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Electron pairing with gapless excitations in mixed double layers
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We study the interlayer pairing states in layered systems of two different 2d electronic subsystems, one
with relativistic linear and the other with nonrelativistic parabolic spectrum. The complex order parameter of
the paired state has a two-component structure. We investigate the pairing state formation on the mean-field
level, determine the critical interaction strength and evaluate the effective potential. The anisotropic three-band
spectrum of quasiparticles depends explicitly on the phase difference of the order parameter components, rotates
in momentum space as it changes, and exhibits the strong band deformation due to the pairing. The pairing
leads to the fusion and hybridization of initially decoupled bands. The quasiparticle spectrum has the shape of
deformed Dirac cones in the vicinity of the two touching points between neighboring bands. The density of states
exhibits a number of specific features due to band deformation, such as a van Hove singularity.
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I. INTRODUCTION

Often, the layered electronic systems disclose physical
phenomena, which are neither present in a single 2d layer nor
in isotropic 3d systems. The role of the layered structures is
or might be important for understanding physical phenomena
as different as the formation of interlayer exciton condensates
in semiconducting devices [1–5], the interplay of excitonic su-
perfluidity with unconventional fractional quantum Hall states
in graphene bi- and double layers in external magnetic fields
[6–8], the complex of problems with the high-Tc superconduc-
tivity [9,10], the crossover between adjacent superconducting
and insulating states in magic angle twisted graphene bi-
layers [11,12], the anomalous giant magneto-resistance and
superconductivity in graphene [13–15], the modeling of the
Hubbard physics by moiré excitons in WSe2/WS2 hetero-
bilayer [16], and transition metal dichalcogenide (TMDC)
multilayers [17,18]. Recently we proposed a set of pairing
states that can emerge in a layered system of two graphene
layers due to repulsion between electrons from opposite layers
[19]. We also pointed out a duality between electron-electron
and electron-hole condensates occurring in layered graphene
devices.

Layered structures consisting of two 2d electronic systems,
one with linear relativistic (Dirac) dispersion and another with
nonrelativistic parabolic (conventional) dispersion have re-
ceived some attention in the past. Suggestions were made that
sandwiches of graphene and gallium arsenide layers can host
similarly inhomogeneous excitonic electron-hole condensates
[20–23]. Interacting 2d Dirac fermions and 2d nonrelativistic
electrons might coexist on the surface of a 3d topologi-
cal insulator (e.g., in Bi2Se3) [24–26]. For the larger part
though, the theoretical works were restricted to the studies
of the plasmon spectrum [20,27]. In particular, the setup of
Ref. [27] modeled both electron species as confined to two
spatially separated layers. The fine-tuning of the strength of

the repulsive interspecies interaction was interpreted as the
variation of the spatial separation between the layers. Such
bilayer systems may represent environments in which electron
pairing between different species occurs due to Coulomb re-
pulsion, in analogy to the case of graphene bilayer considered
by us in Ref. [19]. In this paper, we study such interlayer
paired states. We find an anisotropic quasiparticle dispersion
E (qx, qy ), although the dispersion without pairing is isotropic.
The existence of anisotropic quasiparticle dispersion is quite
common in many branches of physics, often associated with
the phenomena like birefringence [28–30] or electronic ne-
maticity [31–34]. The order parameter of the paired state has
two complex components. Among other features, touching
points between neighboring bands form in the spectrum of the
mean-field Hamiltonian. Close to those points the quasiparti-
cle spectrum has the shape of deformed Dirac cones. Because
of this, the density of states exhibits a van Hove singularity.

II. MICROSCOPIC MODEL AND THE MEAN-FIELD
APPROXIMATION

The proposed system is composed of a charge neutral
graphene layer and a layer of a layer hosting the conventional
2d electron gas with the Fermi level risen into the band. By
bringing them close to each other, both 2d electron gases feel
the mutual Coulomb repulsion, which results in a formation
of an ordered interlayer state of paired particles as shown
in Fig. 1. We describe this system by a microscopic second
quantized Hamiltonian which neglects the spin degrees of
freedom and models the particles with relativistic spectrum
by a single-cone Dirac Hamiltonian. The model Hamiltonian
reads

H = ψ† · [−iv∇1σ1 − iv∇2σ2 + �Dσ3]ψ

+ ϕ† ·
[
−∇2

2m
− μ

]
ϕ + Ig[ψ, ϕ], (1)
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FIG. 1. The schematic representation of the considered system.
The upper layer is supposed to be populated by the Dirac electrons
with linear spectrum, the lower layer by conventional electrons with
parabolic dispersion. The electrons from both layers (black dots)
form a two-component pairing order parameter emphasized by the
enveloping clouds.

where ψ = (ψ1, ψ2) and ϕ are the annihilation (and the cor-
responding creation) operators acting in the layers with the
relativistic and nonrelativistic spectrum respectively; ∇1,2 are
spatial derivatives in respective direction and ∇2 = ∇2

1 + ∇2
2 ;

v is the Fermi velocity of the Dirac electron, μ the chemical
potential of the conventional electron gas, m the band mass
of conventional electrons, and σ1,2,3 are the Pauli matrices
in usual representation, which act on the Dirac space. �D
denotes the Dirac mass, which might be attributed to the
intrinsic spin-orbit coupling. Its sign is not fixed, i.e., �D
can be negative. We do not specify the interlayer Coulomb
interaction term Ig[ψ, ϕ] here, which might be very general
and only has to be given in terms of particle densities of
both species. Finally, the dot operator denotes the integration
in the two-dimensional position space. In both layers, the
intralayer Coulomb interaction is supposed to be strongly
suppressed due to screening and therefore negligible in the
first approximation. For conventional electrons, the screening
is due to the finite density of states at the Fermi surface,
while in the case of Dirac electrons, the screening is due to
the Schwinger particle-hole production at the Dirac point,
cf. Ref. [19] and references therein, or by disorder or by
thermal and electrostatic fluctuations [35]. In order to capture
the effects qualitatively, it is often sufficient to approximate
the extended interlayer interaction by a simple contact inter-
action [16,18,19,36,37]. Experimentally, the strength of the
interalyer interaction is amenable by changing the dielectric
material between the layers [6–8,16,18].

