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INTRODUCTION

Among the salivary glands in the head and neck region,
the parotid glands are the largest. Located between the
outer ear and the lower jaw, they are embedded in the
subcutaneous tissue of the face. Parotid gland tumors
are removed surgically by partial or complete gland
excision. However, although new surgical techniques
including nerve monitoring (Timmermann et al. 2004)
have been proposed, the intraglandular course of the
facial nerve makes parotid surgery a challenging
intervention. During surgery, it is intended to preserve
the nerve function and to avoid a nerve injury that
possibly leads to partial face palsy. Thus, exact and
ddress correspondence to: Stefan Siebers, High Frequency
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reliable diagnostic methods are desired to determine in
advance whether and to what extent a surgical interven-
tion is necessary.

As the main diagnostic method, ultrasound B-mode
imaging is used in the majority of cases. Additionally,
Doppler sonography, magnetic resonance imaging,
palpation and occasional needle biopsies are applied.
With B-mode imaging, parotid gland lesions can be
detected quiet easily in general. When a lesion is
detected, the examiner tries to determine the type of
lesion based on its appearance in the image. Common
criteria are texture and echogenicity of the lesion, its
shape and boundary, the dorsal echo enhancement and
compressibility. However, the exact classification and,
hence, the diagnosis of malignancy or benignancy is
demanding due to the occurrence and diversity of salivary
gland tumors (Bozzato et al. 2007) (exemplary B-mode
images of parotid gland lesions are shown in Fig. 1). In



Fig. 1. B-mode images of most common parotid gland lesions. (a) 70-year-old female patient with a pleomorphic
adenoma (positive group). (b) 66-year-old male patient with a Warthin’s tumor (negative group). Note that pleomorphic
adenomas are actually benign lesions but may lead to malignancy in a later stage of disease and are therefore treated as

malignant (positive) cases in this work.
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addition, tumor-like lesions, as cysts or lymph nodes, are
casually mistaken for tumors. Thus, high experience and
expertise are required, which only specialized examiners
can provide. Since the difficulties in diagnosing salivary
gland lesions lead to a large number of false positives
and, hence, to many dispensable surgeries, computer
aided systems are strongly desired to support and facili-
tate the physician’s diagnosis. For this reason, we devel-
oped a sonohistology system for automated ultrasonic
tissue characterization aiming at an automated differenti-
ation between cases where surgical treatment is inevi-
table and such cases that must not necessarily be treated.

As a well researched topic in the past, different
approaches to ultrasonic tissue characterization have
been applied for various aims. The basic concept, which
most approaches have in common, involves the extraction
of parameters from ultrasound radio-frequency (RF) or
image data to be used as features representing distinctive
properties of the investigated biologic tissue. Based on
a decision rule, the investigated tissue is then classified
by assigning one of several target classes. If one single
feature is used, the decision rule is realized by simple
thresholding. However, using one feature exclusively is
commonly not sufficient to distinguish between different
kinds of tissue with the desired accuracy. To account for
this, a multi-feature approach is used in this work.

Applications for ultrasonic tissue characterization
have been manifold in the past, including prostate cancer
(Lizzi et al. 1997b; Feleppa et al. 2001; Scheipers et al.
2003a; Schmitz et al. 1999), atherosclerotic plaques
(Bridal et al. 1997; Noritomi et al. 1997), testicular
tissue (Jenderka et al. 1999), ophtalmology (Lizzi and
Laviola 1975; Lizzi et al. 1987), liver and hepatic
diseases (Lang et al. 1994; Lizzi et al. 1997b;
Oosterveld et al. 1991), myocardial tissue (O’Donnell
et al. 1981), staging of venous thrombosis (Kolecki
et al. 1995; Parsons et al. 1993; Siebers et al. 2004),
monitoring of thermal therapies (Lemor et al. 2000;
Siebers et al. 2006, 2007b), characterization of
apoptosis (Kolios et al. 2002), mammary tumors
(Chang et al. 2003; Chen et al. 2002), classification of
salivary gland tumors (Chikui et al. 2005; Scheipers
et al. 2005b; Siebers et al. 2007a) and thyroid
alterations (Smutek et al. 2003; Tsantis et al. 2005).

