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ABSTRACT
In this article, we estimate the mean-variance portfolio in the high-dimensional case using the recent
results from the theory of random matrices. We construct a linear shrinkage estimator which is distribution-
free and is optimal in the sense of maximizing with probability 1 the asymptotic out-of-sample expected
utility, that is, mean-variance objective function for different values of risk aversion coefficient which in
particular leads to the maximization of the out-of-sample expected utility and to the minimization of
the out-of-sample variance. One of the main features of our estimator is the inclusion of the estimation
risk related to the sample mean vector into the high-dimensional portfolio optimization. The asymptotic
properties of the new estimator are investigated when the number of assets p and the sample size n
tend simultaneously to infinity such that p/n → c ∈ (0, +∞). The results are obtained under weak
assumptions imposed on the distribution of the asset returns, namely the existence of the 4 + ε moments
is only required. Thereafter we perform numerical and empirical studies where the small- and large-sample
behavior of the derived estimator is investigated. The suggested estimator shows significant improvements
over the existent approaches including the nonlinear shrinkage estimator and the three-fund portfolio rule,
especially when the portfolio dimension is larger than the sample size. Moreover, it is robust to deviations
from normality.
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1. Introduction

In the seminal article of Markowitz (1952) the author suggests
to determine the optimal composition of a portfolio of financial
assets by minimizing the portfolio variance assuming that the
expected portfolio return attains some prespecified fixed value.
By varying this value we obtain the whole efficient frontier in
the mean-standard deviation space. Despite of its simplicity,
this approach justifies the advantages of diversification and is
a standard technique and benchmark in asset management.
Equivalently (see Tobin 1958; Bodnar, Parolya, and Schmid
2013) we can obtain the same portfolios by maximizing the
expected quadratic utility (EU) with the optimization problem
given by

w′μn − γ

2
w′�nw → max subject to w′1p = 1 , (1.1)

where w = (ω1, . . . , ωp)′ is the vector of portfolio weights,
1p is the p-dimensional vector of ones, μn and �n are the p-
dimensional mean vector and the p × p covariance matrix of
asset returns, respectively. The quantity γ > 0 determines
the investor’s behavior toward risk. It must be noted that the
maximization of the mean-variance objective function (1.1)
is equivalent to the maximization of the exponential utility
(CARA) function under the assumption of normality of the
asset returns. In this case γ equals the investor’s absolute risk
aversion coefficient (see, e.g., Pratt 1964).
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The solution of the optimization problem (1.1) is well known
and it is given by

wEU = wGMV + γ −1Qnμn , (1.2)

where

Qn = �−1
n − �−1

n 1p1′
p�

−1
n

1′
p�

−1
n 1p

(1.3)

and

wGMV = �−1
n 1p

1′
p�

−1
n 1p

(1.4)

is the vector of the weights of the global minimum variance
(GMV) portfolio. By changing the risk-aversion coefficient γ ∈
(0, ∞) we obtain the set of optimal portfolios. Merton (1972)
proved that this set is a parabola in the mean-variance (R-V)
space (see Bodnar and Schmid 2009) given by

(R − RGMV)2 = s(V − VGMV), (1.5)

where

RGMV = μ′
n�

−1
n 1p

1′
p�

−1
n 1p

and VGMV = 1
1′

p�
−1
n 1p

(1.6)

are the expected return and the variance of the GMV portfolio,
and
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s = μ′
nQnμn (1.7)

is its slope parameter. The quantity s is always nonnegative since
Qn is a positive semidefinite matrix. Moreover, when s is equal
to zero, then the efficient frontier degenerates into a straight line
with the GMV portfolio being the only optimal portfolio.

In practice, however, the above mentioned approach of con-
structing an optimal portfolio frequently shows poor out-of-
sample performance in terms of various performance measures.
Even naive portfolio strategies, for example, equally weighted
portfolio (see DeMiguel, Garlappi, and Uppal 2009), often out-
perform the mean-variance strategy. One of the reasons is the
estimation risk. The unknown parameters μn and �n have to
be estimated using historical data on asset returns. This results
in the “plug-in” estimator of the EU portfolio (1.2) which is a
traditional and simple way to evaluate the portfolio in practice.
This estimator is constructed by replacing the mean vector μn
and the covariance matrix �n with their sample counterparts in
(1.2). Okhrin and Schmid (2006) derive the expectation and the
variance of the sample portfolio weights under the assumption
that the asset returns follow a multivariate normal distribution,
whereas Bodnar and Schmid (2011) obtain the exact finite-
sample distribution. Recently, Bodnar, Mazur, and Podgórski
(2016) extended these results to the case n < p.

The estimation of the parameters has a negative impact on
the performance of the asset allocation strategy. This is noted in
a series of articles with Merton (1980), Best and Grauer (1991),
Chopra and Ziemba (1993), among others. Several approaches
have arisen to reduce the consequences of the estimation risk.
One strand of research opts for the Bayesian framework and
using appropriate priors takes the estimation risk into account
already while building the portfolio. The second strand relies on
the shrinkage techniques and is related to the method exploited
in this article. A straightforward way to improve the properties
of the estimators for μn and �n is to use the shrinkage approach
(see, Jorion 1986; Ledoit and Wolf 2004). Alternatively, one may
apply the shrinkage estimation to the portfolio weights directly.
Golosnoy and Okhrin (2007) consider the multivariate shrink-
age estimator by shrinking the portfolios with and without the
riskless asset to an arbitrary static portfolio. A similar technique
is used by Frahm and Memmel (2010), who construct a feasible
shrinkage estimator for the GMV portfolio which dominates
the traditional one. At last, Bodnar, Parolya, and Schmid (2018)
suggest a shrinkage estimator for the GMV portfolio which is
feasible even for the singular sample covariance matrix.

An important issue nowadays is, however, the asset allocation
for large portfolios. The sample estimators work well only in
the case when the number of assets p is fixed and substantially
smaller than the sample size n. This case is known as the
standard asymptotics in statistics (see Le Cam and Lo Yang
2000). Under this asymptotics the traditional sample estimator
is a consistent estimator for the EU portfolio. But what happens
when the dimension p and the sample size n are comparable
of size, say p = 900 and n = 1000? Technically, here we
are in the situation when both the number of assets p and the
sample size n tend to infinity. In the case when p/n tends to
some concentration ratio c > 0 this asymptotics is known
as high-dimensional asymptotics or “Kolmogorov” asymptotics

(see, e.g., Bai and Silverstein 2010). If c is close to one the sample
covariance matrix tends to be close to a singular one and when
c > 1 it becomes singular. Thus it is very unstable and tends
to under- or overestimate the true parameters for c smaller but
close to 1 (see Bai and Shi 2011). As a result, the sample estimator
of the EU portfolio behaves badly in this case both from the
theoretical and practical points of view (see, e.g., El Karoui 2010;
Rubio, Mestre, and Palomar 2012). For c > 1 the inverse sample
covariance matrix does not exist and the portfolio cannot be
constructed in the traditional way.

Taking the above mentioned information into account the
aim of the article is to construct a feasible and simple shrinkage
estimator of the EU portfolio which is optimal in an asymptotic
sense and is additionally distribution-free. The estimator is
developed using the fast growing branch of probability theory,
namely random matrix theory. The main result of this theory
is proved by Marčenko and Pastur (1967) and further extended
under very general conditions by Silverstein (1995). Now it is
called Marc̆enko–Pastur equation. Its importance arises in many
areas of science because it shows how the true covariance matrix
and its sample estimator are connected asymptotically. Know-
ing this we can build suitable estimators for high-dimensional
quantities which depend on �n. In our case this refers to the
shrinkage intensities. Note, however, that the optimal shrinkage
intensity depends again on the unknown characteristics of the
asset returns. To overcome this problem we derive consistent
estimators for specific functions (quadratic and bilinear forms)
of the inverse sample covariance matrix and mean vector. Fur-
thermore, we succeed to provide consistent estimators for the
optimal shrinkage intensities too. Additional advantage of our
approach is the simultaneous treatment of estimation risks of
both the covariance matrix and the mean vector. In particular we
contribute to the existent literature (see Ledoit and Wolf 2017a)
by weakening the assumption imposed on the mean vector of
the asset returns.

It is worth mentioning that there are clear links between
the subject of the article and classical methods in statistical
signal processing. The data generating process considered in
the article encompasses a broad range of system configurations
described by the general vector channel model. Moreover, as
for the aforementioned mean-variance portfolio optimization
problem, usual linear filtering schemes solving typical signal
waveform estimation and detection problems in signal array
processing and wireless communications are based on the esti-
mation of the unknown population covariance matrix. Famous
example is the equivalence of the GMV portfolio to the so-called
Capon or minimum variance distortionless response (MVDR)
beamformer (see Verdú 1998; Van Trees 2002).

The rest of this article is organized as follows. In the next
section, we construct a shrinkage estimator for the optimal port-
folio weights obtained by shrinking the EU portfolio weights
to an arbitrary target portfolio. The oracle shrinkage intensity
and the corresponding feasible bona-fide estimators for c < 1
and c > 1 are established as well. The derived results are
evaluated in Section 3 in extensive simulation and empirical
studies. All proofs are moved to the Appendix presented in the
supplementary material.
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2. Optimal Shrinkage Estimator of Mean-Variance
Portfolio

Let Yn = (y1, y2, . . . , yn) be the p×n data matrix which consists
of n vectors of the returns on p ≡ p(n) assets. Let E(yi) = μn
and cov(yi) = �n for i ∈ 1, . . . , n. We assume that p/n → c ∈
(0, +∞) as n → ∞. This type of limiting behavior is known
as “the large dimensional asymptotics” or “Kolmogorov asymp-
totics.” In this case the traditional sample estimators perform
poorly or even very poorly and tend to over/underestimate the
unknown parameters of the asset returns, for example, the mean
vector and the covariance matrix.

