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Abstract: We are concerned with an Interior Penalty Discontinuous Galerkin (IPDG) approximation of the
p-Laplace equation and an equilibrated a posteriori error estimator, The IPDG method can be derived from
a discretization of the associated minimization problem involving appropriately defined reconstruction ope-
rators. The equilibrated a posteriori error estimator provides an upper bound for the discretization error in
the broken W norm and relies on the construction of an equilibrated flux in terms of a numerical flux
function associated with the mixed formulation of the IPDG approximation. The relationship with a residual-
type a posteriori error estimator is established as well. Numerical results illustrate the performance of both
estimators.
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Adaptive finite element methods for the p-Laplace ptoblem and generalizations thereof such as problems with
power growth functionals based on either residual-type a posteriori error estimators or on error estimators
derived by duality theory have been developed, analyzed, and implemented in [5, 7, 15, 18, 24, 34, 45, 50]
{see also the monograph [47]), whereas Discontinuous Galerkin (DG) methods for such problems have been
considered in [6, 13, 14, 21, 23, 33, 37, 40, 43, 44, 48] (see also [22] for the p(x)-Laplacian).

On the other hand, equilibrated a posteriori error estimators for adaptive finite element approximations
of linear and nonlinear second and fourth order elliptic boundary value problems have been suggested in
[8-11, 16, 17, 20, 31, 32); see alsc Chapter 12in [52].

In the present paper, we consider an Interior Penalty Discontinuous Galerkin (IPDG) method for the p-
Laplace problem similar to the ones in [5, 13, 14]. The methed is the optimality condition for the minimization
of an IPDG approximaticn of the primal energy functional associated with the p-Laplacian, We also considera
two-field formulation of the IPDG approximation which allows to specify a numerical flux function such that
the IPDG methed falls within the approach taken in [3]. The equilibrated a posteriori error estimator is based
on a general approach from [46] which enables to estimate the global discretization error in terms of primal
and dual energy functionals. It requires the construction of an equilibrated flux in Brezzi-Douglas-Marini
finitc element spaces involving the two-field formutation and the numerical flux function.

The paper is organized as follows: In Section 1, we provide some basic notations and auxiliary results.
Then, in Section 2 we consider the p-Laplace problem and its associated primal and dual energy functionals.
Section 3 is devoted to the IPDG approximation and its related two-field formulation. The equilibrated a pos-
teriori error estimator based on the result from [46] is dealt with in Section 4, whereas Section 5 addresses the
construction of an equilibrated flux using Brezzi-Douglas-Marini finite elements. Section 6 provides a com-
parison with a residual-based a posteriori error estimator for the IPDG approximation. Finally, in Section 7
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we present a documentation of numerical results for two examples that illustrates the performance of the
suggested approach.

1 Basic notations and auxiliary results

We use standard notation from Lebesgue and Sobolev space theory (see, e.g., [49]). In particular, for a
bounded domain 2 ¢ RY,d ¢ N, we refer to LP(;R9),1 < p < oo, as the Banach space of pth power
Lebesgue integrable functions on © with norm || - |poep.gey- In case d = 1 we will write L?(Q) instead of
LP(Q; R). We denote by W3P(Q),s € R,,1 < p < oo, the Sobolev spaces with norms | - [lw=r(g) and by
WP (2) the closure of C(02) with respect to the norm | - | wsr (. Functions u € W'(Q) have a trace u/; on
the boundary I' = 90Q with uly € W-YPP(D).IiT = Tpu Ty, I'pn 'y = @, the space Wé&””'p(l‘p) denotes
the space of functions on I'p whose extension by zero to I" belongs to wt-1/p.p(I) (for examples of functions
that do belong to W&;” PP(rp) and those that do not as well as for further discussion we refer to [35]). For

up € Wy P (I'p) we set 1
Wu:.’ro(ﬂ) := {v e WHP(Q) | vir, = up).

Further, we define H?)(div, ), 1 < p < oo, as the Banach space
HP(div, Q) = {z € IP(Q | V- T L (D)}
with the graph norm
. P P p
Izl 2= (1T ey + 19 Thgy) -

We refer to yfo”}n (div, Q) as the subspace

HY). (div, 0) = {r ¢ H¥)(div, 0) |0y, - T = O on Ip).