Unlike image-based features, spectral features
extracted from RF data have been proven to be superior
for ultrasonic tissue characterization (Gaitini et al.
2004; Scheipers et al. 2003b). However, classification
rates can be significantly improved in many cases
combining spectral and image based features, as it has
been shown in several studies (Gaitini et al. 2004;
Oosterveld et al. 1991; Scheipers et al. 2003a; Siebers
et al. 2007b).

The choice of features used for classification of
parotid gland lesions within the study presented in this
article was motivated by the criterions applied by
physicians during the standard ultrasound examination.
Thus, spectral features, image based texture features
and additionally contour descriptors were used to account
for differences in echogenicity, texture and shape. Using
a sequential search strategy, a subset of features was
selected to be processed by the classification system.
The system’s decision rule was realized by a maximum
likelihood classifier.
MATERIALS AND METHODS

Data acquisition and preprocessing
Ultrasound echo data were acquired with a Sonoline

Elegra digital ultrasound scanner (Siemens Medical
Solutions, Erlangen, Germany) and a linear probe
(7.5 L40) working at a center frequency of 7.2 MHz.
The useful bandwidth of the probe used for spectral
analysis was 75% of the center frequency. Data were



Table 1. Pathohistologic results: Occurrence of different
kinds of parotid gland lesions with quantity n during

clinical study

Type of tumor n Target class

Pleomorphic adenomas 29
Acinar cell carcinomas 7
Mucoepidermoid carcinoma 1
Oncocytic carcinoma 1
Squamous epithelial carcinoma 2 Upos

Sarcomatoid carcinoma 1
Adenocarcinoma 1
Adenoid cystic carcinoma 1
Lymphomas 4
Metastases 4

Warthin’s tumors 46
Basal cell adenomas 11
Canaliculous adenoma 1
Adenoid Cyst 1
Lipomas 5 Uneg

Lymph nodes 9
Cysts 13
Nodular fasciitis 1

The total number of cases was 138. The positive class Upos and nega-
tive class Uneg contained 51 and 87 cases, respectively.
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captured during the routine examination of patients
scheduled to have parotidectomy: 138 patients were
included in the clinical study. Over all, 66 patients were
male and 72 patients were female. The youngest patient
on the day of the examination was 6 years old and the
eldest patient was 88 years old. The mean age of the
patients was 57.1 years.

The decision whether to operate or to follow-up is
based on an initial sonographic imaging. Swollen and
protruded lesions are excised, especially when an
increase in size is noted. Even benign looking lesions
cannot be excluded in general from surgery to confirm
or exclude malignancy. A second imaging including the
data acquisition was performed at hospital admission
right before surgery. Patients with a sonographically
assessed space occupying lesion of the parotid gland
and the decision of surgical removal were selected.
Exclusion criteria were prior surgery in this area and
pregnancy. No biopsy was performed before surgery.
The time between data acquisition and surgery was 3
days at most. All patients underwent partial or complete
parotidectomy under constant facial nerve monitoring.
Patient compliance to the procedure was high, as the
new method did not extend the normal examination
time when applying ultrasound imaging to the head and
neck region.

The study was given approval by the local ethics
committee. Data acquisitions and conventional diagnos-
tics were performed by two experienced, board certified
head and neck sonographers. All patients gave informed
consent to participate in the study.