In the mean-field approximation, the electron pairing ap-
pears in form of the two-component order parameter with
the spinor structure. The anticipated mean-field Hamiltonian
reads

HMF =
⎛
⎝ψ

†
1

ψ
†
2

ϕ†

⎞
⎠

T

q

·
⎛
⎝ �D vqeiφ �1eiχ1

vqe−iφ −�D �2eiχ2

�1e−iχ1 �2e−iχ2 ξq

⎞
⎠
⎛
⎝ψ1

ψ2
ϕ

⎞
⎠

q

,

(2)

where q =
√

q2
x + q2

y , φ = atan[
qy

qx
], qx and qy being the com-

ponents of the momentum vector, and ξq = q2−q2
F

2m with the

Fermi momentum related to the chemical potential μ = q2
F

2m .

�1 and �2 are positive amplitudes and χ1 and χ2 the global
phases of the two-component complex order parameter corre-
sponding to each respective sublattice. The Hamiltonian (2) is
invariant under a simultaneous global U(1) transformation of
both order parameters. It is rather generic and does not rely
on any particular interlayer interaction term. As an example,
in Appendix A, we show how the order parameter of the
Hamiltonian (2) emerges from the simplest contact density-
density interaction. The global rotation ψ j = eiχ j ψ j , j = 1, 2,

and ψ
†
j = e−iχ j ψ

†
j in the Hamiltonian (2) leaves the diagonal

elements of the kernel matrix unchanged, eliminates the phase
of the order parameters and shifts the phase of the complex
momentum in the Dirac layer as φ → φ + χ2 − χ1. Therefore
the mean-field Hamiltonian depends only on the total phase
φ + χ2 − χ1 and the phase difference χ2 − χ1 rotates the mo-
mentum, and therefore the spectrum of the Hamiltonian.

III. GENERATION OF THE PAIRING ORDER
PARAMETER

The generation of the order parameter is captured by the
zero temperature effective potential of the paired phase, which
for the contact interaction is defined as

FMF = 1

2g

(
�2

1 + �2
2

)

−
∫

dq0

2π

∫ 
 d2q

(2π )2
ln det [iq0 + HMF], (3)

where g is the interaction strength and the integration over
the imaginary frequency q0 stretches from −∞ to +∞ and
the radial momentum integration stretches from 0 to the upper
cutoff 
. The variation of this functional with respect to each
of �’s provides us with the system of mean-field equations,
from which the critical interaction strength for the pairing
(i.e., for �D = 0, �1 = �2 = 0) follows. The critical inter-
action strength condition reads

1 = 2gc

∫
dq0

2π

∫ 
 d2q

(2π )2

q2
0(

q2
0 + q2v2

)(
q2

0 + ξ 2
q

) . (4)

The evaluation of the integral on the right-hand side is pre-
sented in Appendix B. The result of the integration is

4π

mgc

=
[

1 − y√
1 + y2

](
ln

[
λ + y −

√
1 + y2

1 + y −
√

1 + y2

]

− ln

[√
1 + y2 − y + 1√

1 + y2 − y

])

+
[

1 + y√
1 + y2

](
ln

[
1 + y +

√
1 + y2

y +
√

1 + y2

]

− ln

[
y +

√
1 + y2 − 1

y +
√

1 + y2

])
, (5)

where y = mv/qF , and λ = 
/qF . The inverse of the left-
hand side (∼mgc) is plotted in Fig. 2 for λ = 10. The critical
interaction strength turns out to be a universal function of
the parameter y = mv/qF , e.g. the ratio of the two Fermi
velocities v and qF /m. In Fig. 1, we plot the dimensionless
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FIG. 2. The critical interaction strength of pairing transition as
a function of y = mv/qF , where v, m and qF represent the Fermi
velocity of Dirac particles, as well as the band mass and the Fermi
momentum of the conventional particles, respectively.

interaction strength γ = gm/4π as a function of the parameter
y = mv/qF . It represents a monotonously increasing function
which exists for all values of y. It approaches zero for y → 0,
i.e., for mv � qF , which suggests that the chemical potential
μ in the conventional layer is a fine-tuning parameter.

A persisting challenge of graphene physics concerns the
question whether the intralayer Coulomb interaction is strong
enough to open a gap in the spectrum of Dirac particles. It
is therefore important to estimate the competition between
the two tendencies. The actual quantity, which measures the
dimensionless Coulomb interaction strength is the effective
fine structure constant α = e2/v, which takes in the suspended
graphene the value α ∼ 2.17. The size of the critical value
of gap opening αc is somewhat arguable and spreads in the
literature in a range αc ∼ 1–10, cf. Refs. [38–42] and refer-
ences therein. Larger values seem to be more realistic, given
the fact that no experiments have ever observed a gap opening
in graphene at the Dirac point [42]. For instance, the com-
putations performed by Wang and Liu in Ref. [39], based on
Dyson-Schwinger self-consistent approach, place the critical
value of gap opening into the window 3.2 � αc � 3.3, which
is much larger than the value of the free standing graphene.
Thus, the intralayer Coulomb interaction cannot open a band
gap. The situation is quite different for the interlayer inter-
action. This can be tuned over a large range by changing
the dielectric parameter as well as by changing the interlayer
distance [6–8,16,18].