Throughout the article it is assumed that there exists a p × n
random matrix Xn which consists of independent and identi-
cally distributed (iid) real random variables with zero mean and
unit variance such that

Yn = μn1′
n + �

1
2
n Xn . (2.1)

It must be noted that the observation matrix Yn has dependent
rows but independent columns. Broadly speaking, this means
that we allow arbitrary cross-sectional correlations of the asset
returns but assume their independence over time. Although
this assumption looks quite restrictive for financial applications,
there exist stronger results from random matrix theory which
show that the model can be extended to (weakly) dependent
variables by demanding more complicated conditions on the
elements of Yn (see Bai and Zhou 2008) or by controlling the
number of dependent entries as dimension increases (see, Hui
and Pan 2010; Friesen, Löwe, and Stolz 2013; Wei, Yang, and
Yang 2016). Although our findings can still be used when weak
serial dependence structure is present between the observation
vectors, like in the case of GARCH (generalized autoregressive
conditional heteroscedastic) processes or similar ones (see, e.g.,
the simulation study in Bodnar et al. 2021a), we suspect substan-
tial changes in the analytical expressions stated in the theorems
for strongly correlated observation vectors, like in the case of
VAR (vector autoregressive) processes. In such situations, the
estimator will depend on the autocorrelation matrices of the
underlying stochastic model and the theoretical results of the
article must be adjusted correspondingly. This interesting and
important topic is not treated in the article and is left for future
research.

Nevertheless, if the entries of matrix Yn are weakly depen-
dent or so called m-dependent, this will only make the proofs
more technical, but leave the results unchanged. For that reason
we assume independent in time asset returns only to simplify
the proofs of the main theorems and make them as transparent
as possible. The three assumptions which are used throughout
the article are the following:

(A1) The covariance matrix of the asset returns �n is a nonran-
dom p-dimensional positive definite matrix.

(A2) The elements of the matrix Xn have uniformly bounded
4 + ε moments for some ε > 0.

(A3) The efficient frontier is asymptotically a nondegenerate
object, that is, for its slope parameter it holds that s =
μ′

nQnμn > 0 uniformly in p.

All of these regularity assumptions are general enough to
fit many real world situations. The assumption (A1) together

with (2.1) are usual for financial and statistical problems and
they impose no strong restrictions. The assumption (A2) is a
technical one. Although we demand the existence of moments
of order a bit higher than four, this is solely due to the fact that
the almost sure convergence is employed in the formulation of
the theoretical results. In case of the convergence in probability
the existence of exactly the fourth moment is sufficient. Indeed,
it can be easily shown that this extra ε follows from the Borel–
Cantelli lemma (see Rubio and Mestre 2011, proof of Lemma 4).
The Assumption (A3) has an important financial interpretation.
It ensures that the efficient frontier is a parabola in the mean-
variance space as defined in (1.5) and it does not degenerate
into a line parallel to the variance axis (see Bodnar and Bodnar
2010). In the latter case, the only optimal portfolio is the GMV
portfolio (1.4), a special case of the EU portfolio (1.2) with γ =
∞, and its shrinkage estimators have already been developed in
Frahm and Memmel (2010) and Bodnar, Parolya, and Schmid
(2018). The assumption (A3) can be tested in practice by using
Theorem 1 of Bodnar et al. (2021c).

The sample covariance matrix is given by

Sn = 1
n

Yn(In − 1
n

1n1′
n)Y′

n = 1
n
�

1
2
n Xn(In − 1

n
1n1′

n)X′
n�

1
2
n ,
(2.2)

where the symbol In stands for the n-dimensional identity
matrix. The sample mean vector becomes

ȳn = 1
n

Yn1n = μn + �
1
2
n x̄n with x̄n = 1

n
Xn1n . (2.3)

2.1. Oracle Estimator. Case c < 1

In this section, we consider the optimal shrinkage estimator for
the EU portfolio weights presented in the introduction by find-
ing the shrinkage parameter α and fixing some target portfolio
b.

The resulting estimator for c < 1 is given by

ŵGSE = αnŵS + (1 − αn)b with b′1p = 1 , (2.4)

where the vector ŵS is the sample estimator of the EU portfolio
given in (1.2), namely

ŵS = S−1
n 1p

1′
pS−1

n 1p
+ γ −1Q̂nȳn (2.5)

with

Q̂n = S−1
n − S−1

n 1p1′
pS−1

n

1′
pS−1

n 1p
. (2.6)

The target portfolio b ∈ Rp is a given nonrandom (or random,
but independent of Yn) vector with b′1p = 1. No assumption is
imposed on the shrinkage intensity αn which is the object of our
interest.

The aim is now to find the optimal shrinkage intensity for a
given nonrandom target portfolio b. For that reason we intro-
duce a unified mean-variance objective function in order to
calibrate the shrinkage intensity αn. Consider the following
optimization problem

U(β) = ŵ′
GSE(αn)μn − β

2
ŵ′

GSE(αn)�nŵGSE(αn)

−→ max with respect to αn . (2.7)
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Obviously, the mean-variance objectives (1.1) and (2.7) coincide
if β = γ . Other special values of β which lead to widely
used out-of-sample performance measures we summarize in the
following proposition

Proposition 2.1 (Calibration criteria). The optimization problem
(2.7) is equivalent to

(i) maximization of the mean-variance objective (1.1) if β = γ ,
(ii) minimization of the out-of-sample variance ŵ′

GSE(αn)�n
ŵGSE(αn) if β → ∞,

The proof of Proposition 2.1 follows from the fact that all
optimal mean-variance portfolios can be obtained by maximiz-
ing the expected quadratic utility function with a specific risk
aversion coefficient. As a result, the global minimum variance
portfolio is a partial solution of the optimization problem (1.1).
The presentation of the calibration criterion (2.7) provides an
elegant way how to find the optimal shrinkage intensity αn =
αn(β) in a unified manner for several popular out-of-sample
loss functions and compare them just by changing the parameter
β . In Section 2.3, we provide consistent estimates of these quan-
tities under high-dimensional asymptotic regime p/n → c > 0
for (p, n) → ∞.

It is worth mentioning that the coefficient β has an inter-
esting interpretation from statistical point of view. While coef-
ficient γ controls for investor attitude toward financial risk
(“in-sample risk”), the parameter β stays for controlling the
estimation risk (“out-of-sample risk”). This implies that even
the mean-variance investor with arbitrary γ > 0 could choose
β → ∞ if she/he is interested, for example, in the minimization
of the out-of-sample variance of the estimated portfolio.

The unified calibration criterion (2.7) can be rewritten as
U(β) = αnŵ′

Sμn + (1 − αn)b′μn

−β

2
(
α2

nŵ′
S�nŵS + 2αn(1 − αn)b′�nŵS + (1 − αn)2b′�nb

)
→ max
with respect to αn . (2.8)

Next, taking the derivative of U with respect to αn and setting
it equal to zero we get

∂U
∂αn

= (ŵS − b)′μn − β
(
αnŵ′

S�nŵS + (1 − 2αn)b′�nŵS

− (1 − αn)b′�nb
) != 0.

From the last equation it is easy to find the optimal shrinkage
intensity α∗

n given by

α∗
n = β−1 (ŵS − b)′(μn − β�nb)

(ŵS − b)′�n(ŵS − b)
. (2.9)

To ensure that α∗
n is the unique maximizer of (2.7) the second

derivative of U must be negative, which is always fulfilled.
Indeed, it follows from the positive definitiveness of the matrix
�n, namely

∂2U
∂α2

n
= −β(ŵS − b)′�n(ŵS − b) < 0 . (2.10)

In the next theorem we derive the asymptotic properties
of the optimal shrinkage intensity α∗

n under large-dimensional
asymptotics.

Theorem 2.1. Assume (A1)–(A3). Then it holds that∣∣α∗
n − α∗∣∣ a.s.−→ 0 for

p
n

→ c ∈ (0, 1) as n → ∞
with

α∗ = β−1

(RGMV − Rb)

(
1 + β/γ

1 − c

)
+β(Vb − VGMV) + γ −1

1 − c
s

1
1 − c

VGMV − 2
(

VGMV + γ −1

1−c (Rb − RGMV)
)

+γ −2
(

s
(1 − c)3 + c

(1 − c)3

)
+ Vb

,

(2.11)
where the parameters of the efficient frontier RGMV, VGMV,
and s are given in (1.6) and (1.7), respectively. The quantities
Rb = b′μn and Vb = b′�nb denote the expected return and the
variance of the target portfolio b.

Next, we assess the performance of the classical estimator
of the portfolio weights ŵS and the optimal shrinkage weights
ŵGSE. As a measure of performance we consider the relative
increase in the utility of the portfolio return compared to the
portfolio based on true parameters of asset returns. The results
are summarized in the following corollary.