Purpose-made software written in Visual C11
(Microsoft, Redmont, WA, USA) running on a laptop
computer was employed to control the ultrasound
scanner. All relevant imaging settings were monitored
by the software to guarantee a standardized data acquisi-
tion. The internal operating system of the Elegra was
accessed via telnet to download complex base band ultra-
sound echo data. Such data were used to reconstruct the
original RF data by modulation of a dynamic carrier
with known characteristics. The download of data was
done via file transfer protocol (FTP). A dump file contain-
ing all relevant settings of the Elegra and the probe was
also stored along with each frame and used later to
compensate for TGC settings.

For each lesion, two orthogonal image frames were
recorded. Each frame consists of 360 lines and 2400
samples per line. The approximate size of the images is
5.1 cm in the axial direction and 4 cm in the lateral
direction. A single transmit focus was set to a depth of
2 cm, matching approximately the mean depth of lesions
observed during this study. The sampling rate and
amplitude resolution of the RF echo data was 36 MHz
and 12 bits, respectively.
B-mode images were constructed from the baseband
data by envelope detection and logarithmic compression.
In an initial preprocessing step, the B-mode images were
displayed on a laptop computer screen using a purpose-
made graphical user interface (GUI). Two experienced
physicians manually segmented the lesions in the B-
mode images by consensus to define a region-of-
interest (ROI). The physicians were blinded to the results
of the histology. This initial preprocessing step was
crucial for feature extraction to ensure the exclusive
usage of signals originating from the lesions and not
from surrounding tissue. The GUI as well as all image
and signal processing tools were developed using Matlab
(The MathWorks, Natick, MA, USA).

For the purpose of comparison, the experienced
physicians’ diagnoses were also recorded. The conven-
tional diagnosis included the measurement of the tumor
in three dimensions and qualitative classification
according to the following sonographic criteria
(*indicates malignancy): distal phenomenon (distal
enhancement/dwindling); sonographic margin definition
(sharp, regular, indistinguishable*, irregular*); echoge-
nicity (homogeneous, inhomogeneous*, echo-poor,
echo-rich, anechoic); perfusion pattern in power mode
(peripheral, central, diffuse) (Bozzato et al. 2007).
At the end of the examination, the examiner decided on
a suspected ultrasound diagnosis. For this study, the
mass was classified as a malignant or a benign lesion ac-
cording to Table 1. Histopathologic examination results
obtained after parotidectomy served as a reference or
“gold standard” for both conventional diagnostics and
the new computer aided method.
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Methods: Feature extraction and classification
This section gives a brief overview of the features

used for the characterization of parotid glands and
motivates their choice. Altogether, three kinds of features
have been used in this study: statistical distributions of
spectral parameters, textural features and shape descrip-
tive features. Such features have been widely used for
ultrasonic tissue characterization. However, only few
works took advantage of the possibility to enhance
classification rates by combining different kinds of
features, e.g., texture and spectral features (Gaitini et al.
2004; Oosterveld et al. 1991; Scheipers et al. 2003a;
Siebers et al. 2007b).

Attenuation estimation
The acoustic attenuation is one of the most

commonly used parameters for ultrasonic tissue charac-
terization. The choice of the acoustic attenuation for
discriminating different kinds of tissue is motivated by
findings from fundamental works using transmission
ultrasound for the investigation of different kinds of
pathological or healthy tissue (Duck 1990). If transmis-
sion ultrasound is used, the acoustic attenuation of a tissue
sample can be determined by the insertion loss method.
However, for in vivo ultrasound investigations, predomi-
nantly pulse-echo techniques are used since the applica-
tion of transmission ultrasound is limited to certain
organs and regions of the body like the female breast
(Jago 1993). Hence, methods for estimating the
frequency dependent attenuation from reflected
ultrasound signals have been developed in the past. In
this work, we applied two different techniques to estimate
the frequency dependent attenuation of tissue.