IV. THE APPROXIMATE EFFECTIVE POTENTIAL

The approximate evaluation of the effective potential
Eq. (3) is summarized in Appendix C. Due to angular inte-
gration, the effective potential does not depend on the phase
of the order parameters. First term in Eq. (3) exhibits the order
parameter symmetry �1 ↔ �2. On the other hand, the loga-
rithm term in Eq. (3) has this symmetry only if we put the
Dirac mass (�D = 0) to zero. If the Fermi velocity is put to
zero (v = 0) too, then the effective potential has a degenerate
minimum, which is shown in Fig. 3. This regime can be also
realized by an extreme rising of the Fermi energy in the con-
ventional layer, i.e., μ → ∞. There is a global U(1) symmetry
when we simultaneously apply the same U(1) transformation
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FIG. 3. Four screen shots of the effective potential Eq. (3). (Top
left) The case with zero Dirac mass �D = 0 and v
/μ = 0, 
 being
the band width, with a degenerate minimum. (Right) The case with
zero Dirac mass �D = 0 and v
/μ = 0.5. The ground state lies in
the local minima along the line �1 = �2. (Bottom) The effective
potential for positive and negative Dirac masses �D and v
/μ = 0,
respectively, with minima placed along one of the axis.

to both pairing order parameters. For zero Dirac mass �D and
nonzero v, there appears a unique minimum along the line
�1 = �2. The invariance of the effective potential under the
transformation �1 ↔ �2 is broken by �D. Depending on the
sign of the Dirac mass, the minima in the potential appear
along one of the axis, i.e., in this minimum, one of the order
parameters is fully suppressed. Finally, if both the Fermi ve-
locity and the Dirac mass are finite, then there is a competition
between both tendencies. To visualize this competition, it is
more convenient to plot not the effective potential but rather
its gradient flow, shown in Fig. 4. Black dots in this plot denote
the position of the attractive points in which the gradient of
the effective potential vanish, i.e., these points represent the
solutions of the variational equations for the order parameters.

V. BAND CROSSING POINTS IN THE SPECTRUM OF THE
HAMILTONIAN (2)

The first insights into the spectral properties of the Hamil-
tonian (2) are gained by inspection of the determinant of its
kernel matrix. With �D = 0, it reads

det[HMF] = 2vq�1�2 cos (χ2 − χ1 + φ) − v2q2ξq, (6)

where again q =
√

q2
x + q2

y and φ = atan[
qy

qx
]. The determi-

nant and therefore the spectrum depends on the combination
χ2 − χ1 + φ. This implies that the change of the phase dif-
ference of the order parameters χ2 − χ1 is equivalent with
the rotation of the momentum vector q by this phase differ-
ence in the momentum space. The Dirac mass �D breaks the
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FIG. 4. Gradient flow of the effective potential. Black dots denote the attractive points of the gradient flow, i.e., the solutions of the
mean-field equations for order parameters. The motion of attractive points is due to competition between model’s parameters. (Left) v
/μ = 0
and �D/μ = 0.25. (Middle) v
/μ = 0.1 and �D/μ = 0.25; (Right) v
/μ = 0.1 and �D/μ = 0. 
 denotes the band width.

symmetry of both order parameter components �1 ↔ �2,
which is also reflected by the saddle-point solution, cf. Fig. 4,
and hence is likely to create the nonzero phase difference
χ2 − χ1.

The determinant is a quartic polynomial in q. When μ = 0
the determinant is proportional to q4 for �1 = �2 = 0 and
for �1,�2 �= 0 proportional to q for small momenta. Since
the determinant is the product of the energy eigenvalues,
this behavior reflects a drastic change of the dispersion at
small q when electron pairing occurs, resulting in the de-
struction of the Dirac double cone ±vq and the parabolic
spectrum q2/2m. Finally, at larger momenta the determinant
tends to −v2q4/(2m), that is the product of the eigenvalues
of the Hamiltonian without pairing in the large q limit. The
determinant and therefore the eigenvalues of the mean-field
Hamiltonian depend explicitly on the phase difference of both
components of the order parameter. It is only in the case of an
asymmetric solution �1 = 0 or �2 = 0 that the determinant
becomes phase independent in the momentum space.

With variational solutions �1 = � = �2, χ2 = χ = χ1
and with qy = 0 the eigenvalues become

E1 = −vqx, E2 = 1
2 [ξq + vqx +

√
(ξq − vqx )2 + 8�2],

E3 = 1
2 [ξq + vqx −

√
(ξq − vqx )2 + 8�2]. (7)

For large positive qx (i.e., φ = 0) the eigenvalue E2 ap-
proaches ξq ∼ q2

x , thus recovering the dispersion of the
conventional particle, while the eigenvalue E3 starts at −(μ +√

μ2 + 8�2)/2 for small and goes ∼vqxξq/� for large mo-
menta, i.e., it changes from the negative into the positive
half-plane. Therefore it will always cross the negative Dirac
branch E1. This crossing point represents the deformed orig-
inal Dirac part of the starting model and is always present
in our model irrespective of the particular choice of pa-
rameters. For small negative qx (i.e., φ = π ) the eigenvalue
E2 starts at (−μ +

√
μ2 + 8�2)/2, goes initially linearly as

∼ − v|qx|, reaches at some momentum a global minimum
and approaches ξq for large momenta. The eigenvalue E3
approaches −v|qx| for large momenta, which is the negative
branch of the Dirac spectrum, cf. Appendix D. Since both E1
and E2 lie at least partially in the positive half-plane, they can

cross. This is possible if the condition

vqx � E2(q∗
x , φ = π ) (8)

is fulfilled, where q∗
x is the position of the global minimum of

E2 in momentum space, which follows from

∂

∂qx

E2(φ = π )

∣∣∣∣
qx=q∗

x

= 0. (9)

In the case of strict equality in Eq. (8) there is only one
single touching point between both bands, while for “>” we
have two crossing points, cf. Appendix D2. The crossing at
higher energies has the shape of a single point only along the
projection qy = 0. In general it is an extended curve while the
crossing at lower energies remains a single point.