For further properties of _I-!(”) (div, 2) we refer to [1].
For later use we recall Young's inequality

£
Ha,' < Eall’ + ——aj 1
fora; >0,1<i<2,and1<p,q < oo, 1/p+1/g = 1,and any ¢ > 0, as well as the following inequality:
Letw; € R, 1 <i<2,and0<r < co. Then there cxists a constant C; > 0 such that it holds

(1wsl + lwal)" < G lwal" + 1wl ), G/ Cagr =1 (12

2 The p-Laplace problem and the associated primal and dual
energy functionals

Let Q ¢ R? be a bounded polygonal domain with boundary I' = 92,T = Ip UTx,Tpn Ty = @,Ip # 2,

and exterior unit normal vectors o, , 1, . Further,let1 < p,q¢ <00, 1/p+ 1/g =1,and f € L), up €

W&; UPP(ryy, uy € L9(Ty). The p-Laplace problem with inhomogeneous Dirichlet and Neumann boundary
conditions reads as follows:

-v- (|Vu1P-ZVu) =f inQ (21a)
u=up onlyp (2.1b)

n, - (|Vu|"‘2Vu) =uy only. (2.1¢)
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The variationa! formulation of (2.1) requires the computation of u € W;,’J’: (@ such that forallv e Wé:ffo (Q)
it holds

j [VulP-2Vu - Vydx = £(v) (2.23)
0
where the functional £ : V — Ris given by
e(v) := vadx + j uyvds. {2.2b)
0 fy

It is well known that (2.2) admits a unique solution (see, e.g., [19]). Moreover, (2.2) represents the necessary
and sufficient optimality condition for the minimization problem

Jp(uy=inf Jp(v) (2.32)

ve Wu;)_ rD(Q)

where the objective functicnal Jp is given by

1
. Pdy — - .
Je(v) : E!IVVJ dx vadx Junvds. (2.3b)

The dual problem of (2.3} is given by (see Chapter 4, Section 2.2 in [29]):

Jo(p)= inf  Jp(q) (242)
= geH?@viy <
subject to the equilibrium ¢onditions
~-V.p=f in LI, ny,-p=uy in LI(Iy) (2.4b)
(240)

where the objective functional fp is given hy

Jo(q) ==

oLy -

[iaax- [upnr -gas. (24d)
0 o

3 IPDG approximation of the p-Laplace problem

Let Ty be a geometrically conforming, locally quasi-uniform, simplicial triangulation of the computational
domain 2 which on I" aligns with I'p and I'y. Given D c @, we denote by Ny(D) and £;(D) the set of vertices
and cdges of T in D, and we refer to Pi(D), k € N, as the set of polynomials of degree < k on D. Moreover,
hg, K € Ty, and kg, E € &y, stand for the diameter of K and the length of E, respectively. We define h :=
min {hx | K € T4). Due to the local quasi-uniformity of the triangulation there exist constants 0 < cg < Cg
such that for all K € Ty it holds

crhx € hg < Crhg, E € Ex{0K). (X))

For two quantities a, b € R we will write a < b, if there exists a constant C > 0, independent of h, such that
as< Ch.

We will further use the following trace inequality (see, e.g., [25]): For 1 € p < co there exists a constant
Cr > 0, only depending on p, the polynomial degree k, and the local geometry of the triangulation, such that
for vy € Pi(K)and K € T} it holds

il @i < Crig? Val - G2
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ForE € E4(Q), E =K, nK., K; € Th(02),and vy, € V}, we denote the average and jump of vy across E by {vp]g
and [vylg,ie.,

1
{vale == -2-(VhEEn1r(+ + VhlEnK.)» [valE := ¥rlEnk, — Valenk.
whereas for E € E4(I) we set
[ve)e :=vale,  [Vele s= valE.

The averages {Vva)g, {1, )¢ and jumps [Vvi]g, [x;]E of vector-valued functions Vv and 1, are defined anal-
ogously, For E € £4(02) it holds

[uh vpds = j (funle [vnls + (unls (vale) ds. (33)
E E

We further denote by ng, E € £4(), with E = K, n K. the unit normal on E pointing from K, to K_ and by
ng, E € Ex(I), the exterior unit normal on E.
We define the broken W'-P-space W'P(2; T3), 1 < p < o0, by

