
Distributed Constraint Optimization for Task
Allocation in Self-Adaptive Manufacturing Systems

Joseph Hirsch, Martin Neumayer, Hella Ponsar, Oliver Kosak and Wolfgang Reif
Institute for Software & Systems Engineering, University of Augsburg, Germany

E-Mail: joseph.hirsch@uni-a.de, {neumayer, ponsar, kosak, reif}@isse.de

Abstract—Adaptive manufacturing systems consist of many
autonomous agents working together in an ever-changing envi-
ronment. Therefore, collectively deciding which agent performs
what task is a key issue and widely studied. However, many
approaches towards this issue assume (partially) centralized
control, require implementing proprietary algorithms, or cannot
provide any guarantees regarding their runtime or communica-
tion overhead. To address these problems, we investigate the use
of distributed constraint optimization (DCOP) in this context:
We present a DCOP model built on freely available algorithms
to distribute the problem among the agents that cooperate to
solve it. Furthermore, we compare this decentralized approach
to a centralized one by measuring the runtime in a set of
system configurations with an increasing number of agents. While
the DCOP approach works well in small system configurations,
our results indicate poor scalability compared to the central
approach when increasing the number of agents. We conclude
that, although the DCOP approach has desirable properties, it
is unsuitable for larger practical applications with dozens or
hundreds of agents.

Index Terms—DisCSP, DCOP, task allocation, self-adaption,
flexible manufacturing systems, multi-agent systems

I. MOTIVATION

Adaptive manufacturing systems are an interesting indus-
trial application for Collective Adaptive Systems (CAS) [1].
They consist of many heterogeneous agents, such as robots
and vehicles, working together in a dynamically changing
environment to fulfill a common goal, i.e., manufacture the
desired products. One major challenge in adaptive manu-
facturing systems is collectively reconfiguring to deal with
changes in the environment or the system itself, e.g., new
products to be manufactured or agent breakdown. We focus on
reconfiguration in the sense of finding a valid task allocation
[2] and routing: The agents have to assign operations required
to manufacture a product to agents offering these operations
and then ensure products are transported accordingly.

Approaches employing a central controller for decision-
making may lack robustness due to a single point of failure
[3]–[5] and scalability due to increased communication costs
[6]. Therefore, research in CAS focuses on modeling systems
as a set of autonomous agents that interact at runtime to make
decisions. In the domain of adaptive manufacturing systems,
however, many approaches following this methodology either
assume (partially) centralized control [7], [8] or require im-
plementing proprietary algorithms [8], [9]. In addition, the
message and runtime overhead of some approaches depends

on the current system configuration and is therefore hard to
quantify in advance [10], [11].

Distributed constraint optimization promises to relax the
problem of centralized control by distributing the decision
variables of the problem to the agents [12]. The agents then
cooperate to solve the problem, eliminating the need for a
central controller. Several algorithms, such as the distributed
pseudotree-optimization procedure (DPOP), claim to offer
scalability [13] and are publicly available [14]. Hence, we
investigate the use of distributed constraint optimization for
task allocation and routing in adaptive production systems.
We aim for a decentral control mechanism that combines the
advantages of well-tested and freely available algorithms with
predictable runtime and message overhead.

The remainder of this paper is structured as follows: Sec-
tion II introduces the problem using a motivating example.
In Section III, we summarize related work covering task
allocation in adaptive manufacturing systems and Distributed
Constraint Optimization. Section IV presents our Distributed
Constraint Optimization approach towards solving the problem
and explains our modeling in greater detail. We evaluate our
approach theoretically and experimentally on several system
configurations, also comparing our approach to a centralized
Constraint Optimization approach in Section V. Section VI
discusses the results and concludes the paper.

II. PROBLEM DEFINITION

A. Organic Design Pattern

Adaptive manufacturing systems in this paper are modeled
using the Organic Design Pattern (ODP) [15], [16]: The active
participants of the system are called agents, while products are
processed by the agents1. The blueprint on how to manufacture
a product is referred to as a task. A task consists of a sequence
of capabilities in a specified order. The task’s state specifies
which capabilities were already applied and which capability
has to be applied next. To meet the required capabilities of a
product, each agent provides a set of capabilities. Further, a
connection matrix defines which agents are connected. Only
connected agents can hand over products. We now focus on
finding adequate roles. A role comprises three aspects:

1) Where an agent gets products from.
2) Which capabilities the agent applies.

