.22 23.1 56.5 0.33 33.3
VGGish-CORAL 72.3 0.18 21.8 57.1 0.26 32.2
VGGish-CORAL-TIW 72.6 0.15 21.2 57.3 0.23 31.6

does not have this feature. EERs are further investigated to
evaluate the detection of Obviously Negative, since the cus-
tomers with Obviously Negative emotion should be treated
with more attention in the call center scenario. As observed in
Table 2, the VGGish-CORAL method achieves lower EERs
than the baseline system. That is, the CORAL strategy reaches
a lower false alarm rate while a lower false rejection rate.

Moreover, the incorporation of the CORAL and task impor-
tance weighting (TIW) strategies gains the best performance on
all measurements. For example, the obtained results on IEMO-
CAP achieve 57.3% on UAR, 0.23 on RMSE, and 31.6% on
EER, which all significantly (one-tailed z-test, p < .05) outper-
form the baseline results (i.e., 56.5% on UAR, 0.33 on RMSE,
and 33.3% on EER), and slightly outperform the VGGish-
CORAL method with uniform task importance weights. This
implies that our TIW strategy according to label imbalance can
help to boost the classification on imbalanced data distribution.

6. CONCLUSION

In this paper, we present a CORAL based end-to-end mod-
elling approach toward the ordinal SER task where the hu-
man’s emotions are classified into a fixed number of rank-order
labels. Specifically, the well-known categorical classifier VG-
Gish is reformed to an ordinal SER classifier VGGish-CORAL
with each output unit designed to deal with a binary SER sub-
task. Then, the final rank of an utterance can be predicted
based on the results of a series of binary SER sub-tasks. With
CORAL, the training loss is implemented to be able to re-
flect rank errors, while, in inference, the consistency of binary
classification sub-tasks can be guaranteed. Experimental eval-
uation is conducted on both a real-world call center dataset
and the IEMOCAP corpus. Results show that, comparing to
VGGish, the VGGish-CORAL approach is always helpful for
performance improvement. Moreover, with a complementary
of a task importance weighting strategy based on label im-
balance, small additional gains can be obtained. Future work
will be the exploration of ordinal SER algorithms additionally
considering the temporal evolution of the emotions, therefore,
to obtain better estimation on the global order for a sequence
of utterances from a same session.
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