The spatially resolved estimation of spectral
attenuation, as well as backscatter parameters as
described in the next section, requires the RF
data-frame to be subdivided into overlapping segments.
The ROI size was chosen as a tradeoff between spatial
resolution and quality of spectral estimates. Thus, we
set the segment size to 128 samples axially, which
facilitates the application of the fast Fourier transform,
and 16 lines laterally, spanning an area of approximately
4.6mm2 (2.7mm 3 1.7mm). These settings correspond
with findings in (Chen et al. 1993; Lizzi et al. 1983;
Madsen et al. 1984). Overlap was set to 50% in axial
and lateral directions. From each segment, a calibrated
and averaged power spectrum hSkorr(f, z)i is calculated.
Calibration is achieved by dividing each spectrum by
a reference spectrum obtained from a measurement on
a single wire phantom at the same depth. Thus, system
and diffraction influences are partially eliminated. The
wire (polyamide, diameter 60 mm) was spanned
perpendicular to the imaging plane and was moved by
a stepper motor in the axial direction in increments of
1.4 mm. From each depth, 20 spectra were acquired and
averaged to reduce the spectral variance. The resulting
spectogram was obtained using a cubic spline
interpolation. Measurements on the wire phantom were
carried out in a temperature controlled water tank. By
adding sodium chloride, the speed of sound of the
solution was adjusted to match 1540 m/s [NaCl
concentration 53.6 g/L at 20

�
C; (Chen et al. 1978;

Rogers and Pitzer 1982)]. The resulting power spectrum
can be expressed as

D
Skorrðf ; zÞ

E
5 Bðf Þ2,102 aðf Þ

10dB2z; (1)

where B(f) is the frequency dependent acoustic
backscatter, a(f) is the frequency dependent acoustic
attenuation and 2z is the round-trip distance. Within the
useful bandwidth, the frequency dependent attenuation
can be approximated by a linear model (Bridal et al.
1997; Cloostermans and Thijssen 1983; Kuc and
Schwartz 1979)

aðf Þ 5 a1, ðf 2 fcÞ 1 aðfcÞ; (2)

where fc is the center frequency within the useful
bandwidth. The first method used in this work is the
multi-narrowband (mnb) method (Cloostermans and
Thijssen 1983), which provides as features for tissue
characterization the acoustic attenuation as well as the
attenuation coefficient that indicates the frequency
dependency of the acoustic attenuation. The acoustic
attenuation a(fj) is determined for each discrete
frequency fj within the useful bandwidth as the slope of
a regression line fitted to the logarithmic decay of the
power spectrum over depth. The coefficient a1

mnb is
then yielded as the slope of a regression line fitted to a(f).

The second method used in this work is the centroid
frequency shift (cfs) method (Fink et al. 1983). This
method is based on the assumption of a Gaussian shaped
spectral density of the backscattered ultrasound signal. It
can be shown that the assumed linear frequency depen-
dency of the acoustic attenuation results in a downshift
of the power spectrum’s center frequency. Hence, the
frequency downshift can be utilized as a measure for
the frequency dependent attenuation. The attenuation
coefficient a1

cfs can be determined by a linear least
squares fit to the frequency gradient over depth. For
both methods, four consecutive segments in the axial
direction were used to estimate the power decay and
frequency shift, respectively.
Acoustic backscatter estimation
Estimates for acoustic backscatter as proposed by

Lizzi et al. (Lizzi et al. 1997a, 1997b) are also widely
used for ultrasonic tissue characterization. Such



Fig. 2. 84-year-old male patient with a basal cell adenoma.
(a) B-mode image with contoured tumor. The hypoechoic
region inside the demarcation represents a cystic formation,
which is a part of the tumor and a common characteristic for this
kind of tumor. (b) Image of parameter bS (backscatter slope).

(c) Histogram of parameter values inside contoured ROI.
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parameters describing backscatter can be obtained from
diffraction corrected spectra [eqn (1)] after compensation
for attenuation effects. To compensate for attenuation,
a fixed attenuation is assumed instead of estimated
values, since both attenuation and backscatter parameters
are used to generate tissue-characterizing features, which
should be preferably uncorrelated. The remaining
backscatter term can be approximated by a linear least
squares fit determined by the slope bS and intercept bI.
In several works, these parameters have been related to
properties of the tissue, e.g., scatterer size, concentration
and spacing (Lizzi et al. 1987, 1997a).