1In contrast to previous work, we refrain from using the term resource as
it is ambiguous in the context of manufacturing systems [2].

S1

C1

R

C2

S2

Fig. 1. Motivating example: A manufacturing system consisting of two storage
agents S1 and S2, two carts C1 and C2, and a robot R. An arrow between two
agents indicates that they are connected and can therefore exchange products.

3) Where it gives products to after applying the capabilities.

A valid system configuration associates each capability of a
task with an agent in a corresponding role. It also ensures that
successive agents are connected, either directly or via another
agent.

B. Motivating Example

Consider the system configuration depicted in Fig. 1: A
manufacturing system consisting of 5 agents is shown. Agents
S1 and S2 are storages producing and consuming products,
C1 and C2 are so-called carts, transporting products, while R
is a robot processing products, e.g., by drilling a hole. The
edges between the agents represent the connection matrix: C1

and C2 are connected to any storage or robot. The problem
can now be defined as finding corresponding roles for a given
task, e.g., (Produce,Drill, Consume).

In language terms2, the following roles represent an exem-
plary solution to our problem:

• Storage S1 “produces” products and hands them over to
C1.

• Cart C1 transports products from S1 to R.
• Robot R receives products from C1, applies the capability

drill and hands the finished products over to C2.
• Cart C2 transports products from R to S2.
• Storage S2 receives and “consumes” products from C2.

Note that storages producing products do not specify where
products come from and storages consuming products do not
specify where products are given to afterward.

III. RELATED WORK

The problem described above is closely related to the
Flexible Job Shop Scheduling Problem (FJSP) [17] with trans-
portation constraints. The FSJP with transportation constraints
further includes the sequencing of operations and transports.
However, we focus on the assignment of operations to suitable
machines and the routing of products. The sequencing of
operations and transports emerges through the interaction of
the agents at runtime.

2For a more formal description, refer to the MiniZinc model in our
replication package: https://github.com/isse-augsburg/ecas2021-DisCSP

A. Dynamic Control of Adaptive Manufacturing Systems

Nafz et al. present a universal reconfiguration mechanism
to control adaptive manufacturing systems in [7]. The authors
propose to model the agents with the ODP and state the
properties for a valid task allocation as Object Constraint
Language (OCL) constraints. The agents then monitor these
properties and whenever the agents notice a constraint viola-
tion, they gather a global view of the system. This view is then
transformed into a Constraint Satisfaction Problem using the
OCL constraints. A constraint solver can then calculate a new
task allocation centrally and distribute it to the agents. This
approach is easy to implement as an off-the-shelf constraint
solver can be used. However, it suffers from the disadvantages
of central control.

To alleviate the problem of central control, in [8] and [10],
the authors present a reconfiguration mechanism based on
coalition formation. If an agent notices a constraint violation,
it creates a new coalition and becomes its leader. The leader
recruits neighboring agents until it can calculate a feasible
task allocation. The leader then distributes the result of the
task allocation and dismisses the coalition. Thus, information
and control are only partially centralized.

A wave-like reconfiguration mechanism for systems based
on the ODP is presented in [9]. If an agent loses a capability,
it requests assistance from the neighboring agents. A neigh-
boring agent capable of replacing the broken capability might
answer the request and both agents swap roles. If a single swap
is not sufficient to restore a valid system configuration, a wave
of swaps may run through the system. So instead of forming
coalitions, this approach is entirely decentralized. However, a
complete breakdown of an agent may go unnoticed as agents
have to requests assistance themselves [10]. The wave-like
approach is similar to a decentralized swapping-based min-
conflicts local search heuristic which is used to schedule
workforce in [18]. Both the coalition formation and the wave-
like approach require implementing a proprietary, distributed
algorithm. Further, in both approaches, the reconfiguration
overhead is hard to quantify as it is dependent on the available
redundancy and the system configuration [10], [11].

In [19], the authors compare centralized and decentralized
approaches towards allocating machines and operators in a
slightly different manufacturing context. In their simulation,
operators run machines under qualification constraints to pro-
cess products. Further, perturbations such as machine failure or
operator unavailability occur. The authors compare distributed
constraint optimization approaches and their own heuristic
extensions for this problem. They conclude that distributed
constraint optimization approaches are suited for this use case.