Corollary 2.1. (a) Let UEU and US be the mean-variance objec-
tives in (1.1) for the true EU portfolio and its traditional esti-
mator. Then under the assumptions of Theorem 2.1, the relative
loss of the traditional estimator of the EU portfolio is given by

LS = UEU − US
UEU

a.s.−→

γ
2

(
1

1−c − 1
)

· VGMV

+γ −1
(

1
2 − 1

(1−c) + 1
2(1−c)3

)
· s

+ 1
2γ

· c
(1−c)3

RGMV + 1
2γ −1 · s − γ

2 VGMV
(2.12)

for p
n → c ∈ (0, 1) as n → ∞.

(b) Let UGSE be the expected quadratic utility for optimal
shrinkage estimator of the EU portfolio. Under the assumptions
of Theorem 2.1, the relative loss of the optimal shrinkage esti-
mator is given by

LGSE = UEU − UGSE
UEU

a.s.−→ (α∗)2LS + (1 − α∗)2Lb

+ α∗(1 − α∗) c
1 − c

Rb − RGMV − γ −1s
UEU

(2.13)

for p
n → c ∈ (0, 1) as n → ∞ with Lb = (UEU − Ub)/UEU

is the relative loss in the expected utility Ub of the target
portfolio b.

2.2. Oracle Estimator. Case c > 1.

Here, similarly as in Bodnar, Parolya, and Schmid (2018), we
will use the generalized inverse of the sample covariance matrix
Sn. Particularly, we use the following generalized inverse of the
sample covariance matrix Sn

S∗
n = �

−1/2
n

(
1
n

XnX′
n − x̄nx̄′

n

)+
�

−1/2
n , (2.14)
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where + denotes the Moore–Penrose inverse. It can be shown
that S∗

n is a generalized inverse of Sn satisfying S∗
nSnS∗

n = S∗
n

and SnS∗
nSn = Sn. However, S∗

n is not exactly equal to the
Moore–Penrose inverse because it does not satisfy the condi-
tions (S∗

nSn)′ = S∗
nSn and (SnS∗

n)
′ = SnS∗

n. In case c < 1
the generalized inverse S∗

n coincides with the usual inverse S−1
n .

Moreover, if �n is a multiple of identity matrix, then S∗
n is equal

to the Moore–Penrose inverse S+
n . In this section, S∗

n is used
only to determine an oracle estimator for the weights of the
EU portfolio. The bona fide estimator is constructed in the next
section.

Thus, the oracle estimator for c > 1 is given by

ŵ∗
GSE = α+

n ŵS∗ + (1 − α+
n )b with b′1p = 1, (2.15)

where the vector ŵS∗ is the sample estimator of the EU portfolio
given in (1.2), namely

ŵS∗ = S∗
n1p

1′
pS∗

n1p
+ γ −1Q̂∗

nȳn (2.16)

with

Q̂∗
n = S∗

n − S∗
n1p1′

pS∗
n

1′
pS∗

n1p
. (2.17)

Again, the shrinkage intensity α+
n is the object of our interest. In

order to save place we skip the optimization procedure for α+
n

as it is only slightly different from the case c < 1. The optimal
shrinkage intensity α+

n in case c > 1 is given by

α+
n = β−1 (ŵS∗ − b)′(μn − β�nb)

(ŵS∗ − b)′�n(ŵS∗ − b)
. (2.18)

In the next theorem, we find the asymptotic equivalent quan-
tity for α+

n in the case p/n → c ∈ (1, +∞) as n → ∞.

Theorem 2.2. Assume (A1)–(A3). Then it holds that∣∣α+
n − α+∣∣ a.s.−→ 0 for

p
n

→ c ∈ (1, +∞) as n → ∞

with

α+ = β−1

(RGMV − Rb)

(
1 + β/γ

c(c − 1)

)
+β(Vb − VGMV) + γ −1

c(c − 1)
s

c2

(c − 1)
VGMV − 2

(
VGMV + γ −1

c(c−1)
(Rb − RGMV)

)
+ γ −2

(c − 1)3 (s + c2) + Vb

,

(2.19)
where RGMV, VGMV, Rb, Vb, and s are defined in Theorem 2.1.

Next, as for the case c < 1, we provide here the expression
for the relative losses.

Corollary 2.2. (a) Let UEU and US be the mean-variance objec-
tives in (1.1) for the true EU portfolio and its traditional esti-
mator. Then under the assumptions of Theorem 2.2, the relative

loss of the traditional estimator of the EU portfolio is given by

LS = UEU − US
UEU

a.s.−→

γ
2

(
c2

c−1 − 1
)

· VGMV

+γ −1
(

1
2 − 1

c(c−1)
+ 1

2(c−1)3

)
· s

+ 1
2γ

· c2

(c−1)3

RGMV + 1
2γ −1 · s − γ

2 VGMV
(2.20)

for p
n → c ∈ (1, +∞) as n → ∞.

(b) Let UGSE be the expected quadratic utility for the optimal
shrinkage estimator of the EU portfolio. Under the assumptions
of Theorem 2.2, the relative loss of the optimal shrinkage esti-
mator is given by

LGSE = UEU − UGSE
UEU

a.s.−→ (α+)2LS + (1 − α+)2Lb

+ α+(1 − α+)
1 + c − c2

c(c − 1)

Rb − RGMV − γ −1s
UEU

(2.21)

for p
n → c ∈ (1, +∞) as n → ∞ with Lb = (UEU − Ub)/UEU

is the relative loss in the expected utility Ub of the target
portfolio b.

2.3. Estimation of Unknown Parameters. Bona Fide
Estimator

The limiting shrinkage intensities α∗ and α+ are not feasible
in practice, because they depend on RGMV, VGMV, s, Rb, and
Vb which are unknown quantities. In this subsection we derive
consistent estimators for α∗ and α+. These results are summa-
rized in two propositions dealing with the cases c ∈ (0, 1) and
c ∈ (1, ∞), respectively. The statements follow directly from
the proofs of Theorems 2.1 and 2.2 that are provided in the
supplement of the article.

Proposition 2.2. The consistent estimator for the limiting opti-
mal shrinkage intensity α∗ under large dimensional asymptotics
p/n → c < 1 as n → ∞ is given by

α̂∗ = β−1

(R̂c − R̂b)

(
1 + β/γ

1 − p/n

)
+β(V̂b − V̂c) + γ −1

1 − p/n
ŝc

1
1 − p/n

V̂c − 2
(

V̂c + γ −1

1−p/n (R̂b − R̂c)
)

+γ −2
(

ŝc
(1 − p/n)3 + p/n

(1 − p/n)3

)
+ V̂b

(2.22)
where R̂c, V̂c, ŝc, R̂b, and V̂b are given by

R̂c = R̂GMV (2.23)

V̂c = 1
1 − p/n

V̂GMV (2.24)

ŝc = (1 − p/n)ŝ − p/n (2.25)
R̂b = b′ȳn (2.26)
V̂b = b′Snb , (2.27)

which are also ratio consistent estimators for RGMV, VGMV, s,
Rb, and Vb, respectively, while R̂GMV, V̂GMV and ŝ are traditional
plug-in estimators.
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Using Proposition 2.2 we can immediately construct a bona-
fide estimator for the expected utility portfolio weights in case
c < 1. It holds that

ŵBFGSE = α̂∗
(

S−1
n 1p

1′
pS−1

n 1p
+ γ −1Q̂nȳn

)
+ (1 − α̂∗)b (2.28)

with α̂∗ given in Proposition 2.2. The expression (2.28) is the
optimal shrinkage estimator for a given target portfolio b in the
sense that the shrinkage intensity α̂∗ tends almost surely to its
optimal value α∗ for p/n → c ∈ (0, 1) as n → ∞.

The situation is more complex in case c > 1. Here, we
can present only oracle estimators for the unknown quantities
RGMV, VGMV, and s.

Proposition 2.3. The consistent estimator for the limiting opti-
mal shrinkage intensity α∗ under large dimensional asymptotics
p/n → c > 1 as n → ∞ is given by

α̂o = β−1

(R̂o
c − R̂b)

(
1 + β/γ

p/n(p/n − 1)

)
+β(V̂b − V̂o

c ) + γ −1

p/n(p/n − 1)
ŝo
c

(p/n)2

p/n − 1
V̂o

c − 2
(

V̂o
c + γ −1

p/n(p/n−1)
(R̂b − R̂o

c )
)

+ γ −2

(p/n − 1)3
(
ŝo
c + (p/n)2) + V̂b

,

(2.29)
where R̂o

c , V̂o
c , ŝo

c are given by

R̂o
c = R̂GMV

V̂o
c = 1

p/n(p/n − 1)
V̂GMV

ŝo
c = p/n[(p/n − 1)ŝ − 1] ,

where R̂GMV, V̂GMV, and ŝ are the traditional plug-in estimators
based on the generalized inverse S∗

n from (2.14) and R̂b and V̂b
are given in (2.26) and (2.27), respectively.