Spatial distributions of spectral parameters
Attenuation and backscatter parameters can be

utilized to create spatially resolved images of the
respective estimates. However, such images still contain
too much information to be processed by a classifier.
Thus, a reduction of the information contained in a param-
eter image has to be achieved to characterize the whole
lesion by a single value. The most basic way is to take
the average of a parameter value for the region-of-
interest covering the lesion. However, just taking the
average does not account for the inhomogeneous
structure of lesions investigated in this work (Fig. 2a
and b). The statistical distribution of a parameter is
represented by its histogram (Fig. 2c). Several statistical
measures from the histograms of parameter values
are derived as features representing the imaged
lesion. The statistical measures are the mean value,
standard deviation, kurtosis, skewness and full width
at half maximum. These measures are combined in
a feature vector serving as a characteristic signature of
the lesion.

Texture features
In this work, 14 features calculated from gray level

co-occurrence matrices as proposed by Haralick
(Haralick et al. 1973) are used to quantify differences in
tissue structure appearing in the B-mode image. Such
features take into account transitions of gray values in
a discretized image. A gray value transition in an image
is defined by two image pixels of gray values k and l,
separated by a distance d for a given direction. If the tran-
sition (k, l) occurs in the image, the entry (k, l) of the ng3
ng co-occurrence matrix Cd, where ng is the number of
discretized gray values in the image, is increased by
one. Typically, rectangular ROIs or images are analyzed
using co-occurrence matrices for multiple directions to
obtain features that are almost invariant against rotation.
However, since ultrasonic images suffer from a worse
lateral than axial resolution, only the axial direction
is commonly considered for the calculation of
co-occurrence matrices. This approach allows extending
the calculation to nonrectangular ROIs as desired here.
In general, a manually contoured ROI comprises Nx

columns of different lengths. For each column, one
co-occurrence matrix Cd,x is determined. The
normalized co-occurrence matrix Pd

ROI is then calculated
by summing the Nx co-occurrence matrices, divided
by the total number of gray value transitions inside the
ROI:

PROI
d 5

PNx

x51 Cd;xPNg21
k50

PNg21
l50

PNx

x51 Cd;x

: (3)

Texture features are calculated from Pd
ROI according to

(Haralick et al. 1973).



Fig. 3. 52-year-old female patient with an irregular shaped
acinar cell carcinoma. (a) B-mode image with contoured tumor.
(b) Normalized Fourier descriptors calculated from contour.
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Shape descriptors
Besides the echogenicity of a lesion and its textural

appearance in the B-mode image, the shape of a lesion in
terms of symmetry, boundary regularity or roughness is
also commonly utilized as a diagnostic criterion. Differ-
ences in shape are quantified in this work by Fourier
descriptors. Originally used for hand written character
recognition (Granlund 1972; Zahn and Roskies 1972),
such descriptors have also been used in medical
imaging for characterization of breast lesions using
mammography (Shen et al. 1994). Since an automated
segmentation of the lesion is not the aim of this work,
the manually outlined contours are used for shape
analysis. For the calculation of Fourier descriptors, the
external boundary line is assumed to be a closed curve
in the complex plane. Thus, the curve can be represented
by a series of complex numbers. If the curve is supposed
to be one single period of the 2p-periodical complex
function c(s), a Fourier representation

cðsÞ 5
XN
n52N

Cne
jn2pL s; (4)

where s is the curve distance and L is the length of the
curve, can be found. The coefficients Cn are given by

Cn 5
1

L

Z L

0

cðsÞe2jn2pL sds: (5)