WHP(Q; Ty) = {va € LP(Q) | valk € WHP(K), K € Th} (34)
equipped with the norm
b 1/p
Walwsscay 3= 3 Walfyusge) (35)
KeT,

and the broken H-space H®)(div, Q; Ty) by

HO(div, 0 T) = {g, € LP(QR%)| gl € HP'(div, K), K € T} G6)
equipped with the norm
1
9, e v, ) 1= ( ) “ﬂh”;‘”’(div,i()) G7)
Kedy
We redefine the primal energy functional {2.3b) according to
po)i=z ¥ [P dc- [fax- [uwves, vews@m (3.8)
Preny 0 T
N
and note that it reduces to {2.3b) for v ¢ W-P(Q).
We consider the finite element approximation with the DG spaces
Vy = {V}, 10 - Rvplg € Pr(K), K E‘J'h} . (39a)
V,:={q, : 0 - K| q,lx € Pu(K)?, K € Ta}. (3.9b)

We note that Vy ¢ W1-P(2; T4). Moreover, for g, € V,, we have (V- g, )k € Px-1(K), K € Ty, and ng -q,le €
Py(E), E € Ep(D).
For u, € Vi, we define the broken gradicnt V5 u by means of

Vauplg := Vunlg, KeTh. (3.10)

Further, let u}, be chosen according to
up € WYP(Q) suchthat uplr, = up and uplr, =0. (3.11)

Following [13, 23], we define recovery operators Ry, ; : Vp ® W!P(Q) - V,,, 1 < i< 2, according to
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[Risw-g,dx= ¥ [ulene-fgleds g,V

0 Ee£p.(.0UI'D)E
J&,z(“)'ﬂhd"= Z Jung-ghds, ga, €V,
2 Eedalln) g

We define the broken DG gradients Vpg,iun, 1 < i < 2, as follows:

Vpe,1un = Vattn = Ry 1 (un)
VDe,2Un = Vpo,1Un + Ry 5 (up).

The following auxiliary result from [13] will enable us to estimate the L? norm of Ry, , (ua) - R
up € Vy (see Lemma A2 in [13]).
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(3.122)

(3.12h)

(3.13a)
(3.13b)

R; o(up) for

Lemma 3.1. Foreachp, q € (1, co) such that 1/p + 1/q = 1 there exists a constant Cjs > 0, independent of h,

such that it holds
J(_h 1 (un) - 2(“1)))

inf sup 2 > Cis.
umetng v,  lunllr@lg, laomre

Theorem 3.1. Under the assumptions of Lemma 3.1 there exists a constant Crec > 0, independent of h,
for up € Vi it holds

1/p
||Eh,1(uh)“Eh.z(uf))]llp(ﬂ;ﬁz)<Crec(( z hip/qII[uh]ElpdS) +(
E

npi j lun - upl?
Ee&p()

Eely(Tp) E

lp
IRy, > (up)lLery) < Crec( Y h;;p’qjlunl‘” dS) .
Bl

Proof. We have

| Ry (un) - qdx | Ry1(un)- g, dx

2
IRy (Up)rcomzy = SUP T > sup P P—
qeloniry)  MQlisosR?) g,ev, G, lenR?

The inf-sup property (3.14) implies
_[ By (uh)

0
IR, , (un)lrcopa) € Cjg SUp ——r———
s RS g, 19,le@ry

(3.14)

suchthat

")

(3.15a)

{3.15h)

(3.16)

(3.17)

Now, ohserving (3.12), setting E; := E,, E := E_ for E € £4(Q) and using (1.2), (3.1}, the trace inequality (3.2)

as well as Holder’s inequality and the Cauchy-Schwarz inequality, we obtain

[t&m(uh) ~Ry,p)-q,dx< ¥ j KMl let Y g, el ds
0 EEEh(D)E

+ Y | B un - upl by, bsl ds
Ee€allo)

1 1/p
<3 ( I " [unlel? ds) ( jhEIghlf. +Sh|E_|qd5)
E

EEE;,(D)

1/p 1/q
( [ Bgun - uoP ds) ( j helg, ds)
EEEA(TD) E E

1/q
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cYe o 1/p 1/q
< —; Z ( he' Y up el ds) ( j he(la,le,|? +1g, 1519 ds)
Ee&4(QUTp)

Ip 1/q
) ( Jhp/qluh-unlpds) ( helg |‘-'ds)