Note that α̂o from Proposition 2.3 is not the bona fide esti-
mator for the unknown shrinkage intensity α+, since the matrix
S∗

n depends on the unknown quantities. Thus, we propose a
reasonable approximation using the application of the Moore–
Penrose inverse S+

n . As a result, the bona fide estimators of the
quantities RGMV, VGMV, and s in case c > 1 are approximated
by

R̂+
c ≈ ȳ′

nS+
n 1p

1′
pS+

n 1p
, V̂+

c ≈ 1
p/n(p/n − 1)

1
1′

pS+
n 1p

,

ŝ+c ≈ p/n[(p/n − 1)ȳ′
nQ+

n ȳn − 1] , (2.30)

respectively. The application of (2.30) leads to the bona fide
optimal shrinkage estimator of the EU portfolio in case c > 1
expressed as

ŵ+
BFGSE = α̂+

(
S+

n 1p

1′
pS+

n 1p
+ γ −1Q̂+

n ȳn

)
+ (1 − α̂+)bn , (2.31)

with

α̂+ = β−1

(R̂+
c − R̂b)

(
1 + β/γ

p/n(p/n − 1)

)
+β(V̂b − V̂+

c ) + γ −1

p/n(p/n − 1)
ŝ+c

(p/n)2

p/n − 1
V̂+

c − 2
(

V̂+
c + γ −1

p/n(p/n−1)
(R̂b − R̂+

c )
)

+ γ −2

(p/n − 1)3
(
ŝ+c + (p/n)2) + V̂b

,

(2.32)
where R̂b and V̂b are given in (2.26) and (2.27), respectively;

Q+
n = S+

n − S+
n 11′S+

n
1′S+

n 1
and S+

n is the Moore–Penrose pseudo-

inverse of the sample covariance matrix Sn.

Remark 1. It is easy to verify that if �n = σ 2Ip for any σ >

0 the considered approximations in (2.30) become the exact
ones. Next, we investigate the quality of this approximation in
general case without imposing restrictions on �n. This issue
was studied for other quantities involving S∗

n and S+
n in detail

by Bodnar and Parolya (2020), who compare the limiting spec-
tral distributions of S∗

n and S+
n by deriving the limits for their

corresponding Stieltjes transforms. It is concluded that the two
inverses behave completely different in general. However, when
the concentration ratio c approaches 1, then the limiting spectral
distributions of both inverses S∗

n and S+
n coincide independently

of the structure of �n. This in turn means that one should expect
a good approximation quality when c is not far away from 1.

In Figure 1, we provide a comparison between the optimal
shrinkage intensities computed using different types of gen-
eralized inverses, namely Moore–Penrose inverse S+

n and the
reflexive inverse S∗

n from (2.14). The optimal shrinkage intensity
is calculated by (2.32) in the case of S+

n and by using (2.32)
where R̂+

c , V̂+
c , and ŝ+c are replaced by R̂o

c , V̂o
c , and ŝo

c from
Proposition 2.3 in the case of S∗

n. The design of the simulation
study is exactly the same as the one described in Section 3.1.

We observe that the two optimal shrinkage intensities are
quite identical till the breaking point c = 2. For c > 2
the Moore–Penrose approximation is not reliable anymore. We
observe a similar behavior for other structures of the covariance
matric �n and the mean vector μn, which indicates that the
results are robust and justifies the theoretical findings of Bodnar
and Parolya (2020) for the optimal shrinkage intensity given in
(2.32). Figure 2 provides further numerical results related to the
comparison of the two optimal shrinkage intensities. Here, we
set c = 1.5 and c = 2 and study the robustness of the results in
Figure 1 to changes in the dimension p from 50 to 300. We see
that the shrinkage intensities are very similar uniformly over p,
independently of the chosen value of c.

Summarizing the above findings, we can recommend the
application of the Moore–Penrose approximation for c ≤ 2,
but there is no guarantee for a good performance for c > 2.
Also, we observe that the Moore–Penrose inverse gets closer to
S∗

n when the covariance matrix �n is sparse. In the empirical
study of Section 3.2 we consider the values of the concentration
ratio c bounded by 2. The empirical results are in line with the
discussion provided in this remark and, thus, c ≈ 2 seems to be
a breaking point for the approximation indeed. More theoretical
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Figure 1. Estimated optimal shrinkage intensities for S∗n and S+n (MP) as function of concentration ratio c > 1 and dimension p = 300.
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Figure 2. Estimated optimal shrinkage intensities for S∗n and S+n (MP) as function of dimension p for c = 1.5 (left) and c = 2 (right).

treatment of this interesting phenomenon is of an independent
research interest and is not within the scope of this article.

Remark 2. Seemingly, we have handled two cases c < 1 and
c > 1 (for c ≤ 2), but not c = 1. The case c = 1 is not easy to
manage because the sample covariance matrix is theoretically
invertible for c equal or close to one but computationally very
unstable. The reason is the smallest eigenvalue of Sn which is
numerically very close to zero. Indeed, it is well-known that
the smallest eigenvalue of Sn is of order (1 − √

p/n)2, which
converges to zero if p/n → 1 and all the estimators explode
(see, e.g., Bai and Yin 1993).

In order to overcome the difficulty in a small neighborhood
of c = 1 one has a few options to proceed:

Tikhonov (ridge). One of the possibilities, which has also been
used in the simulation and empirical studies of Section 3, is
the Tikhonov (ridge) approximation of the Moore–Penrose
inverse. Indeed, one can show by the eigenvalue decomposi-
tion that

lim
δ→0+(Sn + δI)−1Sn(Sn + δI)−1 = S+

n (2.33)

if c > 1. For c < 1 the limit in (2.33) trivially exists and equals
S−1

n . The advantage of the representation (2.33) is twofold.
First, one has an elegant formula which incorporates both

cases c < 1 and c > 1, and, secondly, one stabilizes the
behavior of the inverse matrix near singularity, that is, near
c = 1. The only question arises how to choose δ = o(1)

in practice, but it seems that taking δ = 1/p works well in
many applications. Thus, we will employ this adjustment in
the empirical study in order to have a balanced and stable
estimator when c is close to 1 from both sides. Although
this procedure smoothes out the estimator of the precision
matrix, it does not resolve the issue when c is large, that is,
c > 2.

Moore–Penrose. Yet another option would be to derive the
explicit limit of (2.18) when the Moore–Penrose inverse
matrix S+

n is directly used in (2.15)-(2.17). This procedure is
highly nontrivial because S+

n depends in a nonlinear way on
the matrix �n and this leads to nonlinear integral equations
in the high-dimensional setting. The problem becomes even
more involved when we consider quadratic and bilinear
forms involving the Moore–Penrose inverse. Moreover, the
case of centered sample covariance matrix (the sample mean
is subtracted) makes the expressions tedious and confusing
(see, e.g., Pan 2014). Thus, the fact that the optimal shrinkage
intensity depends on the mean vector μn and the covariance
matrix �n only via the three parameters of the efficient
frontier will be lost and no closed-form formulas can be
derived for �n 
= σ 2I. Nevertheless, we are working on this
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problem in a separate project and are studying the properties
of the pseudo-inverse S+

n in detail, especially the limiting
behavior of its eigenvectors.

Double-shrinkage. A more intuitive option is to apply a double-
shrinkage approach, which incorporates both the shrinkage
of the estimated portfolio weights and the regularization of
the sample covariance matrix. Namely, first we shrink (regu-
larize) the sample covariance matrix and then we shrink the
estimated portfolio weights built upon the regularized sam-
ple covariance matrix. This could be done by taking either the
matrix Sn + δI for some δ > 0 or the one from (2.33) instead
of Sn. Then the limiting shrinkage intensity α will depend on
δ and one needs to optimize the objective function (2.7) over
δ as well. Unfortunately, no closed-form expression for the
optimal shrinkage intensity is available in this case and the
theoretical results presented in Section 2 must be changed
accordingly. Actually, this procedure would generalize all of
the above mentioned ideas (including the ones presented in
this article) and would provide a data-driven regularization
parameter δ. This interesting and important topic is left for
future research.

3. Simulation and Empirical Studies

In this section, we illustrate the performance and the advantages
of the derived results using simulated and real data. Particularly
we address the estimation precision of the shrinkage coeffi-
cient and compare the bona-fide estimator with the existent
approaches.

3.1. Simulation Study

For simulation purposes we select the structure of the spectrum
of the covariance matrix and of the mean vector to make it
consistent with the characteristics of the empirical data. Par-
ticularly, for each dimension p we select the expected returns
equally spread on the interval −0.3 to 0.3, capturing a typical
spectrum of daily returns measured in percent. The covariance
matrix has a strong impact on the properties of the shrinkage
intensity and for this reason we consider several structures of its
spectra. Replicating the properties of empirical data we generate
covariance matrices with eigenvalues satisfying the equation
λi = 0.1eδc·(i−1)/p for i = 1, . . . , p (see, e.g., Bodnar et al.
2021b for implementation). Thus, the smallest eigenvalue is
0.1 and by selecting appropriate values for c we control the
largest eigenvalue and thus the condition index of the covariance
matrix. Large condition indices imply ill-conditioned covari-
ance matrices, with the eigenvalues very sensitive to changes
of the elements. We choose δ to attain the condition indices
of 150, 1000, and 8000. The target portfolio weights are set
equal to the weights of the equally weighted portfolio, that
is, bi = 1/p for i = 1, . . . , p. The calibration criteria used
to determine the optimal shrinkage intensities are selected as
defined in Proposition 2.1.