B. Distributed Constraint Optimization with DPOP

Following [12], a Distributed Constraint Satisfaction Prob-
lem (DisCSP) is a tuple 〈A,X,D,C, α〉, where
• A = {a1, . . . , am} is a finite set of agents.
• X = {x1, . . . , xn} is a finite set of variables.
• D = {D1, . . . , Dn} denotes finite sets of domains for the

variables in X . Di corresponds to possible values of xi.

https://github.com/isse-augsburg/ecas2021-DisCSP

a1

a2 a3

a4

x4

x2 x3

x1

(a) Constraint Graph

a1

a2

a3a4

x4

x2

x3

x1

(b) Pseudo-Tree

Fig. 2. Typical representations of an example DCOP with four agents a1 to
a4, each controlling one variable x1 to x4. Edges indicate constraints between
the connected variables. Figure adapted from [12].

• C = {c1, . . . , ck} is a finite set of constraints over a
subset of X . A constraint specifies how variable values
should be related to each other by disallowing certain
combinations of values.

• α : X → A is a function that assigns each variable in X
to an agent α(x).

In a Distributed Constraint Optimization Problem (DCOP),
the set of constraints C is replaced by a set of weighted
constraints F = {f1, . . . , fk} that indicate a degree of pref-
erence about their violation by assigning costs or utilities to
combinations of values or disallowing certain combinations
[12].

DCOPs and DisCSPs are often represented as a Constraint
Graph, where agents controlling their respective variables are
shown as nodes, while constraints are shown as edges. An
example Constraint Graph is shown in Fig. 2a.

One well-known algorithm to solve DCOPs and DisCSPs
is the distributed pseudo-tree optimization procedure (DPOP)
[13]. As the name suggests, DPOP relies on the agents forming
a so-called pseudo-tree and communicating via messages.
DPOP consists of three phases:

1) Pseudo-tree formation: The agents form a pseudo-tree,
e.g., by performing a depth-first search [13]. An exem-
plary pseudo-tree is shown in Fig. 2b: Agents that are
connected in the constraint graph are either connected
via tree edges (solid lines) or backedges (dotted lines).

2) UTIL propagation: Starting from the tree leaves, the
agents compute their optimal utilities considering their
adjacent tree edges and backedges. E.g., agent a3 in
Fig. 2b must consider x2 and x1, while a4 must only
consider x2. Finding the optimal value combination
is done by dynamic programming. The agents then
propagate the optimal value combination to their parent
in a UTIL message.

3) VALUE propagation: The root node collects all the
UTIL messages of its children and then computes the
optimal overall utility and sends a VALUE message

C1 R C2

C1oR

C1iR

RiC1

RoC1

RoC2

RiC2

C2iR

C2oR

Fig. 3. Excerpt of the constraint graph of our motivating example with the
connected agents C1, C2 and R.

to its children, informing them about its decision. The
children adapt the root node’s decision and pass the
UTIL message on to their children until they reached
every leave node.

For a more detailed description of DPOP and its phases,
refer to [13]. In our implementation, we use the DPOP imple-
mentation of the FRODO framework [14], which is an open-
source framework for distributed combinatorial optimization
written in Java [20].

IV. IMPLEMENTATION

In the following section, we describe our implementation of
the reconfiguration as a DisCSP. We provide a model descrip-
tion in plain words, present a formal model, and elaborate on
the assumptions and limitations of our model.

A. Model Description

The main difficulty in modeling is to use local agent
knowledge only. Each agent knows about its capabilities and
its direct neighbors, i.e., other agents it can transfer products
to and receive products from directly. To model this neighbor-
hood, each agent has two variables for each of its neighbors:
One variable represents an input from this neighbor, the other
variable represents an output to this neighbor. The variables are
named as follows: <agent><direction><neighbor>,
where <direction> is either i for input or o for output.
C1oR1, for example, is a variable located at agent C1 and
represents an output to agent R1. To illustrate this variable
naming, Fig. 3 revisits our motivating example and presents
an excerpt of the corresponding constraint graph.

Transports and the state of the task are represented by
the values of the agents’ variables. Therefore, the variables’
domains are the integer numbers that represent the state of
the task. Variable values default at −1 which means that no
products are transferred along the respective connection, e.g.,
C1oR1 = −1 means no products are output from C1 to R1.
If a product’s state does not change while at the same agent,
e.g., C1iS1 = 1 and C1oR = 1, the agent does not apply any
capability but instead transports the product. However, if an
agent receives a product with an initial task state and outputs
it with a higher task state, it has applied the corresponding
capabilities. E.g., agent R might receive a product from agent
C1 with task state 1 (RiC1 = 1), apply the drill capability, and
output the product to agent C2 with task state 2 (RoC2 = 2).