VI. THE NEMATICITY OF THE FULL SPECTRUM OF THE
HAMILTONIAN (2)

The eigenvalues of the Hamiltonian (2) for zero Dirac
mass are found by solving the cubic equation and represent
the Cardano formulas, cf. Appendix D1. In Fig. 5, we show
two cases: the case without a crossing point between the
middle and upper bands and the case with such a point, as
it is discussed in the previous paragraph. In both discussed
cases, the system parameters are intentionally chosen large to
emphasize the characteristic features of the spectral bands and
DOS, cf. Fig. 5. In the first case, we have effectively a system
of original Dirac and conventional particles with only slight
spectral deformation and a shift in momentum space due to the
pairing. The case with touching between the both upper bands
is more involved. In this case, the spectrum is characterized
by a strong spatial anisotropy at every point in the momentum
space. Such spectral anisotropy which occurs due to
interaction and does not break the translational symmetry of
the lattice is sometimes called the spontaneous nematicity
[31–34]. In particular, around zero energy the spectrum is lin-
ear in qx direction with the slope given by the Fermi velocity
of the original Dirac particle vx = v, while in qy direction
a parabolic spectrum with negative momentum dependent
Fermi velocity vy = −μqy/2m�. The touching points are
complex structures with both bands penetrating each other. In
the lowest band, one recognizes a smooth transition between
regions with positive and negative curvatures, which results
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FIG. 5. Full band structure of the mean-field Hamiltonian Eq. (2) calculated for mv2/� = 1. (Left) Case without touching points between
middle and upper bands according to Eq. (8), μ/� = −1.5. (Middle) Case with a touching point between middle and upper bands, μ/� =
+1.5. Here, the spectrum is gapless around zero energy. (Right) 3d plot of the quasiparticle spectrum in graphene double layers with paring
discussed in Ref. [19].

in formation of a local energy minimum. In the close vicinity
of the crossing points the spectrum of both involved bands
has the shape of deformed Dirac cones, Fig. 6. For larger
momenta, the energy bands unbind, the phase dependence of
eigenvalues disappears, and the spectra of decoupled Dirac
and conventional particles are recovered. The spectra in Fig. 5
are plotted for the fixed phase difference of order parameters
χ2 − χ1 = 0. The spectrum rotates if χ2 − χ1 changes as
pointed out in the discussions of the anisotropy around Eq. (6).

FIG. 6. The spontaneous nematicity of the quasiparticle spec-
trum in the closest vicinity of both nodal points shown in the middle
panel of Fig. 5. Upper (left) and lower (right) half-cone of the upper
(top row) and lower (bottom row) cone are shown. Due to anisotropy
they are not concentric circles but rather a kind of deformed surfaces
jammed in qx direction. Darker colors correspond to the lower ener-
gies in each graphic.

VII. THE DENSITY OF STATES OF THE HAMILTONIAN (2)

We evaluate the density of states (DOS) of the mean-field
Hamiltonian from the usual functional

DOS(E ) = Trδ(E − HMF ), (10)

where E is the energy and the momentum summation if per-
formed over the rectangular Brillouin zone. The DOS for both
spectra depicted in Fig. 5 are shown in Fig. 7. For the case
without touching between two upper bands, the DOS shows
nicely the low lying slightly deformed Dirac part up to the
energies of roughly 2.5� where the uppermost parabolic band
is reached. This is recognizable by the sharp jump in DOS,
since the DOS of parabolic spectrum in 2d is the Heaviside
step function. In the case with the touching between both
upper bands the DOS structure is more complex. We still
recognize the Dirac particle at energies below −3� and above
+�, as well as the remnants of the strongly deformed original
Dirac cone at roughly −1.5�. However, here appears a sharp
peak corresponding to a highly populated state between −2�

and −3�, which is absent in the (almost) decoupled case.
This state is due to the strong deformation of the lowest
band visible in Fig. 5. The peak in DOS is therefore a van-
Hove singularity due to the saddle point which forms in the
lowest band due to increasing pairing order parameter, cf.
Appendix D. The presence of the touching between the middle
and upper bands manifests itself in the DOS by the structure
visible around 0.5�. The initial increment in the DOS is here
due to the parabolic band which penetrates the positive Dirac
band as discussed around Eq. (7). The DOS increases up to
the crossover energy at which the scaling of the upper band
changes from parabolic to linear. From this energy, the DOS
decreases up to the position of the Dirac-like band touching
point. For higher energies, the DOS is again that of the asymp-
totic Dirac spectrum. Second crossing between the two bands
at higher energies does not show up in the DOS, i.e., nothing
significant occurs here and both bands simply go through each
other retaining the same scaling.
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FIG. 7. The DOS in arbitrary units of the mean-field Hamiltonian (2) vs the corresponding spectrum for the same set of parameters. (Top)
Regime without touching points between middle and upper bands. (Bottom) Regime with a touching point between middle and upper bands.
The sharp peak between −3� and −2� is due to saddle point which occur in the lowest band. The structure at around 0.5� is due to the
touching between two higher bands.

VIII. DISCUSSIONS

In this paper, we study a model with a single spinless Dirac
fermion in one layer and a single spin projection of conven-
tional electrons in the other. The mean-field Hamiltonian in
Eq. (2) is a 3×3 matrix, which consequently has three eigen-
values with the strong spatial anisotropy. The spectrum of the
Hamiltonian is gapless and linear at energies around zero.
This is very different from the case of conventional s-wave
superconductivity in graphene double layers, which we inves-
tigated in Ref. [19]. In that case, the spectrum has the usual
shape of two paraboloids separated by the spectral gap around
zero energy as shown on the right side of Fig. 5. Another
consequence of the spectral anisotropy is the formation of the
band crossing points due to deformation of original Dirac and
parabolic spectra. In the vicinity of band crossing points, the
spectrum has the form of deformed Dirac cones. The exis-
tence of the band crossing should be detectable by standard
experimental spectroscopic techniques. The deformation of
the bands leads to appearance of van Hove singularities in the
density of states.

The formation of the pairing state is influenced by an inter-
play of different model’s parameters such as the Dirac mass
and the Fermi velocities of both fermion species. The critical
interaction strength of the pairing transition is a function of the
Fermi velocities of both electron species. The effective poten-

tial which is associated with the pairing transition turns out to
be a complicated function of system’s parameters. The effec-
tive potential exhibits pronounced local minima. We identify
several factors which determine the position of these minima.