First, we assess the general behavior of the oracle shrinkage
intensities as functions of c. The oracle shrinkage intensities are
computed using expressions in (2.11) and (2.19) for the cases
c < 1 and c > 1, respectively. The parameters are computed

using the true mean vector and the true covariance matrix. The
results are illustrated for different condition indices and differ-
ent calibration criteria in Figure 3. We observe that in all cases
the shrinkage intensity falls to zero as c → 1− and increases
with c for c > 1. Thus, if c is small the shrinkage estimator
puts higher weight on the traditional estimator of the portfolio
weights, due to lower estimation risk. If c tends to 1 the system
becomes unstable because of nearly zero eigenvalues. In this case
the portfolio weights collapse to the target portfolio weights.
With c further increasing the shrinkage intensity increases too,
implying that the pseudo-inverse covariance matrix can be eval-
uated in a proper way. The fraction of the sample EU portfolio
increases with c in this case. It is worth mentioning that at some
high level of c the information content in the data becomes less
relevant and the shrinkage intensity starts to decrease. Note,
however, that even for p much larger than n, there is still valuable
information in the sample covariance matrix leading to rela-
tively high values of α+.

Regarding the calibration criteria we observe that if the cal-
ibration criteria coincides with the expected quadratic utility
(i.e., β = γ ), then the limit shrinkage intensities are naturally
higher, compared to those minimizing the out-of-sample vari-
ance. The variance of portfolio return for the equally weighted
portfolio tends to be lower than that of the sample EU portfo-
lio. Thus, the shrinkage intensity weights the equally weighted
portfolio more heavily. It is important to stress that the latter
calibration criterion is more sensitive to the condition index.

In a similar fashion, we analyze the relative losses of portfo-
lios based on the traditional estimator and the oracle shrinkage
estimator. As a benchmark, we take the equally weighted portfo-
lio which is also the target portfolio of the shrinkage estimator.
The relative losses as functions of c for fixed p = 100 are plotted
in Figure 4. For c < 1 the losses of the traditional estimator
show explosive behavior and are comparable to the shrinkage-
based estimators only for very small values of c. Thus, the tradi-
tional estimator is reliable only if the sample size is considerably
larger than the portfolio dimension. The performance of the
shrinkage-based estimator is relatively stable over the whole
range of c and it clearly dominates both the traditional and
the equally weighted benchmark in almost all of the considered
cases. The losses are increasing for c < 1 and attain the loss of
the equally weighted portfolio around c = 1. This is consistent
with the results in Figure 3. For c > 1 the losses decrease and
remain stable for c > 3.

The behavior of losses as functions of the dimension p is illus-
trated in Figure 5. For space reasons we provide here only the
results for β = γ , that is, for the first calibration criterion. The
fraction c is set to 0.2 (top left), 0.5 (top right), 0.8 and 2, while
the condition index equals 1000. From financial perspective it
is important to note that the traditional estimator outperforms
the equally weighted portfolio only for small values of c (in the
particular setup for c = 0.2), thus when the classical estimators
are stable and robust. This is consistent with the evidence from
Figure 4. For c = 0.8 the losses of the traditional estimator
increase dramatically and they are always considerably larger
than the losses of two other considered trading strategies. As
before the shrinkage-based estimator clearly beats both the
traditional EU portfolio and the benchmark portfolio for all c
values. Furthermore, the performance of the shrinkage-based
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Figure 3. The asymptotic optimal shrinkage intensity as a function of c for the calibration criteria (i)-(ii) from Proposition 2.1 (left to right).
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Figure 4. The relative losses for the portfolios based on the optimal shrinkage estimator, the traditional estimator and the equally weighted portfolio as a function of c for
the calibration criteria (i)-(ii) from Proposition 2.1 (left to right). The dimension is set to p = 100 and the condition index is set to 1000.

portfolio is stable for a wide range of dimensions, particularly
for large values of p.

3.2. Empirical Study

The data used in this study cover daily returns on 395 S&P500
constituents available for the whole period from January 1, 2000
to March 23, 2018. The investor allocates his/her wealth to the
constituents with daily reallocation. We address several issues
in this empirical study. First, we wish to verify the robustness
of the established theoretical results for empirical data. Thus,
our aim is to go beyond the common practice of considering a
single portfolio, but to generate a large set of different portfolios
from the universe of the S&P 500 constituents. Second, we assess
the economic performance of the dynamic portfolio strategies
stemming from the generalized shrinkage estimator for port-
folio weights. Thus, we consider several popular performance
measures and test the significance in the differences between the
alternative strategies. Third, the choice of the target portfolio
can clearly have a substantial impact on the empirical results.
For this reason, we consider several popular choices of the
target. Finally, we wish to assess the dynamics of the estimated
shrinkage intensities and relate their behavior to the market
conditions. Next, we provide details on the setup of the empirical
study.

To address the applicability of the suggested estimator in
high dimensions we set p = 300 which is larger than a typical
portfolio size in the literature. For each parameter constellation
we draw randomly 1000 sets of assets from the available con-
stituents of the S&P500 index. This guarantees a robust assess-
ment of the empirical results. For every set of the assets we build
portfolios on each of the last 1000 trading days and compute
the corresponding realized returns. Afterwards, we compute
the certainty equivalent (CE), Sharpe ratio (SR), Value-at-Risk
(VaR), and Expected shortfall (ES) as performance measures
for each path of returns and every random portfolio. To avoid
potentially skewed inferences due to outliers or asymmetries we
report the 10%-trimmed means and the medians of the CE and
SR over the 1000 random portfolios. The VaR and ES are com-
puted as lower empirical quantiles at 5% and 1% significance
levels and are averaged over the portfolios either. For simplicity
we neglect the transaction costs in the below discussion.

3.2.1. Target Portfolios
The target portfolio weights are the key component of the
shrinkage estimator. We consider three different targets: the
equally weighted portfolio and two modified global minimum-
variance portfolios. The equally weighted portfolio arises if we
assume that all asset returns have equal expectations, equal
variances and equal correlations. The covariance matrix for the
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Figure 5. The relative losses for the portfolios based in the optimal shrinkage estimator, the traditional estimator and the equally weighted portfolio as a function of the
dimension p for c = 0.2 (top left), 0.5 (top right), 0.8 (bottom left), 2 (bottom right). The condition index is set to 1000 and the mean-variance calibration criteria is used.

first global-minimum variance portfolio assumes different vari-
ances, but equal correlations. Thus, allows for more heterogene-
ity compared to the equally weighted portfolio. The single cor-
relation is computed as the average correlation for all asset pairs.
The corresponding target is computed by bec = �̂

−1
ec 1/1′�̂−1

ec 1,
where �̂ec = diag{�̂}1/2Recdiag{�̂}1/2 with diag{�̂} being the
diagonal of the sample covariance matrix of returns and Rec
is a correlation matrix with all non-diagonal elements equal
to the single correlation defined above. For the second global
minimum-variance portfolio we compute the covariance matrix
of returns using the three-factor Fama–French model, that is,

�̂ff = B̂�̂f B̂′ + diag{σ̂ 2
εi}i=1,...,p,

where B̂ is the matrix of estimated parameters, �̂f is the covari-
ance matrix of the factors and diag{σ̂ 2

ε,i}i=1,...,p is the diago-
nal matrix of residual variances. The resulting target vector of
weights is defined as bff = �̂

−1
ff 1/1′�̂−1

ff 1. The latter two
portfolios reduce the variation of portfolios by looking at the
variance but not the mean of the underlying assets. Note, that
bec and bff are stochastic by construction, since they are com-
puted using sample characteristics of the asset returns. Thus, the
theoretical results in these cases are valid only conditionally on
the target vector.

3.2.2. Benchmark Models
To guarantee a fair assessment of the suggested estimator we
consider two popular approaches as benchmarks. The first

approach is based on the nonlinear shrinkage estimator of
the covariance matrix suggested by Ledoit and Wolf (2012,
2017a). The estimator relies on the spectral decomposition
of the sample covariance matrix �̂ = UDU′, but replaces
the original eigenvalues by eigenvalues D∗ that minimize
the Frobenius norm D∗ = argminD||� − UDU′||. The
solution can be approximated using a generalized version of
the Marčenko–Pastur equation. First, we consider a numerical
implementation of this method proposed in Ledoit and Wolf
(2017b) (called LWQuEST). The direct numerical computation
of the eigenvalues appears to be very demanding. Recently,
Ledoit and Wolf (2020) suggest an analytic expression of
the nonlinear shrinkage estimator that uses a nonparametric
estimator of the spectral density (called LWAnalytical). In order
to determine the optimal portfolio weights we use these two
approaches as a plug-in estimator of the covariance matrix.
Note that in contrary to our approach, these methods shrink
a parameter of the distribution of asset returns and not the
portfolio weights, which are the key object of interest in asset
allocation problems. The second benchmark is an extension of
the three-fund portfolio of Kan and Zhou (2007). The optimal
portfolio is a linear combination of the target portfolio, the
sample global minimum-variance portfolio and the portfolio
that maximizes the Sharpe ratio1. The weights of this linear
combination are determined by maximizing the expected out-

1We thank Raymond Kan for providing these results in personal communica-
tion.
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of-sample utility. Note that Kan and Zhou (2007) derive the
optimal portfolios assuming a finite portfolio with p < n. The
extension of these results to the case p/n → c goes beyond
the scope of this article. For this reason we apply this estimator
only for the case p < n. For both benchmarks we estimate
the expected returns by the historical mean returns, as it is
frequently done in practice.