S1 C1 R C2
S2

S1oC1
= 1

S1iC1
= −1

C1iS1
= 1

C1oR
= 1

RiC1
= 1

RoC2
= 2

C2iR
= 2

C2oS2
= 2

S2iC2
= 2

[3]

S2oC2
= −1

[1]
=

[2]
�C1

[1]
=

[2]
�R

[1]
=

[2]
�C2

[1]
=

Fig. 4. Example solution for the Task Allocation of PRODUCE DRILL
CONSUME: S1 produces and outputs products to C1, C1 transports products
to R without applying any capability. At R products are drilled, i.e., the state
changes from 1 to 2, and given to cart C2, which transports products to S2

where they are consumed. Constraints are referenced in []. �a is a relation
that formalizes correct application, i.e., the agent does only apply capabilities
it has, which is further described in Section IV-B. Not all variables with the
value -1 are shown.

Fig. 4 depicts the exemplary solution to our motivating
example as lined out in Section II-B. Any solution has to
ensure that the following three types of constraints hold:

1) The values of matching output and input variables are
the same. In the example of Fig. 4:

C1oR = RiC1 ∧ . . . ∧RiC2 = C2oR.

2) The agents apply capabilities correctly, i.e., if an input
variable is x 6= −1, exactly one output variable has to
be y ≥ x, and the agent has to have all capabilities of
the task between the states x and y.

3) Under the previous constraints, a variable assignment
where all variables are -1 is valid. To ensure production,
we add an auxiliary constraint: A storage has to ensure
that one of its input variables is not -1 but the last state
of the task before CONSUME.

B. Formal Model

The DisCSP can be formalized as follows: Given
• A: the agents of the system,
• X: the variables of the DisCSP,
• |t|: the number of capabilities in the task,
• �a: a relation of correct capability applications for agent
a. �a contains pairs of states (s1, s2): If (s1, s2) ∈ �a,
a can change the state of a product from s1 to s2 by
applying its capabilities. �a prevents that an agent is
instructed to apply a capability it does not have.

Satisfy following constraints:

∀a, a′ ∈ A : aIa′ ∈ X → a′Oa ∈ X ∧ aIa′ = a′Oa (1)

∀a, a′ ∈ A : aOa′ ∈ X ∧ aOa′ 6= −1→ (2a)
∃aIa′′ ∈ X : (aIa′′, aOa′) ∈ �a (2b)
∧(aIa′′ = −1 ∨ ¬∃aIa′′′ ∈ X : (2c)

a′′ 6= a′′′ ∧ aIa′′ = aIa′′′) (2d)

∃a′ ∈ A : aIa′ ∈ X ∧ aIa′ = |t| − 1 (3)

(1) The inputs of agent a match the outputs of agent a′.
(2a) For all outputs that are not -1, (2b) exists a correct

corresponding input, (2c) and the input is the only input with
this state, (2d) or is -1.

(3) An agent exists with an input of the products at the
last state before consumption. This is a necessary auxiliary
constraint to make sure that not all variables are set to -1.

C. Assumptions and Limitations

Our model does not consider situations where several agents
need to cooperate to complete one transport or capability. We
further assume that the last agent of a task is known, i.e.,
we know where the finished products are consumed or stored.
Consequently, we also assume that each task ends with the
capability CONSUME. One limitation of our model is that it
cannot produce assignments where an agent receives products
it has already received before. While this modeling prevents
deadlocks, it also restricts the feasible system configurations
severely as it rules out cyclic configurations [21]. In our
following evaluation, we additionally assume that all stationary
agents like robots and storages are connected to all carts
but not to other stationary agents. Carts are connected to all
stationary agents respectively.