IX. CONCLUSIONS AND OUTLOOK

In the system consisting of two layers with Dirac and
conventional electrons, respectively, there is an interlayer
electron-electron pairing transition due to strong interlayer
repulsion. The main concern of this paper are the studies of
the spectrum of quasiparticles and details of the pairing tran-
sition. Several problems are left for the future, e.g., the intra-
and interlayer transport in such layered systems, for which
the fluctuations beyond the Gaussian order are necessary, or
physics of time-reversal symmetry breaking by, e.g., external
magnetic fields or sharp sample boundaries, cf. Ref. [43].
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APPENDIX A: DERIVATION OF THE MEAN-FIELD HAMILTONIAN (2) FROM THE MICROSCOPIC MODEL WITH
CONTACT DENSITY-DENSITY INTERACTION

Here we consider a version of the microscopic Hamiltonian (2) with the Coulomb interaction modeled by the simplest contact
density-density interaction. Formally we model both species as if they were confined to the same layer. The justification of this
approximation is given in Ref. [19] and references therein. Arguably, the local approximation for the interlayer interaction
gives quantitatively the crudest estimation, but does not change the qualitative picture [16,18,19,36,37]. The model Hamiltonian
defined in this way reads

H = ψ† · [−iv∇ · σ + �Dσ3]ψ + ϕ† ·
[

− ∇2

2m
− μ

]
ϕ + g

2
(ψ†ψ )(ϕ†ϕ), (A1)

where g is the interaction strength and the rest of the parameter set is already defined in the main part. The kinetic part represents
a 3×3 quadratic form

H0 =

⎛
⎜⎝

ψ
†
1

ψ
†
2

ϕ†

⎞
⎟⎠ ·

⎛
⎝ �D −iv∇1 − v∇2 0

−iv∇1 + v∇2 −�D 0
0 0 −∇2

2m − μ

⎞
⎠
⎛
⎝ψ1

ψ2
ϕ

⎞
⎠, (A2)

which gives a hint in which position in the matrix the order parameter can appear. To see if this guess is compatible with the
form of the interaction at hand, we rewrite it in the following way:

(ψ†ψ )(ϕ†ϕ) ∼ −1

2

3∑
j=0

(ψ†σ j 
v↑ϕ)(ϕ†
vt
↑σ jψ ), (A3)

where 
vt
↑ = (1, 0) and σ0 the 2d unity matrix. The operators ψ and ϕ anticommute and single operator bilineals are neglected

since they do not contribute to the pairing and are generally the artifact of this operator ordering. To prove our guess, the bilineal
ϕ†ϕ can be pulled out the sum over j in Eq. (A3) with the change of the sign due to fermionic statistics. Straightforward
calculations yield

(ψ†σ0
v↑) = (ψ†σ3
v↑) = ψ
†
1 , (ψ†σ1
v↑) = ψ

†
2 , (ψ†σ2
v↑) = iψ†

2 , (A4)

and

(
vt
↑σ0ψ ) = (
vt

↑σ3ψ ) = ψ1, (
vt
↑σ1ψ ) = ψ2, (
vt

↑σ2ψ ) = −iψ2. (A5)

Combining them as in Eq. (A3) yields the initial interaction term. So, we don’t loose any parts by this reordering. We therefore
can introduce a full set of order parameters allowed by the construction of the interaction

�μ = −g

4
〈ψ†σμ
v↑ϕ〉 = g

4
tr σμ〈ϕ
v↑ ⊗ ψ†〉, (A6)

�∗
μ = −g

4
〈ϕ†
vt

↑σμψ〉 = g

4
tr σμ〈ψ ⊗ 
vt

↑ϕ†〉. (A7)

In particular, each of the order parameters reads

�0 = �3 = g

4
〈ϕψ

†
1 〉, �1 = g

4
〈ϕψ

†
2 〉, �2 = −i

g

4
〈ϕψ

†
2 〉. (A8)

Obviously, these correlators can only be finite in the paired state.

APPENDIX B: EVALUATION OF THE CRITICAL INTERACTION STRENGTH FROM EQ. (4)

At zero temperature, the integration of the frequency in Eq. (4) can be performed most comfortably by the residue theorem.
When exploiting the logic of the modulus operator we get

1

2gc

=
∫ 
 d2q

(2π )2

∫ ∞

−∞

dq0

2π

q2
0(

q2
0 + v2q2

)(
q2

0 + ξ 2
q

) = 1

8π

∫ 


0
dq

q

vq +
∣∣∣ q2−q2

F
2m

∣∣∣ (B1)

= 1

8π

∫ 


0
dq

[
�(q − qF )

q

vq + q2

2m − q2
F

2m

+ �(qF − q)
q

vq − q2

2m + q2
F

2m

]
(B2)
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= 1

8π

∫ 


qF

dq
q

vq + q2

2m − q2
F

2m

+ 1

8π

∫ qF

0
dq

q

vq − q2

2m + q2
F

2m

(B3)

= m

4π

∫ 


qF

dq
q

q2 + 2mvq − q2
F

+ m

4π

∫ qF

0
dq

q

q2
F + 2mvq − q2

, (B4)

or upon reordering and introducing dimensionless quantities x = q/qF , y = mv/qF , and λ = 
/qF

2π

mgc

=
∫ λ

1
dx

x

x2 + 2yx − 1
−
∫ 1

0
dx

x

1 + 2yx − x2
(B5)

=
∫ λ

1
dx

x

(x + a−)(x + a+)
−
∫ 1

0
dx

x

(x − a−)(x − a+)
, (B6)

where a± = y ±
√

1 + y2. Utilizing the partial fraction decomposition and performing the integrals we get to the expression (5).

APPENDIX C: EVALUATION OF THE EFFECTIVE
POTENTIAL

1. Zeroth-order term in gradient expansion

The effective potential to zeroth order in gradient expan-
sion reads

F (0)
MF ≈ 1

2g

(
�2

1 + �2
2

)− 
2

4π

∫
dq0

2π

× ln
[−iq0

(
q2

0 + �2
1 + �2

2

)+ μq2
0

]
, (C1)

where we trivially integrated the momentum. We express the
order parameter in units of the chemical potential

�2
1 + �2

2 = μ2�2, (C2)

which leads us to

F (0)
MF ≈ μ2�2

2g
− 
2

4π

∫ ∞

−∞

dq0

2π
ln
[−iq0

(
q2

0 + μ2�2
)+ μq2

0

]
.