3.2.3. Empirical Results
The results of the empirical study are summarized in Tables 1
and 2 containing the results for mean-variance (β = γ ) and
minimum variance (β = ∞) calibration criteria, respectively.
The top blocks of the table provides results for c = 0.2,
while the following blocks correspond to c =0.5, 0.8, and
2. At the beginning of each block we summarize the perfor-
mance measures for the traditional estimator and the estimator
based on the nonlinear-shrinkage of Ledoit and Wolf (2012).
These estimators do not depend on the target portfolio weights.
Further we provide the results for the strategies involving the
target, that is, the suggested bona-fide shrinkage technique,
the target portfolio itself and the extension of the estimator
of Kan and Zhou (2007). This is done for equally weighted
portfolio, equal correlation portfolio and Fama-French portfolio
as targets. Furthermore, we include results for the traditional
portfolio and for the bona-fide shrinkage portfolio, where the
sample covariance matrix is replaced by its regularized version
based on the Tikhonov (ridge) approximation (2.33) with δ =
1/p. The corresponding strategies are called trad ridge and bona
fide ridge, respectively.

First, we consider the results for the mean-variance calibra-
tion in Table 1. If the dimension is low relatively to the sample
size, namely c = 0.2, then the traditional estimator shows a good
and robust performance. According to virtually all performance
measures it is better than any estimator based on equal corre-
lation and Fama–French targets. The Ledoit–Wolf estimator is
better only in terms of the Sharpe ratio. The dominant strategy
for this value of c is the Kan–Zhou estimator with the equally
weighted target which is closely followed by the suggested bona-
fide shrinkage portfolio. The ranking of the targets and the
estimators slightly changes if we increase c to 0.5. As expected
the traditional estimators becomes worse and is dominated by
every target-based portfolio. The leading estimator for this value
of c becomes the analytical Ledoit–Wolf estimator followed by
Kan–Zhou with the equally weighted portfolio as the target.
Finally, we note that the application of the regularized sample
covariance matrix based on the Tikhonov (ridge) approximation
(2.33) leads to minor improvements in the performance of both
the traditional and the bona-fide shrinkage estimators when
c = 0.2 and c = 0.5.

With c = 0.8 we attain the ratio of dimension to sample
size where the high-dimensional asymptotics becomes relevant
and simpler estimators heavily suffer from estimation risk. The
traditional estimator shows extremely poor performance, which
is similar to that of the numerical Ledoit–Wolf estimator. Since
the Kan–Zhou estimator does not take the increasing dimension
into account, it becomes worse than the target portfolios and the
bona-fide shrinkage portfolios. At the same time, the analytical
Ledoit–Wolf estimator becomes dominant with bona-fide ridge
estimator slightly behind. Large improvements are observed in

the performance of the traditional estimator when the ridge
regularization is employed in its construction. In contrast, the
application of the ridge regularization to the bona-fide shrink-
age portfolios leads to minor improvements.

Finally, if we increase c to 2 the sample covariance matrix is
singular and we use the generalized inverse for the traditional
estimator. Now the bona-fide estimator becomes clearly dom-
inant, while the use of the equally weighted target and of the
equally correlation target leads to similar results. As mentioned
above the Kan–Zhou estimator is not feasible for c > 1. Also, the
application of the regularized sample covariance matrix based
on the Tikhonov (ridge) approximation improves the perfor-
mance of the traditional estimator, while it leads to slightly
worse performance of the bona-fide shrinkage estimator. To this
end, we note a surprisingly poor performance of both Ledoit–
Wolf estimators, which appear to be worse than most of the tar-
get portfolios. Noteworthy, the LWQuEST estimator is probably
suffering from some numerical instabilities, while LWAnalytical
behaves still very stable. If we switch to the minimum variance
calibration criteria in Table 2, then the ranking of the estimators
remains unchanged.

Summarizing, the suggested bona-fide shrinkage estimator is
comparable to the analytical Ledoit–Wolf nonlinear shrinkage
estimator for c < 1 and becomes superior starting with c > 1.
It is dominant with respect to all performance measures. For
smaller values of c the Kan–Zhou estimator outperforms the
bona-fide estimator and both Ledoit–Wolf estimators, and tends
to show the best performance when it is used with the equally
weighted target. For intermediate values of c < 1 the analytical
Ledoit–Wolf estimator is dominant, while its poor performance
for c > 1 is potentially due to the fact, that it does not take into
account the estimation risk related to the sample mean vector,
which is accounted for in the bona-fide shrinkage estimator and
in the Kan–Zhou estimator. The numerical Ledoit–Wolf estima-
tor seems to show huge numerical instabities in comparison to
the analytic one (see, also Remark 3 below for further discussion
of this finding).

The choice of the target is an important issue and relying on
the results we can make general recommendations regarding its
choice. For c < 1 the equally weighted portfolio is the best
performing standalone strategy among the three alternatives.
This target also leads to the shrinkage portfolio with the best
overall performance. The equally correlated target is in all cases
the second best choice. If c = 2 then the order changes and
the equally correlated target becomes slightly better both as a
standalone strategy and as the target for the shrinkage-based
approach. Since the analysis is based on 1000 random portfolios,
we can, therefore, recommend using the equally weighted target
for c < 1 and equally correlated target for c > 1. Furthermore,
we can conclude that taking the best standalone target strategy
shall lead to the best performing shrinkage-based approach.

The time series of estimated shrinkage coefficients are
depicted in Figure 6. For space reasons we provide the
coefficients only for the equally weighted target and the mean-
variance calibration. For other parameter constellations the
results are similar. The portfolio is constructed using the first
alphabetically sorted assets. We observe that for small values
of c and thus a low estimation risk the shrinkage intensities
are close to one. The behavior is very stable, but mimics the
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periods of high and low volatility of financial markets. Thus,
high volatility on financial markets causes higher shrinkage
coefficients and a larger fraction of the sample EU portfolio.
This can be justified by stronger effects of diversification during

turmoil periods. With larger c the confidence in the classical
portfolio diminishes leading to a stronger preference for the
equally weighted portfolio. This results in lower and more
volatile shrinkage intensities. However, we observe the reverse

Table 1. Performance of traditional, bona-fide, the benchmark portfolios (LWQuEST—Ledoit and Wolf 2017b, LWAnalytical—Ledoit and Wolf 2020, KZ - Kan and Zhou
2007) and the target portfolios for the mean-variance calibration criteria.

CE SR VaR ES

Average Median Average Median α = 0.05 α = 0.01 α = 0.05 α = 0.01

c = 0.2 trad −0.84840 −0.84795 0.10033 0.10041 −0.88181 −1.43362 −1.27802 −2.01774
trad ridge −0.85096 −0.85028 0.10066 0.1006 −0.88193 −1.43891 −1.28130 −2.02313
LWQuEST −0.96539 −0.96509 0.10310 0.10288 −0.93884 −1.52905 −1.35071 −2.10094

LWAnalytical −0.79142 −0.79179 0.10141 0.10151 −0.8544 −1.37885 −1.24301 −1.97136

Equally weighted target
bona fide −0.80701 −0.80578 0.10125 0.10137 −0.85637 −1.41141 −1.25832 −2.00392

bona fide ridge −0.80303 −0.80305 0.10124 0.10136 −0.85485 −1.39997 −1.25366 −1.99908
target −1.47973 −1.47978 0.05178 0.05183 −1.35819 −2.17993 −1.90944 −2.91308

KZ −0.73868 −0.73831 0.10204 0.10195 −0.81524 −1.33615 −1.20824 −1.94859

Equal correlation target
bona fide −0.86149 −0.86029 0.09785 0.09803 −0.90268 −1.48278 −1.30966 −2.06512

bona fide ridge −0.86011 −0.85989 0.09773 0.09788 −0.90141 −1.48209 −1.30729 −2.06240
target −2.13972 −2.14348 0.05303 0.05291 −1.46652 −2.71956 −2.21071 −3.41674

KZ −0.93578 −0.93437 0.09170 0.09159 −0.94118 −1.63936 −1.40500 −2.14364

Fama-French target
bona fide −0.85595 −0.85551 0.09504 0.09433 −0.89107 −1.45683 −1.29601 −2.04557

bona fide ridge −0.8524 −0.85234 0.09552 0.09556 −0.88859 −1.45891 −1.29374 −2.04100
target −2.27656 −2.27951 0.03522 0.03529 −1.44902 −2.83263 −2.21467 −3.40873

KZ −0.89766 −0.89748 0.08611 0.08562 −0.89600 −1.58344 −1.34739 −2.09784

c = 0.5 trad −1.56794 −1.56702 0.04112 0.04158 −1.25759 −1.97710 −1.74511 −2.60700
trad ridge −1.47446 −1.47309 0.04468 0.04461 −1.2158 −1.90656 −1.68947 −2.53159
LWQuEST −3.28708 −3.28730 0.02557 0.02559 −1.85906 −2.93786 −2.56534 −3.68434

LWAnalytical −0.86718 −0.86687 0.06531 0.06548 −0.89736 −1.50835 −1.31493 −2.09438

Equally weighted target
bona fide −1.02898 −1.02829 0.05067 0.05098 −1.00189 −1.67912 −1.458300 −2.30347

bona fide ridge −0.99158 −0.9911 0.05342 0.05347 −0.98209 −1.65375 −1.43523 −2.27809
target −1.47854 −1.47831 0.05167 0.05170 −1.35780 −2.18133 −1.90904 −2.91312