V. EVALUATION

A. Complexity Analysis

Solving CSPs is NP-hard [22]. All known complete CSP
algorithms, therefore, have an exponential complexity of
O
(
d|X|

)
in the worst case, where |X| is the number of

variables and d is the size of the domain. In our case, d is
the length of the task, and |X| can be calculated using the
following formula: |X| = 4 · |ACarts| ·(|A|−|ACarts|), where
A is the set of agents in the system and ACarts the set of carts.
We assume that every cart is connected to every stationary
agent. More generally spoken, the number of variables depends
on the number of neighbor-relations in the system since each
neighbor-relation requires 4 variables (2 variables for each
direction). We refer to the number of neighbor-relations as
v in the following. In a system with n agents where the share
of carts is c, v is given by v = (nc) · (n(1− c)) which
simplifies to n2(c−c2). While the share of carts is application-
specific, the maximum for v with a given n is at c = 0.5, i.e.,
half of the agents are carts. Under the assumptions stated in
Section IV, the complexity of the reconfiguration is therefore
given by O(d4v). Treating each pair of matching output and
input variables as one variable would reduce the complexity
to O(d2v).

B. Experimental Evaluation

To evaluate the model presented in Section IV, we imple-
ment it using the DPOP algorithm from the FRODO frame-
work. We then run several experiments with different system
configurations, measuring the runtime needed to come up with
a solution. Further, we compare the runtime against a central
model that does not distribute the problem among the agents
but instead assumes central knowledge. The implementation

of the central model follows [8]. However, compared to the
authors in [8], our model is written in MiniZinc [23] and
solved using the Gecode solver.

We investigate the following questions in our evaluation:
1) How does the runtime of the distributed model compare

to the centralized reconfiguration model?
2) How does the runtime of the two approaches scale with

an increasing number of agents and neighbor-relations?

C. Experimental Setup

As seen in the complexity analysis, the complexity of the
problem rises with the length of the task and the number of
neighbor-relations. Therefore, we evaluate a set of configura-
tions (see Table I) covering different task lengths and a varying
number of agents and neighbor-relations. Each configuration
is run 10 times and results are averaged.

For every configuration, we follow the given procedure:
1) We initialize our system with a given valid configuration

where each agent performs one capability.
2) To start the reconfiguration process, we then simulate the

failure of a predefined capability in one of the agents.
3) We measure the time for solving the resulting constraint

problem.
In this setup, we ignore the runtime needed for the organi-

zation and synchronization of the agents before and after the
calculation. As we simulate the execution on a single machine,
inter-machine communication delays are also ignored.

D. Experimental Results

The results of 90 runs are shown in Table I. Fig. 5 shows
the runtime of every configuration in a boxplot. Fig. 6 displays
the runtime in dependency of the number of neighbor-relations
v and compares central and distributed solving. To do so, the
runtime results of configurations with the same value of v were
averaged. The results show some mentionable features:

a) Runtime: For systems with up to 4 neighbor-relations,
the distributed solving is faster than the centralized. However,
both approaches have a runtime of less than 0.5s, which
we consider suitable for a practical application. For larger
systems with 6 or more neighbor-relations, the runtime of
the distributed solving underlies an exponential growth. In
systems with 8 relations, the runtime already averages around
6s, and in even more complex systems, the runtime reaches
a magnitude of several minutes. Therefore, we argue that the
distributed approach might be infeasible in practical applica-
tions with dozens or hundreds of machines. The centralized
approach has a constant time complexity in our experiments:
All reconfiguration problems were solved in less than 0.5s,
even configurations with up to 10 neighbor-relations.

b) Scalability: The distributed solving of the recon-
figuration problem underlies exponential growth, while the
centralized solving seems constant in time. For large systems,
the runtime of the distributed calculation is scattered over
several orders of magnitude. The distributed solving of the
reconfiguration problem, therefore, clearly does not scale well
on larger systems.

TABLE I
AVERAGE (avg) AND MINIMAL (min) RUNTIME OF DIFFERENT SYSTEM

CONFIGURATIONS IN MILLISECONDS. d IS THE LENGTH OF THE TASK, v IS
THE NUMBER OF NEIGHBOR-RELATIONS.

Conf. d Carts Robots &
v avg(T)[ms] min(T)[ms]Storages

a 3 1 2 2 70 63
b 3 1 3 3 81 67
c 3 2 2 4 170 125
d 3 1 4 4 94 81
e 3 2 3 6 245 213
f 4 2 3 6 589 427
g 4 2 4 8 4114 3519
h 4 3 3 9 53198 20048
i 4 2 5 10 79717 68616

a b c d e f g h i

102

103

104

105

Configuration

T
[m
s]

Fig. 5. Runtime of distributed solving different system configurations (see
Table I) in milliseconds. The time axis is logarithmically scaled.