(C3)
In order to perform the momentum integral, we write the
logarithm as

∫ ∞

−∞

dq0

2π
ln
[−iq0

(
q2

0 + μ2�2
)+ μq2

0

]
=
∫ ∞

−∞

dq0

2π

∫
d�

∂

∂�
ln
[−iq0

(
q2

0 + μ2�2
)+ μq2

0

]
(C4)

=
∫

d�2
∫ ∞

−∞

dq0

2π

−iq0μ
2

−iq0

(
q2

0 + μ2�2
)+ μq2

0

=
∫

d�2
∫ ∞

0

dq0

2π

2μ2
(
q2

0 + μ2�2
)

(
q2

0 + μ2�2
)

2 + μ2q2
0

. (C5)

Performing the partial fraction decomposition, we further get
using

E± = μ2

2
(1 + 2�2 ±

√
1 + 4�2) (C6)

the following expression

2μ2
∫

d�2
∫ ∞

0

dq0

2π

2μ2
(
q2

0 + μ2�2
)

(
q2

0 + μ2�2
)

2 + μ2q2
0

(C7)

= 2μ2
∫

d�2
∫ ∞

0

dq0

2π

[
E+ − μ2�2

E+ − E−

1

q2
0 + E+

− E− − μ2�2

E+ − E−

1

q2
0 + E−

]
(C8)

= 2μ2
∫

d�2

[
1√
E+

E+ − μ2�2

E+ − E−
− 1√

E−

E− − μ2�2

E+ − E−

]

(C9)

=
√

2μ

∫
d�2

[ √
1 + 4�2 + 1√

1 + 4�2
√

1 + 2�2 + √
1 + 4�2

+
√

1 + 4�2 − 1√
1 + 4�2

√
1 + 2�2 − √

1 + 4�2

]
(C10)

=
√

2μ
(
ε

1
2+ + ε

1
2−
)
, (C11)

0.6 0.4 0.2 0.0 0.2 0.4 0.6

1.42

1.40

1.38

1.36

1.34

1.32

1.30
FM F

FIG. 8. Three profiles of the effective potential as a function of
� for different effective interaction. The critical interaction strength
is γc = 2

√
2.
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where

ε± = 1 + 2�2 ±
√

1 + 4�2. (C12)

Therefore the effective potential Eq. (C3) becomes

F (0)
MF ≈ μ
2

2
√

2π

[
�2

γ
−
(
ε

1
2+ + ε

1
2−
)]

(C13)

with the effective dimensionless interaction strength

γ = g
2

√
2πμ

. (C14)

For γ > γc = 2
√

2, the effective potential develops the local minima corresponding to the paired state, cf. left panel of Fig. 8.
The variation of this expression with respect to the gap parameter yields a condition for the critical gap parameter, which is
plotted in the right panel of Fig. 8. As predicted for γ � 2

√
2, there are nontrivial zero solutions for of the variational equation.

2. Effect of the small Dirac mass on effective energy functional

Now we include the Dirac mass and study how it may change the shape of the effective energy to the considered approxima-
tion, whereas it suffices to only consider the effect of the mass in the leading order of perturbative expansion in �D. The free
energy functional changes as

F (1)
MF ≈ 1

2g

(
�2

1 + �2
2

)− 
2

4π

∫
dq0

2π
ln
[−iq0

(
q2

0 + �2
1 + �2

2

)+ μq2
0 + �D(�2

1 − �2
2

)]
,

and the next power of �D under logarithm being quadratic. We recognize that the small Dirac mass breaks the sublattice-
symmetry between the components of the pairing gap. The leading order effect is captured by expansion of the logarithm part

F (1)
MF ≈ 1

2g

(
�2

1 + �2
2

)− 
2

4π

∫
dq0

2π
ln
[
μq2

0 − iq0

(
q2

0 + �2
1 + �2

2

)]

−
2

4π

∫
dq0

2π

�D(�2
1 − �2

2

)
μq2

0 − iq0

(
q2

0 + �2
1 + �2

2

) . (C15)

We evaluate the integral in the correction term:∫ ∞

−∞

dq0

2π

1

μq2
0 − iq0

(
q2

0 + �2
1 + �2

2

) =
∫ ∞

−∞

dq0

2π

μ

μ2q2
0 + (

q2
0 + �2

1 + �2
2

)2 (C16)

=
∫ ∞

−∞

dq0

2π

μ

[q2
0 + E+][q2

0 + E−]
=

√
2

μ2

1√
1 + 4�̄2

1 + 4�̄2
2

ε
1
2+ − ε

1
2−

ε
1
2−ε

1
2+

, (C17)

where E± are taken over from Eq. (C6) and all energy quantities are rescaled in units of chemical potential μ. Taking all terms
together we get the free-energy functional (C3) becomes Eq. (C18):

F (1)
MF ≈ μ
2

2
√

2π

⎡
⎣�̄2

1 + �̄2
2

γ
−
⎛
⎝ε

1
2+ + ε

1
2− + �̄D(�̄2

1 − �̄2
2

)
√

1 + 4�̄2
1 + 4�̄2

2

ε
1
2+ − ε

1
2−

ε
1
2−ε

1
2+

⎞
⎠
⎤
⎦. (C18)

Since the sign of the Dirac mass is not fixed as such, the Dirac mass breaks explicitly the sublattice symmetry of the order
parameter.