KZ −0.93245 −0.93159 0.05903 0.05973 −0.95118 −1.50578 −1.34866 −2.10714

Equal correlation target
bona fide −1.18004 −1.17898 0.05198 0.05215 −1.10187 −1.82427 −1.59237 −2.44481

bona fide ridge −1.15576 −1.15526 0.05312 0.05308 −1.09212 −1.81848 −1.58300 −2.43487
target −1.81699 −1.81663 0.04036 0.04029 −1.40816 −2.42265 −2.10357 −3.33301

KZ −1.01288 −1.01141 0.05760 0.05770 −1.01531 −1.57685 −1.41783 −2.14790

Fama-French target
bona fide −1.22574 −1.22594 0.04963 0.04973 −1.11090 −1.75940 −1.57373 −2.42489

bona fide ridge −1.19113 −1.19039 0.05083 0.05064 −1.09567 −1.73454 −1.55387 −2.40117
target −1.93351 −1.9336 0.04278 0.04265 −1.40284 −2.48907 −1.99845 −2.92676

KZ −1.01496 −1.01416 0.05761 0.05782 −1.00263 −1.55246 −1.40187 −2.16018

c = 0.8 trad −11.10781 −11.07733 0.04031 0.03992 −3.35917 −5.40548 −4.66218 −6.70938
trad ridge −5.60256 −5.59981 0.04942 0.04921 −2.40138 −3.8217 −3.29866 −4.71741
LWQuEST −18.80892 −18.81717 0.03520 0.03521 −4.51683 −6.92530 −6.05810 −8.35046

LWAnalytical −0.98453 −0.98438 0.08988 0.08999 −0.98071 −1.61591 −1.42389 −2.24346

Equally weighted target
bona fide −1.40577 −1.40584 0.05118 0.05134 −1.29895 −2.07527 1.83362 −2.79312

bona fide ridge −1.31635 −1.31596 0.05238 0.05235 −1.28390 −2.02482 −1.79171 −2.74021
target −1.48023 −1.47918 0.05170 0.05171 −1.35865 −2.18186 −1.91045 −2.9148

KZ −2.03472 −2.03185 0.06359 0.06288 −1.40796 −2.25191 −1.97686 −2.94533

Equal correlation target
bona fide −1.60399 −1.60241 0.04978 0.04984 −1.29237 −2.39802 −1.98752 −3.17541

bona fide ridge −1.55829 −1.55768 0.05013 0.05005 −1.26800 −2.35739 −1.96495 −3.16411
target −1.68942 −1.68949 0.04453 0.04452 −1.3124 −2.45543 −2.05351 −3.35801

KZ −1.96623 −1.96299 0.06550 0.06522 −1.37667 −2.20379 −1.93809 −2.91761

Fama-French target
bona fide −1.79593 −1.79528 0.04740 0.04760 −1.39084 −2.26699 −1.94795 −2.84830

bona fide ridge −1.69800 −1.6972 0.04796 0.04793 −1.34454 −2.23851 −1.90270 −2.78836
target −1.83876 −1.83798 0.04355 0.04365 −1.37985 −2.41411 −1.98305 −2.94513

KZ −2.06935 −2.07129 0.06506 0.06515 −1.41329 −2.27824 −1.98427 −2.95639

(Continued)
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Table 1. (Continued)

CE SR VaR ES

Average Median Average Median α = 0.05 α = 0.01 α = 0.05 α = 0.01

c = 2.0 trad −2.12939 −2.13080 0.06414 0.06427 −1.44683 −2.38186 −2.07522 −3.18270
trad ridge −2.05179 −2.05106 0.06509 0.06514 −1.42082 −2.34175 −2.03791 −3.12989
LWQuEST −59.03298 −58.99561 0.00629 0.00618 −7.9549 −12.68863 −10.94189 −15.31889

LWAnalytical −1.50503 −1.50439 0.06355 0.06375 −1.26581 −1.95316 −1.7726 −2.69539

Equally weighted target
bona fide −1.22550 −1.22474 0.05904 0.05907 −1.18681 −1.99190 −1.72914 −2.75302

bona fide ridge −1.30872 −1.30891 0.06790 0.06782 −1.14901 −1.94775 −1.70477 −2.73827
target −1.47869 −1.47779 0.05175 0.05176 −1.35801 −2.17908 −1.90898 −2.91238

Equal correlation target
bona fide −1.22592 −1.22761 0.07282 0.07288 −1.09681 −2.09756 −1.74639 −2.91502

bona fide ridge −1.24075 −1.23914 0.07872 0.07873 −1.10084 −1.93814 −1.67112 −2.70638
target −1.32850 −1.32805 0.07020 0.07020 −1.13496 −2.16850 −1.83174 −3.08545

Fama-French target
bona fide −1.44490 −1.44438 0.05890 0.05867 −1.22790 −2.09709 −1.75667 −2.65269

bona fide ridge −1.42024 −1.41913 0.06947 0.06922 −1.19613 −1.96825 −1.72476 −2.66945
target −1.62084 −1.62093 0.05377 0.05360 −1.29152 −2.34075 −1.86625 −2.83814

NOTE: The performance measures are averaged over 1000 random portfolios of size 300. The trading period consists of 1000 days preceding March 23, 2018 and the risk
aversion is set to 5. The average values are based on trimmed mean with 10% of extreme values being dropped. The best strategies for every criteria and every values of
c are highlighted in bold.

Table 2. Performance of traditional, bona-fide, the benchmark portfolios (LWQuEST - Ledoit and Wolf 2017b, LWAnalytical - Ledoit and Wolf 2020, KZ - Kan and Zhou 2007)
and the target portfolios for the minimum variance calibration criteria.

CE SR VaR ES

Average Median Average Median α = 0.05 α = 0.01 α = 0.05 α = 0.01

c = 0.2 trad −0.85309 −0.85231 0.10035 0.10057 −0.88250 −1.44210 −1.28383 −2.02584
trad ridge −0.84923 −0.84889 0.09923 0.09909 −0.88174 −1.43823 −1.27883 −2.01864
LWQuEST −0.96554 −0.96474 0.10343 0.10359 −0.93948 −1.52539 −1.35090 −2.10343

LWAnalytical −0.79114 −0.79048 0.1014 0.10161 −0.85381 −1.38047 −1.24188 −1.96952

Equally weighted target
bona fide −0.81308 −0.81284 0.10123 0.10150 −0.85908 −1.41182 −1.26178 −2.0085

bona fide ridge −0.80998 −0.81034 0.10012 0.10001 −0.85828 −1.40687 −1.25735 −2.00243
target −1.47805 −1.47784 0.05169 0.05168 −1.35704 −2.17938 −1.90829 −2.91097

KZ −0.73828 −0.73822 0.10187 0.10195 −0.81400 −1.33608 −1.20828 −1.95301

Equal correlation target
bona fide −0.85773 −0.85717 0.09806 0.09785 −0.89740 −1.47224 −1.30236 −2.05662

bona fide ridge −0.85262 −0.85171 0.09803 0.0981 −0.89563 −1.46898 −1.29994 −2.05272
target −2.13255 −2.12898 0.05319 0.05312 −1.46343 −2.71591 −2.20532 −3.40780

KZ −0.93731 −0.93588 0.09141 0.09120 −0.94052 −1.63821 −1.40403 −2.14399

Fama-French target
bona fide −0.85149 −0.85077 0.09663 0.09677 −0.88750 −1.45256 −1.29064 −2.03126

bona fide ridge −0.84949 −0.84947 0.09629 0.09625 −0.88760 −1.44700 −1.28814 −2.0294
target −2.27063 −2.26895 0.03538 0.03543 −1.44480 −2.82390 −2.21059 −3.40190

KZ −0.89663 −0.89478 0.08661 0.08659 −0.89534 −1.58062 −1.34627 −2.09320

c = 0.5 trad −1.56971 −1.57001 0.04173 0.04161 −1.26072 −1.97665 −1.74582 −2.60683
trad ridge −1.47585 −1.4756 0.04465 0.0444 −1.21598 −1.90785 −1.69053 −2.54353
LWQuEST −3.28833 −3.29027 0.02581 0.02608 −1.86558 −2.93777 −2.56735 −3.67757

LWAnalytical −0.86699 −0.86626 0.0654 0.06526 −0.89816 −1.50838 −1.31504 −2.0954

Equally weighted target
bona fide −1.0532 −1.05298 0.05066 0.05048 −1.01036 −1.69687 −1.46966 −2.30812

bona fide ridge −1.14637 −1.14571 0.05275 0.05322 −1.08067 −1.78718 −1.56281 −2.41015
target −1.48082 −1.48066 0.05171 0.05172 −1.35847 −2.18138 −1.91024 −2.91449

KZ −0.93323 −0.93338 0.05939 0.05941 −0.95222 −1.50541 −1.34938 −2.10436

Equal correlation target
bona fide −1.17591 −1.17430 0.05196 0.05184 −1.09485 −1.80109 −1.57693 −2.42242

bona fide ridge −1.14637 −1.14571 0.05275 0.05322 −1.08067 −1.78718 −1.56281 −2.41015
target −1.80886 −1.80920 0.04010 0.04001 −1.40596 −2.41696 −2.09826 −3.32139