2 4 6 8 10

102

103

104

105

v

T
[m
s]

Central (MiniZinc - Gecode)
Distributed (FRODO - DPOP)

Fig. 6. Average runtime of the central and distributed solving in milliseconds
depending on the number of neighbor-relations. Configurations with the same
v were averaged. The time axis is logarithmically scaled.

VI. CONCLUSION AND DISCUSSION

In this paper, we addressed the task allocation problem
in self-organizing manufacturing systems. We investigated
the use of distributed constraint optimization to calculate a
valid agent-role mapping. A possible DisCSP model of the
task allocation problem has been introduced. This enabled
a decentralized solution calculation that does not require a
central specialized agent and therefore relaxes the problem
of a single point of failure. We evaluated the runtime of the
system to find out if it is suitable for a practical application.
For the execution of the DPOP algorithm, we used the publicly
available FRODO framework. Our evaluation results indicate
that the calculation is fast (less than 0.5 seconds) in small
systems. However, the runtime of the DisCSP model grows ex-
ponentially with the number of neighbor relationships. In our
experiments, the DisCSP model reaches an average runtime of
over a minute, even in configurations with less than 10 agents,
while the MiniZinc model maintains a constant runtime.
Therefore, we argue that the DisCSP model is unsuitable for
practical application with dozens or even hundreds of agents.
While this is clearly a negative result, we want to contribute
to reducing the positive result publication bias in the field of
adaptive systems [24] and foster debate on when to prefer
distributed over centralized control.

Further research is needed to explain why the scalability
of the two approaches differs so greatly. In particular, it
would be interesting to investigate the influence of the dif-
ferent frameworks on the runtime. In order to use distributed
constraint optimization for task allocation in self-organizing
manufacturing systems, it also seems necessary to reduce the
complexity of the problem, which is left as future work. A
way to reduce the complexity of the system is to reduce the
neighbor-relations. We assumed a single manufacturing facility
where carts can reach every other agent and are therefore fully
connected. The number of neighbor-relations can be decreased
if not all of the connections of a cart are considered in the
DisCSP model. If no solution can be found, these left-out
connections would have to be added again. Another way to
reduce complexity would be to do a neighbor detection of
the robots and storages to see which cart connects the agent
to which other agents and then reduce the problem to the
processing agents without considering the carts in between

REFERENCES

[1] D. Sanderson, N. Antzoulatos, J. C. Chaplin, D. Busquets, J. Pitt, C. Ger-
man, A. Norbury, E. Kelly, and S. Ratchev, “Advanced manufacturing:
An industrial application for collective adaptive systems,” in 2015 IEEE
International Conference on Self-Adaptive and Self-Organizing Systems
Workshops, 2015, pp. 61–67.

[2] Y. Chevaleyre, U. Endriss, J. Lang, P. Dunne, M. Lemaitre, N. Maudet,
J. Padget, S. Phelps, J. Rodriguez-Aguilar, and P. Sousa, “Issues in
multiagent resource allocation,” Informatica, vol. 30, pp. 3–31, 2006.

[3] P. Leito, “Agent-based distributed manufacturing control: A state-of-the-
art survey,” Engineering Applications of Artificial Intelligence, vol. 22,
no. 7, pp. 979 – 991, 2009.

[4] W. Shen and D. H. Norrie, “Agent-based systems for intelligent manu-
facturing: a state-of-the-art survey,” Knowledge and information systems,
vol. 1, no. 2, pp. 129–156, 1999.

[5] D. Ouelhadj and S. Petrovic, “A survey of dynamic scheduling in
manufacturing systems,” Journal of scheduling, vol. 12, no. 4, pp. 417–
431, 2009.

[6] W. Yeoh and M. Yokoo, “Distributed problem solving,” AI Magazine,
vol. 33, no. 3, pp. 53–65, Sep. 2012.

[7] F. Nafz, F. Ortmeier, H. Seebach, J.-P. Steghöfer, and W. Reif, “A
universal self-organization mechanism for role-based organic computing
systems,” in Autonomic and Trusted Computing, J. González Nieto,
W. Reif, G. Wang, and J. Indulska, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 17–31.

[8] F. Nafz, H. Seebach, J.-P. Steghöfer, G. Anders, and W. Reif, Con-
straining Self-organisation Through Corridors of Correct Behaviour:
The Restore Invariant Approach. Basel: Springer Basel, 2011, pp. 79–
93.