Ee&y(Ip)
cli y Ip 1/q
< %( > [ Uh]ElpdS) ( [ s Z la, |57 ds)
Ee£y() § Eea,,(m A=
Ir 1/gq
+( Z Jh Py — upl? ds) ( hElq 17 dS)
Ecenlp) Ee&».(l'n) E
1/p /g
<cic hg 9 [up]glP ds hK g, laxl? ds
R g
Eefy(0) 3 KE‘J',. ik
. 1/p 1/q
+ cR"’( AT unl"dS) ( M |g,,|ax|4ds)
Ec&xlp) E KeTy K
Yanl y i/p
< Cg qu’qu( Y Ihép ¥ [unl e dS) 19, lLa0:m2)
EcEa(D) j
) 1/p
+ G cr( ¥ j R un - upl? ds) g, lzo(o:r2)- (3.18)
EEEH(FD)E
Using {3.18) in (3.17) gives (3.15a). The proof of (3.15b} follows along the same lines. O

We refer to HE”) as a contractive LP projection of LP(2) onto {vy € LP(Q) | valk € Px(K), K € Ty}, which can
be defined elementwise by

Inf”(v) vpdx= Y jn}{”(v) wdr, vel(Q) (3.19)
0 KE'T,,K

jnip)(v)pkdx = [vpkdx, pr € Py(K), K€ T

K X

We note that II;"’) = (H,(f’))' is a contractive LY projection of L7(2) onto {vy € LI(Q) | valx € Pi(K), K € Ty}

(see, e.g., [2]). We further refer to g(k” ) as a contractive L? projection of L?(Q; R*) onto V. We also denote by

IIE’) a contractive L? projection of LP(I"), I' = I'por I' = Iy, onto {vy € LP(I") | vil € Px(E), E € En(T)}.
We define approximations fj, up_p, and uy y of f, up, and uy such that

fulk € Pec1 (KD J(f—fh)}’odx =0, poePo(), KeTh

{up - un,p)pods =0, po € Po(E), E € ExlIp) (3.20)

—_ =

un,ple € Px(E),

unnlE € Py(E), |(un-unn)pods=0, po€Po(E), E € &n(ln).

113 e, 171

Remark 3.1. We may choose f;]x and up y|z as contractive L7 projections onto Py..1(K) and Py(E) and up,plE
as a contractive LP projection onto Pi(E).

We consider the discrete minimization problem

Juplup) = vig Tr.plvn) (3.21a)



DE GRUYTER R.H.W. Hoppe and Y. lliash, IPDG approximation of the p-Laplace problem —— 319

where the objective functional J p is given by

1
Jnplva):=— Y I 1Vp6,2vkl? dx - Ithh dx - J up,N Vpds
KeTng 0 I

+5( Y h;”"[uv,,]ﬂpdn y h;”’qj]v,,-unwds) (3.21b)
Pl\eegriy ¢ Eetnlln)

and & > 0isa penalization parameter. The existence and uniqueness of a solution of (3.21) follows by standard
arguments from the calculus of variations. The necessary and sufficient optimality condition gives rise to a dis-
crete variational equation which represents the IPDG approximation of the p-Laplace problem (2.1a)-(2.1c):
Find uy, € V4 such that for all v € Vy itholds

af®up, va) = En(va) (3.22)
where, observing Q;f ) (VpG,1vr) = Vpe,1vh, the semilinear IPDG form af“ () : Vax Vy = Risgiven by

ap®un, vn) := Y. I V6.2uniP-2Vpg.2un - I (Vg, vay dx

KeTy K
va Y EF | Nun-upleP2lun - uple valpds
Ee&p(fulp) E
=) jHiq)(IVnc,zuhlp"ZVDG.zuh)-Vnc,ivhdx
KeTw
va T s - uplelP 2lun - uple (lgds G2)
EcEp(Qulp) E

and ¢5(-) : Vi — R stands for the linear functional
Ealva):= Y Ifhvh de+ Y j un, V4 ds. (3.24)

KeT, K EcEy(In) E

Lemma 3.2. The IPDG approximation (3.22) is consistent with the p-Laplace problem (2.1a)~(2.1c) in the sense
that if f = fr and uy = upy in (2.2b) and u satisfies (2.1a)-(2.1c) pointwise almost everywhere, then for all
vp € Vy it holds

ap®(u, vy) = Ea(va). (3.25)