Since the curve is noncontinuous and points on the curve
are given as discrete values, the discrete Fourier
transform is used to calculate descriptors. An inner
boundary tracing algorithm (Sonka et al. 1998) was
used to yield a uniformly sampled representation of the
contour in a four-neighborhood. The coefficients Ck can
thus be expressed as

Ck 5
1

N

XN21

n50

cne
2jkn2pN : (6)

Fourier descriptors are obtained as normalized
coefficients

F k 5
jCkj
jC1j; ks0; 1: (7)

Due to the normalization, descriptors F k are invariant to
scaling. Since coefficient C0 is omitted and the phase
information is removed, descriptors F k are also invariant
to translation and rotation. A subset of Fourier
coefficients with e10 # k # 10, k s 0, 1 is used as
a signature to characterize the lesion’s shape. An
exemplary case is shown in Figure 3. Coefficients with
relatively small values of jkj represent low frequency
components of the contour function and, thereby,
deviations from a circular shape, whereas coefficients
with relatively large values of jkj represent high
frequency components and thereby fast changes, e.g.,
notches or rough edges, in the contour function.
Maximum likelihood classification
A supervised classification approach based on

a statistical maximum likelihood classifier and leave-
one-out cross validation is employed in this work. This
methodology is also utilized for heuristic feature
selection. According to the pathohistologic results
(see Results section), the acquired data sets were
subdivided into two groups, Upos and Uneg, comprising
all positive and negative cases, respectively.

To yield a decision rule based on a maximum
likelihood approach, clusters in feature space are
modeled as multivariate normally distributed probability
density functions. A class-dependent probability density
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function of a cluster in the Ne dimensional feature space
is given as

f
�
p
��Uq

�
5

1

ð2pÞN2 jSqj
1
2

,e
21

2ðp2pqÞT,P21

q
,ðp2pqÞ; (8)

where p is the feature vector to be classified, pq is the
empirical expectation value of cluster q denoting the
center of the cluster, and Sq is the covariance matrix of
cluster q. Taking the logarithm of eqn (8) and eliminating
the term (2p)N/2 yields the discriminant function of the
maximum likelihood classifier:

dqðpÞ 5 2
1

2
,ln

���Sq

���21

2

�
p2pq

�T
,
X21

q

,
�
p2p

q

�
: (9)

In the case of q different classes, the classification of
feature vector p is done by determining the likelihoods
associated with each class and assigning the class Um

with the maximum likelihood according to the decision
rule

eMLðpÞ 5 Um

���dm 5 maxðdnÞn51::q c n s m: (10)

In the case of a two class problem as in this work (differ-
entiation between positive and negative cases), eqn (10)
simplifies to

eMLðpÞ5
�
Unegjdneg.dpos
Uposjdpos.dneg

: (11)

Note that a feature vector is classified as positive if dneg
equals dpos, since false positives are rather acceptable
than false negatives in the case of tumor classification.
Leave-one-out cross validation
The discriminant functions dpos and dneg are calcu-

lated for each feature vector p representing one case in
the database. Thus, each case was labeled either positive
or negative. Training data included all cases except the
one under consideration. As a reference, results from
pathohistologic investigations are used (see clinical
results subsection). Sensitivity SE and specificity SP are
determined as the fraction of true positive cases by the
total number of positive cases and the fraction of true
negative cases by the total number of negative cases,
respectively. Both can be varied arbitrarily at each other’s
expense by introducing a scaling factor k to the determi-
nation of eML in eqn (11), thus, shifting the decision
threshold. This enables to generate receiver operating
characteristic (ROC) curves by plotting sensitivity versus
specificity. The area under the ROC curve AROC is
employed as a measure for the classifiers performance,
where an area AROC 5 1 implies a perfect separation
between both classes (Scheipers et al. 2005a).
Feature selection
The selection of appropriate features is a significant

step in a classification process since only few features
contribute to the classifier’s performance. In this work,
a stepwise heuristic scheme is carried out to yield a set
of features suitable for classification. In the first step,
all features are separately evaluated and sorted by the
area AROC. Highly correlated features with a correlation
coefficient r . 0.9 are eliminated from the feature space
since they usually do not contribute to the classification
performance. The next classification cycle is accom-
plished with pairwise combinations of the best feature
and all remaining features. The best pair of features is
then combined with all remaining features and so on.
This procedure is repeated until no more increase in
AROC is observed.
RESULTS