3. Approximate treatment of the effective potential for small momenta

For very small momenta (q2 � q2
F ) and in absence of the Dirac mass, we can approximate the mean-field potential (3) as

F (2)
MF ≈ �2

1 + �2
2

2g
−
∫

d3Q

(2π )3
ln
[−iq0

(
q2

0 + �2
1 + �2

2

)+ μq2
0 + 2vq�1�2 cos (χ2 − χ1 + φ)

]
. (C19)

The suggested smallness of the momentum enables us to use it as an expansion parameter and consequently to perform the
angular integration with respect to the angle φ. This makes all odd-power contributions vanish. The resulting expression is
rotationally invariant and isotropic with respect to both the momentum and the order parameter, i.e., the phase of the order
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parameter disappear from the final result as consequence of the “gauge invariance.” Using the notation X = −iq0(q2
0 + �2

1 +
�2

2) + μq2
0 and Y = v�1�2, we have∫ 2π

0

dφ

2π
ln[X + 2Y cos (χ2 − χ1 + φ)] = ln[X ] −

∞∑
n=1

q2n 2n−1

n

(2n − 1)!!

n!

(Y

X

)2n

. (C20)

The log-term was evaluated above. The sum term in Eq. (C20) should be evaluated to the leading order in v
�1�2. Explicitly
it reads

∞∑
n=1

q2n 2n−1

n

(2n − 1)!!

n!

(Y

X

)2n

=
∞∑

n=1

q2n 2n−1

n

(2n − 1)!!

n!

(v�1�2)2n[− iq0

(
q2

0 + �2
1 + �2

2

)+ μq2
0

]2n . (C21)

The momentum integration is easily performed∫
d3Q

(2π )3

∞∑
n=1

q2n 2n−1

n

(2n − 1)!!

n!

(v�1�2)2n[− iq0

(
q2

0 + �2
1 + �2

2) + μq2
0

]2n (C22)

= 
2

4π

∫ ∞

−∞

dq0

2π

∞∑
n=1

2n−1

n

(2n − 1)!!

n!

(v
�1�2)2n[− iq0

(
q2

0 + �2
1 + �2

2

)+ μq2
0

]2n . (C23)

The remaining frequency integral is difficult because every term in the series diverges for q0 = 0. On the other hand, putting
q0 = 0 in Eq. (C19) does not suggest any singularity, because it is cut off by the momentum term. Therefore we may expect that
the q0 → 0-divergence of the frequency integral will disappear if all divergent terms are summed over. We rewrite the frequency
integral as ∫ ∞

−∞

dq0

2π

1[− iq0

(
q2

0 + �2) + μq2
0

]2n = 2
∫ ∞

λ

dq0

2π

Re
[
iq0

(
q2

0 + �2
)+ μq2

0

]2n

[
μ2q4

0 + q2
0

(
q2

0 + �2
)2]2n , (C24)

where we introduced the infrared cutoff λ which will be sent to zero at the end of calculations. The imaginary part of the
numerator is an odd function of the frequency and therefore disappears from the integral by symmetry. The contribution from
the integral at the lower integration boundary consists of divergent terms, while the regular ones all disappear. The divergent
terms are

n = 1 :
1

λ�4
, n = 2 : − 1

3λ3�8
+ · · · , n = 3 :

1

5λ5�12
− · · · , n = 4 : − 1

7λ7�16
+ · · · , etc. (C25)

Hence we recognize an involved hierarchy of alternating series in odd inverse powers of λ, each starting at each n. The most
divergent, which starts at n = 1, has elements

1

λ�4
, − 1

3λ3�8
,

1

5λ5�12
, − 1

7λ7�16
, · · · λ

(−1)n−1

2n − 1

1

(λ�2)2n
, n � 1. (C26)

The alternating sign hints to the possible convergence. The sequence gives rise to an infinite series which can be summed over
separately giving the leading order term in powers of v:


2

(2π )2

v
�1�2

�2
lim
λ→0

(
λ�2

v
�1�2

) ∞∑
n=1

(−1)n−1 2n−1

n(n + 1)!

(2n − 1)!!

2n − 1

(
v
�1�2

λ�2

)2n

. (C27)

MATHEMATICA finds the sum to be a generalized hypergeometric function
∞∑

n=1

(−1)n−1 2n−1

n(n + 1)!

(2n − 1)!!

2n − 1
x2n = x2

2 pFq

({
1

2
, 1, 1

}
, {2, 3},−4x2

)
, (C28)

which grows linearly for large x (i.e., small λ). Therefore the limit λ → 0 exists:

lim
x→∞

x

2 pFq

({
1

2
, 1, 1

}
, {2, 3},−4x2

)
= 4

3
. (C29)

Hence, the leading correction from the lower integral boundary (i.e., with a global minus sing) is linear in mixed terms of �2�2:

−
∫

d3Q

(2π )3

∞∑
n=1

q2n 2n−1

n

(2n − 1)!!

n!

(v
�1�2)2n[− iq0

(
q2

0 + �2
1 + �2

2

)+ μq2
0

]2n (C30)

≈ 4

3


2

(2π )2

v
�1�2

�2
1 + �2

2

—cotribution from the upper cutoff q0 → ∞. (C31)
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The contribution from the upper cutoff is not important, since it is at least quadratic in powers of v and therefore subdominant
to the just obtained term. The free energy functional to this order and zero Dirac mass reads

F (2)
MF ≈ μ
2

2
√

2π

[
�̄2

1 + �̄2
2

γ
−
(

ε
1
2+ + ε

1
2− + 4v̄

3
√

2π

�̄1�̄2

�̄2
1 + �̄2

2

)]
, (C32)

where v̄ = v
/μ, �̄1 = �1/μ, �̄2 = �2/μ, γ = g
2

√
2πμ

, and

ε± = 1 + 2�̄2
1 + 2�̄2

2 ±
√

1 + 4�̄2
1 + 4�̄2

2. (C33)

In units of 2
√

2π/μ
2, all evaluated contributions to the effective potential become

F̃MF ≈ �̄2
1 + �̄2

2

γ
−
⎛
⎝ε

1
2+ + ε

1
2− + v̄�̄1�̄2

�̄2
1 + �̄2

2

+ �̄D

(
�̄2

1 − �̄2
2

)
√

1 + 4
(
�̄2

1 + �̄2
2

) ε
1
2+ − ε

1
2−

ε
1
2−ε

1
2+

⎞
⎠. (C34)

We plot this expression in the main part in Fig. 3. The gradient flow shown in Fig. 4 is calculated from{
− δ