KZ −1.01397 −1.01394 0.05762 0.05790 −1.01524 −1.58062 −1.41661 −2.14494

Fama-French target
bona fide −1.22924 −1.22845 0.04980 0.05017 −1.11019 −1.75950 −1.56925 −2.41742

bona fide ridge −1.18967 −1.18982 0.05057 0.05064 −1.09012 −1.72857 −1.54528 −2.39013
target −1.93623 −1.93641 0.04259 0.04257 −1.40372 −2.49587 −2.00108 −2.93538

KZ −1.01377 −1.01328 0.05759 0.05765 −1.00204 −1.55270 −1.40064 −2.15907

(Continued)
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Table 2. (Continued)

CE SR VaR ES

Average Median Average Median α = 0.05 α = 0.01 α = 0.05 α = 0.01

c = 0.8 trad −11.1587 −11.12847 0.03821 0.03725 −3.3777 −5.43327 −4.67808 −6.73814
trad ridge −5.59307 −5.5935 0.05126 0.05138 −2.39789 −3.80057 −3.28431 −4.69414
LWQuEST −18.84221 −18.84773 0.03577 0.03624 −4.50978 −6.96099 −6.06441 −8.39818

LWAnalytical −0.98496 −0.98436 0.08942 0.08955 −0.98112 −1.61597 −1.42344 −2.2402

Equally weighted target
bona fide −1.43449 −1.43529 0.05084 0.0503 −1.30108 −2.08832 −1.83907 −2.79121

bona fide ridge −1.30591 −1.30557 0.05487 0.05487 −1.26708 −1.99403 −1.77592 −2.71366
target −1.47821 −1.47811 0.05168 0.05169 −1.35667 −2.18041 −1.90876 −2.91209

KZ −2.03415 −2.03269 0.06235 0.06256 −1.41138 −2.25474 −1.97862 −2.94248

Equal correlation target
bona fide −1.60982 −1.60906 0.05073 0.05031 −1.29875 −2.39866 −1.98344 −3.15048

bona fide ridge −1.53174 −1.52924 0.05174 0.05171 −1.26259 −2.35322 −1.94643 −3.11905
target −1.68850 −1.68914 0.04481 0.04491 −1.31139 −2.45712 −2.05434 −3.36065

KZ −1.96089 −1.95878 0.06499 0.06450 −1.37460 −2.19955 −1.93337 −2.90941

Fama-French target
bona fide −1.82002 −1.82289 0.04739 0.04775 −1.40332 −2.25988 −1.95652 −2.86186

bona fide ridge −1.6811 −1.67987 0.04983 0.04971 −1.34377 −2.20183 −1.89093 −2.77691
target −1.83460 −1.83658 0.04329 0.0432 −1.37616 −2.40806 −1.98023 −2.93814

KZ −2.07064 −2.06718 0.06476 0.06399 −1.41264 −2.27641 −1.98342 −2.96439

c = 2.0 trad −2.12727 −2.12819 0.06405 0.0641 −1.44373 −2.38377 −2.07218 −3.17711
trad ridge −2.06068 −2.05893 0.06518 0.06514 −1.4236 −2.34051 −2.04197 −3.13703
LWQuEST −58.92062 −58.87816 0.00574 0.00587 −7.96587 −12.64654 −10.9261 −15.29078

LWAnalytical −1.50775 −1.50743 0.064 0.06383 −1.26662 −1.9523 −1.77553 −2.70126

Equally weighted target
bona fide −1.45575 −1.45568 0.05220 0.05226 −1.34997 −2.15551 −1.89422 −2.89468

bona fide ridge −1.2937 −1.29318 0.06757 0.06793 −1.14349 −1.94082 −1.69787 −2.73005
target −1.4788 −1.47899 0.05174 0.05177 −1.35821 −2.17967 −1.90906 −2.91205

Equal correlation target
bona fide −1.31924 −1.32062 0.07073 0.07077 −1.13066 −2.15773 −1.82514 −3.07313

bona fide ridge −1.22331 −1.22256 0.07853 0.07837 −1.09087 −1.93172 −1.66227 −2.69818
target −1.32790 −1.32922 0.07046 0.07044 −1.13449 −2.16647 −1.83165 −3.08673

Fama-French target
bona fide −1.60447 −1.60370 0.05413 0.05423 −1.28581 −2.32282 −1.85587 −2.82089

bona fide ridge −1.41559 −1.41478 0.06915 0.06884 −1.19404 −1.97205 −1.72228 −2.66687
target −1.61993 −1.62003 0.05373 0.05383 −1.29209 −2.33933 −1.86513 −2.83576

NOTE: The performance measures are averaged over 1000 random portfolios of size 300. The trading period consists of 1000 days preceding March 23, 2018 and the risk
aversion is set to 5. The average values are based on trimmed mean with 10% of extreme values being dropped. The best strategies for every criteria and every values of
c are highlighted in bold.

behavior of the estimated shrinkage intensity when c = 2. Here,
the impact of the traditional estimator in the portfolio structure
increases and becomes comparable to the case of c = 0.5. Such
results are in line with our findings of the simulation study
presented in Figure 3, where the shrinkage intensity is close to
zero around c = 1. Finally, the results obtained by employing the
regularized sample covariance matrix based on the Tikhonov
(ridge) approximation leads to similar values of the shrinkage
intensities independently of c. These are shown in the lower plot
in Figure 6. This finding is in line with the values presented in
Tables 1 and 2.

Remark 3. The numerical Ledoit–Wolf estimator shows in our
empirical study surprisingly poor performance, which is prob-
ably because of some numerical issues. That is, why we recom-
mend to use its new analytic version. Nevertheless, the analytical
nonlinear shrinkage Ledoit–Wolf estimator still shows in our
empirical study a poor performance2 in case c > 1, but we

2For c > 1, the analytical Ledoit–Wolf estimator was initially also very
unstable because the (p − n + 1)th smallest eigenvalue was too close
to zero (of order 10−12). We have corrected this issue by treating it as
“zero” and replacing it by a specific constant. To the rest of eigenvalues the

believe there is a specific reason for that. Indeed, in (Ledoit
and Wolf 2017a, Assumption 5) the authors assume that the
sample mean vector is independently distributed of the sample
covariance matrix and its distribution is rotation invariant. This
assumption appears to be a characteristic property of multi-
variate normal distribution following Lukacs (1979). Moreover,
the assumption that the distribution of the sample mean vector
is rotation invariant, imposes further restrictions on the data-
generating model. It requires the population mean vector to
be a zero vector and the population covariance matrix to be
proportional to the identity matrix. As such, it is not clear
whether the Ledoit–Wolf estimator is optimal in the case of a
nonzero population mean vector, that is, in the mean-variance
framework. This is also justified by the authors themselves
in (Ledoit and Wolf 2017a, see Remark 5). It seems that this
“sample mean” effect becomes more prominent in the case of
the singular sample covariance matrix (c > 1) and/or small
risk aversion coefficient γ , that is, when optimal portfolios lie

optimal nonlinear shrinkage formula was applied (see, formulas (C.4) and
(C.5) in Ledoit and Wolf 2020, Supplement). The numerical implementation
of Ledoit–Wolf estimator is provided in R-package HDShOP (see, Bodnar
et al. 2021b).
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Figure 6. The bona-fide shrinkage intensities for the first 100 assets (alphabetic order) using the equally weighted target portfolio and the mean-variance calibration for
c = 0.2, 0.5, 0.8 and 2. Above - bona fide, below - bona fide ridge (see formula (2.33)).

further away from the global minimum variance portfolio on
the efficient frontier. Thus, the Ledoit–Wolf estimator should
be adjusted to this type of optimal portfolios before it can be
efficiently used in practice when portfolio dimension is larger
than the sample size, whereas the suggested bona-fide estimator
for the optimal portfolio weights incorporates both the high-
dimensional effects from the sample covariance matrix and the
sample mean vector simultaneously.

4. Summary

In this article, we consider the portfolio selection in the high-
dimensional framework. Particularly, we assume that the num-
ber of assets p and the sample size n tend to infinity such that

their ratio p/n tends to constant c where c can also be larger
than one, implying that we have more assets than observations.
Because of the large estimation risk we suggest a shrinkage-
based estimator of the portfolio weights, which shrinks the
mean-variance portfolio to several target portfolios, such as the
equally weighted portfolio, minimum-variance portfolio, etc.
For the established shrinkage intensity we derive the limiting
value which depends on c and on the characteristics of the
efficient frontier only. On the other side, the derived limiting
expression of the shrinkage uncertainty is only an oracle value
and is not feasible in practice, since it depends on unknown
quantities. In order to overcome the problem, we construct a
bona-fide shrinkage estimator of the optimal portfolio weights
by deducing consistent estimators of the parameters of the effi-
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cient frontier under the high-dimensional setting. As a result,
a fully data-driving approach is established for constructing
a practically feasible estimator for the weights of the optimal
mean-variance portfolios. From the technical point of view, we
rely on random matrix theory and work with the asymptotic
behavior of linear and quadratic forms in the sample mean
vector and in the (pseudo)-inverse sample covariance matrix. In
extensive simulation and empirical studies, we evaluate the per-
formance of established results with artificial and real data. Only
if the sample size is much larger than the portfolio dimension,
the traditional portfolio or the benchmark portfolio dominates
the portfolio suggested in the article.

Supplementary Materials

Supplementary Materials contain the proofs of the derived theoretical
results.
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