Proof. Since [ulg = [uplg = 0,E € E4(Q), and (u - up)|e = (u - up)lg = 0, E € En(lp), wehave R, 4 (u) -
R; ,(up) = 0. It follows that

awva)= ¥ [EOQVuP 200)- (Fvs - Ry () e

KE'J'p.K
= ¥ B0 rvn vvedx- Y [ @0vu 2l (lz ds
KeTy i Ee&p(Qulnp) g
=y JIVuI”‘ZVu- nPwmd- Y jn}f’(ng-{IVul”'ZVu}E) (vnlgds
KeTh Ee&y(Ulp)
) j vuP-2vu- IO @ dx- Y jng Va2 vulg T ([valp) ds
KeTy i Ee€x(0ulp)
=3 [ |Vul V- Pvpdx— ) J’nE- {IVu[P~2Vu) [v4le ds. (3.26)
KeTn g EcEp(Uip) ¢

An application of Green’s formula gives

j VP2V - Vo dx = — I V- (IVUP-2Vi)vp dx + [ nog - (VulP2Vu)vp ds.
K K 1.4
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Summing over all K ¢ T, and observing (3.3) yields
T [wartvu-vvax= ¥ [ev-qnuptvovdces Y (g 09uP 2 ule aleds

KeTn i KeTh EcEn(Qulp) g
+ Y | me-(VulP?Vu) vy ds. 3.27)
Eetallw) g

Using {3.27) in (3.26) and observing (2.1a)-(2.1c) results in

abb(u,vp) = Z j(—V <(IVulP-2vu) vy dx + Z an - VuP?Vuvyds = Ifhv;, dx+ I up yvads
KeTn Ee€n(T) 0 In

which is the assertion. (]

Observing (3.13a) and (3.12a), for the first term on the right-hand side of (3.23) we find

7 (1¥pg,2unlP "2V pg,2un) - Vpe,1va dx = ﬂ(q)(IVDG,zth’ “2Vpg,aun) - Vvp dx
X k
KeTy K KeTa K

-y I&(q)(ivnc,zuhlp'zvmzuh)-B;,,;(Vh)dx
KeTy K

= Y | Vo6, 2unl’2Vng,2un IO (Vvy) dx
KE'J'),K

- Z j&(q)(lvnc,zuhlp'zvuc,zuh)'B;.,;(Vh)dx
KE'I;;K

-2
= Y | {V06,2unl" Vg 2up - Vvp dx
KE'T;.K

- Y |valeng- U2 (Vpe,2unlP~2Vpg,oun)le ds
EeEx(Oulp) &

= Y | Vo6, 2unlP2Vpe,2un - Vvn dx
KeTy K

-y [vh)e Mi(ng - {Vpg,2unlP *Vpg,2un}e) ds

Ee&p(Quiy) E
= Y | Voo2un2Vpgaun-Vundx - Y | (valene- (IVog.2un?*Vog,2unte ds
KeTy K Ec&p(ulp) E
and hence, we obtain
ap(un, va) = Y, JIVDG.zuhlp"ZVDG.zuh Vvpdx- Yy J[Vh]E ng - {IVp6,2unl” 2Vp,2un}g ds

KeTy K EESh(QUr}]) E

va Y R Nlun - uplel 2up - uple valgds. (3.28)

Eeen@ulp)

Remark 3.2, Incase p = 2, i.e., for the Poisson problem, we have

alS(up, vp) = Z JVu;,-Vv;,dx— ) j[v;.]g ng- {(Vuplpds— ) I[un—uf;]EHE-{Wh}EdS
KeTy Ee&p(ulp) E Eefy(Qulp)

a3 P lun - upllP s - uple lz s
Ec&n(QLlp)

D[RO SCOVE ALY
KE‘J');K

which, except for the last term, coincides with the IPDG approximation for the Poisson problem from [3].
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Remark 3.3. We note that uy ¢ W'“P(Q), but a conforming finite element function u§ € Vj := Vpn wtr(Q)
can be cbtained from up € ¥ by postprocessing in the following way (see [38]): Let N be the set of La-
" grangian nodal points for the elements in V§ and let Let x; be the number of triangles that share the nodal
point x; € NL, We have ; = 1, if x; is contained in the interior of an element, while »; > 1,ifx; € NEnER(D).
The multiplicity »; is bounded, since the triangulation is locally quasi-uniform. Denoting by N(x;) the set