Clinical results
The current clinical study comprises 138 cases origi-

nating from 138 patients scheduled to have parotid surgery
shortly after the diagnosis. Resected lesionswere analyzed
in the pathohistologic department of the same hospital.
Overall, 13 different kinds of benign andmalignant tumors
or tumor-like lesions occurred during the study. Calcifica-
tions were not observed. Physicians closely examined all
lesions. Characteristic sonographic features are best seen
in the lesion of maximum diameter, which was chosen
for data acquisition. Over 80% of lesions were singular
occurring alterations of the parotid gland.

The lesion size ranged from 0.81 cm to 3.76 cm in
diameter with a mean of 2.11 cm. The number of
segments used for spectral estimation ranged between
40 and 1348 per case (mean 303), thus, allowing for
reliable determination of features. Cases were subdivided
into two classes, Upos and Uneg. Class Upos contained all
carcinomas, lymphomas and metastases as well as the
relatively large group of pleomorphic adenomas. Note
that pleomorphic adenomas are actually benign lesions.
However, they can lead to malignancy in a later stage
of disease and are therefore treated the same as malignant
lesions. Class Uneg contained all remaining benign cases,
including the relatively large group of Warthin’s tumors.
The occurrence of different types of parotid gland lesions
during this study as well as the subdivision into two target
classes are summarized in Table 1.

The diagnoses of experienced physicians were
recorded during the common medical inspections using
B-mode ultrasound, manual palpation and occasional
Doppler or power Doppler ultrasound. The physicians
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typed the inspected lesions according to theWorld Health
Organization (WHO) classification of parotid gland
tumors. However, to allow a fair comparison of the
conventional diagnoses and the results of the automated
classification, the same two-class-scheme was applied
as depicted in Table 1, yielding 45 out of 51 correctly
typed positive cases and 54 out of 87 correctly typed
negative cases. This corresponds to a sensitivity and spec-
ificity for the conventional diagnosis of SE 5 0.88 and
SP 5 0.62, respectively.
Fig. 4. Classification results. (a) AROC as a function of feature
number. The graph shows the increase in A , starting with
Feature extraction and classification
The above described selection algorithm yielded

a subset of 10 features. This set was used as a feature
vector for the automated classification. The selected
features are summarized in Table 2. Two backscatter
measures, six attenuation measures, one contour
descriptor and one co-occurrence measure were chosen.
The increase in classification performance depending
on the number of used features is shown in Figure 4a.
A classification using the first feature exclusively yielded
an area under the ROC curve of AROC 5 0.73. Adding the
next features successively to the feature vector led to
a monotonic increase in AROC. The best result was
obtained using 10 features, achieving an area under the
ROC curve of AROC 5 0.91. The resulting ROC curve
is shown in Figure 4b. The ROC curve can be used to
choose an operating point for the classification system.
Thus, an arbitrary sensitivity at the expense of specificity,
or vice versa, can be achieved. The classification result
reached by the experienced physicians using conven-
tional diagnostics is also depicted in Figure 4b. Since
the physicians implicitly used a two-class scheme for
lesion typing instead of providing malignancy probabili-
ties for each case, no ROC curve could be generated.
However, the physicians’ results can be compared with
Table 2. Selected features

No. Feature Origin AROC

1 bSm Spectral backscatter 0.73
2 F25 Shape descriptor 0.62
3 a1, s

mnb Spectral attenuation 0.67
4 a1, fwhm

cfs Spectral attenuation 0.51
5 MCC Texture 0.56
6 a(f0)m Spectral attenuation 0.64
7 a1, sk

mnb Spectral attenuation 0.59
8 a1, fwhm

mnb Spectral attenuation 0.57
9 a1, ku

cfs Spectral attenuation 0.56
10 bIku Spectral backscatter 0.52

Indices used with spectral parameters indicate the following
measures: mean (m), standard deviation (s), full width at half maximum
(fwhm), skewness (sk) and kurtosis (ku). Features were chosen by the
selection algorithm in the same order as in the table. The last row
indicates values of AROC when the particular feature was used
exclusively for classification.