[9] J. Sudeikat, J. Steghöfer, H. Seebach, W. Reif, W. Renz, T. Preisler,
and P. Salchow, “Design and simulation of a wave-like self-organization
strategy for resource-flow systems,” in Proceedings of The Multi-Agent
Logics, Languages, and Organisations Federated Workshops (MALLOW
2010), vol. 627, 2010.

[10] G. Anders, H. Seebach, F. Nafz, J. Steghöfer, and W. Reif, “Decen-
tralized reconfiguration for self-organizing resource-flow systems based
on local knowledge,” in 2011 Eighth IEEE International Conference
and Workshops on Engineering of Autonomic and Autonomous Systems,
2011, pp. 20–31.

[11] J. Sudeikat, J.-P. Steghöfer, H. Seebach, W. Reif, W. Renz, T. Preisler,
and P. Salchow, “On the combination of top-down and bottom-up
methodologies for the design of coordination mechanisms in self-
organising systems,” Information and Software Technology, vol. 54,
no. 6, pp. 593 – 607, 2012.

[12] F. Fioretto, E. Pontelli, and W. Yeoh, “Distributed constraint opti-
mization problems and applications: A survey,” Journal of Artificial
Intelligence Research, vol. 61, pp. 623–698, 2018.

[13] A. Petcu and B. Faltings, “A scalable method for multiagent constraint
optimization,” in Proceedings of the 19th International Joint Conference
on Artificial Intelligence, ser. IJCAI’05, 2005, pp. 266–271.

[14] T. Laut, B. Ottens, and R. Szymanek, “Frodo 2.0: An open-source
framework for distributed constraint optimization,” Proceedings of the
IJCAI’09 Distributed Constraint Reasoning Workshop (DCR’09), pp.
160–164, 2009.

[15] H. Seebach, F. Ortmeier, and W. Reif, “Design and construction of
organic computing systems,” in 2007 IEEE Congress on Evolutionary
Computation, Sep. 2007, pp. 4215–4221.

[16] H. Seebach, F. Nafz, J.-P. Steghöfer, and W. Reif, “How to design
and implement self-organising resource-flow systems,” in Organic Com-
putingA Paradigm Shift for Complex Systems. Springer, 2011, pp. 145–
161.

[17] I. A. Chaudhry and A. A. Khan, “A research survey: review of flexible
job shop scheduling techniques,” International Transactions in Opera-
tional Research, vol. 23, no. 3, pp. 551–591, 2016.

[18] N. Musliu, “Min conflicts based heuristics for rotating workforce
scheduling problem,” in The Sixth Metaheuristics International Con-
ference, 2005.

[19] G. Clair, E. Kaddoum, M. Gleizes, and G. Picard, “Self-regulation in
self-organising multi-agent systems for adaptive and intelligent manu-
facturing control,” in 2008 Second IEEE International Conference on
Self-Adaptive and Self-Organizing Systems, 2008, pp. 107–116.

[20] Thomas Leaute, Brammert Ottens, Radoslaw Szymanek, “Frodo: a
framework for open/distributed optimization version 2.17.1 user man-
ual,” 2019.

[21] J. Hirsch, M. Neumayer, H. Ponsar, O. Kosak, and W. Reif, “Deadlock
avoidance for multiple tasks in a self-organizing production cell,” in
2020 IEEE International Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS), 2020, pp. 178–187.

[22] T. Schiex, H. Fargier, G. Verfaillie et al., “Valued constraint satisfaction
problems: Hard and easy problems,” IJCAI (1), vol. 95, pp. 631–639,
1995.

[23] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and
G. Tack, “Minizinc: Towards a standard cp modelling language,” in Prin-
ciples and Practice of Constraint Programming – CP 2007, C. Bessière,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 529–543.

[24] B. Porter, R. R. Filho, and P. Dean, “A survey of methodology in self-
adaptive systems research,” in 2020 IEEE International Conference on
Autonomic Computing and Self-Organizing Systems (ACSOS), 2020, pp.
168–177.

	Motivation
	Problem Definition
	Organic Design Pattern
	Motivating Example

	Related work
	Dynamic Control of Adaptive Manufacturing Systems
	Distributed Constraint Optimization with DPOP

	Implementation
	Model Description
	Formal Model
	Assumptions and Limitations

	Evaluation
	Complexity Analysis
	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Conclusion and Discussion
	References