N(x;) := UK € To{) | x; € K}, the associated conforming element is defined by its nodal values

c —1- Y wlk(x), xieQuly
up(xi) = 1 i geNox (3.29)
Uh,D, xiel

By a generalization of Theorem 2.2 in [38] to the case p # 2 there exists a constant C¢ > 0, only depending on
the local geometry of the triangulation, such that

Z hEIJ/q J' Huplgl? ds + Z hEP/QJ [ug - uh,nl” ds) {3.30)

cpP
I]uh - uhIiWLP(D;‘J'h) < Cc(
Ee£y(0) E EcéyIp) E

Next, we consider a two-field formulation of the IPDG approximation (3.22). We set

P, = P (1Vp6,2u8 P2 Vg, 2n) (3.31a)
-V -p, =fa (331b)

We consider (3.31a) elementwise for each K € Ty, multiplyby q, |x, q, € V;, integrate over K, and finally sum
overall K € Ty, Observing &(q)(gh) =q,, we thus obtain
D Jg,, g, dx= Y I|VDG.2uh[p_2VDG,2Uh-ﬂh dx. (3.323)
KeTy K KeTy K

Likewise, we consider (3.31b) clementwise for cach K € Ty, multiply by valk, va € Vh, integrate over K, and
finally sum over all K € 7. An elementwise application of Green’s formula gives

- Z JV'Ethdxz Z IEh'VVth— Z Jnax‘ghlaxvhds= Z jfhvhdx, (3.32b)
Ke'.T,.K Ke’J',,K Ke'J’;.aK Ke'I;,K

We replace D, lax in (3.32b) by a numerical flux function Ea < We thus obtain the following system of discrete
variational equations: Find (up, Eh) € Vy x V, such that for all (V"'ﬂn) € Vypx ¥V, itholds

Z jg,, -q, dx = Z J |Vog.2urlP 2V, 2un -g_hdx (3.33a)
KeTy s KeTy X
Z jgh-VVth— z j“""'ﬂaxv"ds: Z Ifhvhdx- (3.33b)
KeTy, X KeTn 3K KeTy K

In particular, for the two-field formulation of the IPDG approximation (3.22) the numerical flux function p,
is chosen as follows:
2pe - ah | lulelP 2unleme,  E € E4(0)
Pole=q z,- ah;”/qluh —uplP?(up —up)ng, E € Ep(lp) (3.34)
unnig, Ee &p(ly)
where z, := [VD6.2unlP~2Vpg, 2tp.
Theorem 3.2. The two-field formulation (3.33) is equivalent with (3.22). In particular, if up € Vy is the solution

of (3.22), there exists p, € ¥y, such that the pair (p,,un) € V; x Vi satisfies (3.33). Conversely, if the pair
(B, un) € ¥y x Va satisfies {3.33), then up € Vp solves (3.22).

Proof. Letuy € Vj be the solution of (3.22). We define p, ¢ V,, by means of (3.33a). Then, choosing q, = Vv
in (3.33a) and observing (3.28) and (3.34) yields (3.33b). Conversely, if the pait (p, , up) € ¥, x V) satisfies
{3.33), we choose q, =Vvp in (3.33a) and insert (3.33a) into (3.33b). Taking (3.34) into account this shows that
up € Vp satisfies (3.22). O
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4 An a posteriori error estimator for the global discretization error
Given reflexive Banach spaces V, Q with norms || [ly, |- | g, convex and coercive objective functionals C : V —
R, D : Q — R, and a hounded linear operator A : ¥ — @, we consider the minimization problem

325](u) %))

for the obiebtive functional
J(w) == C(u) + D(Au). (4.2)

An abstract approach to the a posteriori error control for (4.1) has been provided in [4 6). The a posteriori error
control relies on the dual formulation of {4.1):

sup J*(g) or inf (-J*(g) {4.3)
geQ geQ

in terms of the Fenchel conjugate J* of J as given by
J'(g)=-C"(-A"q)-D*(g) (a4)

where C* and D* are the Fenchel conjugates of C and D and A* stands for the adjoint of A.
Given some approximation uy, € V of the minimizer u of (4.1), the a posteriori error estimate from [46]
states that for any admissible function g € Q it holds

lu - unll < Clup) + C*(-A"q) + D{Aup) + D*(g). (5.5

Now, letuf € Vi c WbP () be the conforming finite element function obtained from the solution up € Vi
of (3.22) by postprocessing according to Remark 3.3. Then it holds

flue ~ u [l%yl,p(g;r_rh) < 2("" - u;"lzm,p(g) +[lup - u;”ﬁll,p(ﬂ;g'ﬁ))' (4-6)