ROC

the first feature bSm, and adding features 2e10 successively
(see Table 2). (b) ROC-curve using the complete set of 10
features. The area under the ROC-curve AROC is 0.91. For
comparison, the result achieved by experienced physicians

(EP) using conventional diagnostics is also marked.
the respective points on the ROC-curve. If the operating
point is chosen such that the physicians’ sensitivity SE
5 0.88 is achieved, the specificity is SP 5 0.74. The
respective point on the curve for the physicians’
specificity SP 5 0.62 indicates a sensitivity of 0.96.
Hence, the results obtained by conventional diagnostics
could be significantly exceeded. However, in the given
context of typing parotid gland lesions, the system
should facilitate the detection of as many positive
cases as possible. From the ROC curve, it can be seen
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that for a sensitivity SE5 1, the remaining specificity is SP
5 0.55. With a sensitivity of 1, no false negatives occur,
thus, all cases classified as negative are true negatives.

DISCUSSION AND SUMMARY

In this article, a sonohistology system for computer
assisted characterization of parotid gland lesions is pre-
sented. Overall, 138 patients were examined in a clinical
study. Although the number of cases is yet too small to
draw general conclusions, the results presented here are
promising. The proposed computer assisted method
achieved classification rates exceeding those of experi-
enced physicians using common diagnostic modalities.
Furthermore, several properties of the system might be
valuable for prospective applications:

� The system is adjustable to achieve an arbitrary
sensitivity at the expense of specificity.

� Except for the demarcation of lesions in the B-mode
image the system is user independent.

� The classification rates of the system will possibly
increase if a larger training data set is available. If so,
the data set may be subdivided into more than two
target classes to consider different kinds of benign
and malignant lesions.

� The system can be easily expanded by adding other
suitable features. In this work, we exclusively used
spectral features and their statistical distributions
inside the ROIs, textural co-occurrence features and
shape descriptors. Other suitable features may be
achieved using further ultrasound signal and image
processing techniques, as well as different diagnostic
imaging modalities or clinical parameters in a multi-
modal approach.

However, in some aspects the proposed method is
yet limited:

� The method may fail if the lesion size is very small. In
particular, the methods for attenuation estimation used
are restricted to an axial resolution of 6.75 mm. The
lesions occurred in this study were large enough to
provide reasonable estimates. Another issue exists
with shape descriptors, if a very large lesion exceeds
the field of view of the transducer and thus the
boundary of the lesion can not be determined.

� Although the acquired data have been calibrated to
correct partly for diffraction and influences of the
ultrasound system, the proposed method may not be
system independent, i.e., for a different ultrasound
system, building a dedicated database as well as
a specific feature selection is necessary.

� Several simplifications have been used in the spectral
estimations due to limitations in the clinical setting.
In particular, it was not possible to actually measure
attenuation and backscatter from resected lesions.
The approach for attenuation correction using a fixed
attenuation causes a bias in the backscatter estimates.
Nevertheless, the features used in this work were
apparently suitable to differentiate between the two
target classes.

� Compared with the number of diverse tumor and lesion
types occurring in the parotid gland, the number of
cases included in this study is relatively small. To
keep the number of cases in each class reasonably
high and to account for the curse of dimensionality,
the number of target classes was limited to two, thus
only two tumor entities, malignancy and benignity,
were considered, leading to rather heterogeneous
target classes.
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