δ�̄1

F̃MF,−
δ

δ�̄2

F̃MF

}
. (C35)

APPENDIX D: THE SPECTRUM OF THE
HAMILTONIAN (2)

1. Cardano solutions of the secular equation

The eigenvalues Ei of the mean-field Hamiltonian (2) for
zero Dirac mass are found from the secular equation∣∣∣∣∣∣

−E vqeiφ �1eiχ1

vqe−iφ −E �2eiχ2

�1e−iχ1 �2e−iχ2 ξq − E

∣∣∣∣∣∣ = 0, (D1)

which becomes

−E3 + aE2 + bE + c = 0, (D2)

with

a = ξq, b = �2
1 + �2

2 + v2q2,

c = 2vq�1�2 cos (χ2 − χ1 + φ) − v2q2ξq. (D3)

The solutions of the secular equation are given by the Cardano
formulas:

E1 = 1

3

[
a − (a2 + 3b)

(
2

A

) 1
3

−
(A

2

) 1
3

]
, (D4)

E2 = 1

3

[
a + ei π

3 (a2 + 3b)

(
2

A

) 1
3

+ e−i π
3

(A

2

) 1
3

]
, (D5)

E3 = 1

3

[
a + e−i π

3 (a2 + 3b)

(
2

A

) 1
3

+ ei π
3

(A

2

) 1
3

]
, (D6)

where

A = (3
√

3i
√

a2b2 + 4b3 − 4a3c − 18abc − 27c2

− 2a3 − 9ab − 27c). (D7)

The three eigenvalues do fulfill the usual constrain conditions:

3∑
i=1

Ei = tr[HMF] = ξq,

3∏
i=1

Ei = det[HMF]

= 2vq�2�1 cos (χ2 − χ1 + φ) − v2q2ξq. (D8)

The form of modes E2 and E3 suggests that they may become
equal if

(a2 + 3b)

(
2

A

) 1
3

=
(A

2

) 1
3

, (D9)

which occurs for special values of vq and ξq. The plot of
this numerically evaluated curve at the energetically lower
touching point is shown in Fig. 9.

2. Crossing point condition for two upper bands

Here we define the conditions for crossing points which
appear between the two upper bands defined in Eq. (8)
and shown in Fig. 10. If we fix the phase to φ = π

(i.e., q = |qx|), put �D = 0 and utilize the variational equa-
tion solution �1 = �/

√
2 = �2 and χ2 = χ = χ1, then

the determinant of the mean-field Hamiltonian (2) reduces
to

det[HMF] = −vq(vqξq + �2), (D10)

which is the product of all three eigenvalues shown in
Eq. (8). Introducing the dimensionless momenta q̄ = q/qF
and the order parameter �̄2 = �2/(vq3

F /2m), we rewrite

FIG. 9. The parametric line of the (lower) touching point forma-
tion (left) and eigenvalues E2 and E3 at the touching point (right) as
a function of the momentum. The energy scales in units of �.
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FIG. 10. Here we use the notation α = φ + χ2 − χ1. (Left) Dispersion of all spectral branches at α = π in the parametric regime without
crossing points. (Middle) Dispersion of all spectral branches at α = π in the parametric regime with crossing points as a function of momentum.
(Right) All spectral branches taken at the crossing point at lower energy as a function of the polar angle α. Middle and right panels are two
different projections of the same curve and are plotted with the same parameter values as for right figure in Fig. 5. On the shape of the lowest
band, one recognizes the saddle point responsible for the sharp peak in the DOS from Fig. 7. Its rough coordinates are α = π , q ≈ 1.2.

Eq. (D10) as

det[HMF] = −v2q4
F

2m
q̄(q̄3 − q̄ + �̄2). (D11)

We make a decomposition guess dictated by the expected
asymptotics of the eigenvalues

det[HMF] = −v2q4
F

2m
q̄(q̄2 + Aq̄ + B)(q̄ + C), (D12)

which yields by comparison with Eq. (D11) the following
relations for the decomposition coefficients:

A + C = 0, AC + B = −1, BC = �̄2, (D13)

which furthermore leads to the solutions

C = −A, B = −�̄2

A
(D14)

and an equation for A

A3 − A + �̄2 = 0. (D15)

There is only one real solution for A

A = −2 · 3
1
3 ei π

3 − 2
1
3 e−i π

3 (
√

81�̄4 − 12 − 9�̄2)
2
3

6
2
3 (
√

81�̄4 − 12 − 9�̄2)
1
3

, (D16)
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FIG. 11. (Left) The factor A from Eq. (D16) as a function of the
dimensionless order parameter �̄. (Right) Numerical evaluation of
the criterion (D21) for the dimensionless order parameter �̄ as a
function of the parameter y = mv/qF .

which is shown in Fig. 11. The factorization Eq. (D10)
becomes explicitly

det[HMF] = −vqF (q̄ − A) · q2
F

2m

(
q̄2 + Aq̄ − �̄2

A

)
· vqF q̄,

(D17)
which allows us to determine the position of the touching
points in the momentum space from

q2
F

2m

(
q̄2 + Aq̄ − �̄2

A

)
= vqF q̄, (D18)

which leads to the quadratic equation

q̄2 +
(

A − 2mv

qF

)
q̄ − �̄2

A
= 0, (D19)

which has the solutions

q̄± = 1

2

⎡
⎣2mv

qF

− A ±
√(

A − 2mv

qF

)2

+ 4
�̄2

A

⎤
⎦, (D20)

q− corresponding to the crossing point at smaller and q+ at
larger energies. Taken into account that A is actually negative,
cf. Fig. 11, the crossing points form only if

(
|A| + 2mv

qF

)2

� 4
�̄2

|A| , (D21)

from which the condition for the critical value of the pair-
ing order parameter � can be found. The strict equality in
Eq. (D21) defines the critical order parameter for the given
system realization at which the gap between the two bands
closes. The numerically evaluated order parameter as a func-
tion of the ratio y = mv/qF is shown in Fig. 11.
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