In order to estimate the first term on the right-hand side of (4.6) we apply (4.5) with ¥ = W2(02),Q :=
LP(RY), A=V, and

Cup) = - Ifuf, dx - I uyuj ds (4.72)
0 Iu
D(Vup) := 1 Z J [VuSlP dx + I, (uf) {(4.7b)
P ety

where I, is the indicator function of the closed convex set

Ky:={ve W'P(@Q)|v=upon Ip}. (4.7¢)
We obtain
C(-A*q) =Ix,(@), qeH?(div,0) (4.82)
D*(q):= 1 I lq|? dx - z Iup ng-qds, q¢ H9(div, Q) (4.8b)
1, Eeéallo)

where I, is the indicator function of the closed convex set
Kz := {g ¢ H9(div; )| -V-q=fin 0, nr, -q = uyonIy}. (4.8¢)
We call _Ef,q € V, an equilibrated flux, if

Y e H9(div; 2) (4.9a)
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and g;q satisfies the equilibrium conditions

—V-E:q =fn inQ (4.9b)
nr, - Pl =unN on I'y. (49¢)

Moreover, we choose P, € {g € ﬂfﬂ»ﬂ (div, Q) Inf, - q¢ LI(I'y)} such that
-V-p, =f-fp in Q, np, -P, = UN—Upy OD Iy. (4.10)
It follows that p,* + p, € K, ie, Ix, (p,'+ P,) = 0, and hence, (4.5) reads as follows
ot = w510y © TpCuf) + I, ) +Ip(PRT + P (411)

In view of (2.4d}and nr, - P = 0on I'p we have

1
Io(pl+p )=~ Y Jlgf'q+gclqu— y J'upnrn-_g;qu. (412)
9K Ec€allo)
Using (1.2), we find
1 1
=) j|g;q+gc|4dxs—cq( 5 I[B;qlqdu ) Jlgclqu). (.13)
9 KTy 9 \ga; KTy g

In order to estimate the second term on the right-hand side of (4.13) we use the Poincaré—Friedrichs inequal-
ities

v =1 [ vdddirw < Ce) eV, v e WH(0, K e Ty (4.142)
K

v~ 1B j vdslm < Conp) Rel VW), v € WYP(E), E € Ex(ln) (4.14b)
J .

where Cg},(p), 1 i € 2, are positive constants depending only on p (see, e.g., [28]).

Lemma 4.1 Suppose that the following regularity assumption is satisfied: For {1 ¢ Hf)p 1)’.; (div,d Inr, -1 €
LP(I'y)} and the weak solution z of the elliptic boundary value problem

-dz=-V-1 inQ {4.153)
np, -Vz=0 onI'p {4.15b)
nr,-Vz=nr,-T on I'y (4.15¢)

there exists a constant C, > 0 such that
VerN, € LP(FN), "VZ“LP(['N;RZ) < C,. (4.16)

Then for p_ ¢ {Hyy, (div, O) |0y, - T € LI(Tw)} it holds
19 WEscaupery < Ca Cop)7 056, + CICp)? 05Ch.2) 1)

where oscp, and oscy, > refer to the data oscillations

0SCh1:= ) 0SCk1,  0SCkqi=hi j If - ful?dx {4.18a)
KeTn K
05Ch2i= ) OSCK2,  OSCkzi= Z K I luy — up nl9ds. (4.18b)

KeT, Ee&p(oKnTy) E
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Proof. We have
Ip, Neeco:ryy = Sup{ [ p,-rdx|zec HY) (div, Q), I7lr@m < 1}-
0

Forr e mg’ ) |nf, - T € LP(I'y)} there exists z € WLP((2) such that T = Vz. In fact, z can be chesen as the
weak solunon of the boundary value problem (4.15). Hence, we have

I lsomy < sup [, -Vzdx (8.19)

1¥zlpiany<t
Applying Green’s formula locally on each K € 7, and taking (3.20) into account, we get
IBC-Vzdx: Y Ig-Vzdx:— ) jv-gczdx+ Y InE-Eczds
Q

KeTy i KeTu i Lelalln)
=y j(f -f)(z-podx+ Y I(uu - up,n) (z - po,2)ds (4.20)
Key g Ecéall)

where pg1 := K| ! [, zdxand po,2 := |EI™* [ zds. Using Holder’s inequality, the Cauchy-Schwarz inequal-
ity, and the Poincaré-Friedrichs inequalities (4.14), we obtain

T [¢-foe-poixs T fon-unme-ponas

KeTh Eebalw) g
/g 1p
< ¥ ([ir-frax) ([ 1z-porP ax)
KeTy K K
1/q 1/p
+ ( Y f un - uh,qudS) ( D Ilz—po,zl” ds)
EcEn(Iy) E Een(Iy) E
‘ 1/p
<clo) T o ] f-ttax) (3 [roep )
KeTy KeTy K
1/q 1/p
refo Y hgj jun - unml?ds) (Y j V2P ds) . (421)
Ee&p(l'y) E Ee€p(ly) E
Using (4.20), (4.21), and (4.16} in (4.19}, it follows that
Ip, Iz ca.r < CoAp) 05c3f + C.CHNp) 05€3. (4.22)
Hence, using (1.2}, we find
Ip "L‘?(Q g S (C(l)(P)‘? 0SCh1 + CqCpF(p)q 05Ch, 2) (4.23)
which is the assertion. O

Moreover, as far as Jp(u}) is concerned, we have

Il = Jpun) + = ¥, j (vl - (vusl? ) dx + Y. [ fup-uSde+ Y Iun(uh ~up)ds.  (4.29)
p KeTy K KE'.T;,K EEE&(FN)E

Lemma 4.2. Let uy € Vi, be the solution of (3.22) and let uf; € V}, be its postprocessed finite element function.
Then it holds

]l.u(u,.) jP(uh)l Z P (4.25)
KeTy
where
Ky 1= Ituh—u,‘,ll%,,w( Y Vuphd e+ e+ Y, nunumm)nuh—uguwm (4.26)
KeTy Eefu{dknly)

and |Vuplpg,k is given by

1p
[Vuplpe.k := ( J [Vup/? dx) ) (6.27)
K
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Proof. By Taylor expansion and using (1.2) as well as Holder’s inequality we find

|— ¥ [ (wugp - wunr)

KG'T;,
1
= I J- Vi, + AV(uf — up)P~2(Vuap + AV(S - up) dA - V(u§ - up)dx
KE'I).K 0
1
J Vi + AV(u§ — up)lP | V(uf, — up) dAdx
KE'J'},K 0

4

1
<Cpa j j (19ualP 4 AP — P W~ )] A e
KO0

KeTy
1/, 1
<Cpa Y Iquhlpdx leuh-u;)tpdx) Pv2ca ¥ Ilv(uh—uﬁ)ll’dx. (4.28)
Kely g p Kel
Moreover, we have
| T [fen-wpaxr T [untun-ufas]
KE'J‘), EeEp(I'y) E
1/, 1/ 1/, 1/p
<y (jif]"dx) q(I|uh-u;|de) ) (j[unlqu) q(jiuh—uzl”ds) . (429)
KTy g K EcEnlIn) ¢ E
The assertion now follows from (4.24) and (4.28), {4.29). O

For practical purposes, we further replace Ix, (u};) by the penalty term

a ) h;""" [ |u§ ~ uplP ds. (4.30)
EeEnT)

In view of (3.29) we have uj | = up,p on E € E4(I'p) and hence, (4.30) gives rise to the data oscillation

&OSCh3 =@ ¥ O0SCK,3 {4.312)
KeTy
0SCE,3 1= h;-" e I lup — un,pl” ds. (4.31b)
EeE4(dKnTp) E

Using Lemma 4.1 and Lemma 4.2 in (4.11) yields

I - ubln i, S My * Maae (4322)

Here, 11", and 1, are given by

M= 2 Mk Mhai= 2 Mk (4.32b)

KeTy KeTy

where i K‘*}, 1 <i< 2, read as follows:

1
wh = [ I9l? dx - { fuax -
pe P4 Ec&)(0knTy) 3

JuNu;,dH—jlpeqlqu— Y Iupng-g;qu
4 EcE4(@Knlp)

(4.32c)

3
nics = up - uf [F— Hg + Y 0SCK,- (4.32d)
i=1

The right-hand side in (4.32) is then a computable and localizable quantity for the a posteriori estimation of
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the global discretization error. It gives rise to the following equilibrated a posteriori error estimator

Mo= Y Mg (4.33)
KeTp(D)

where the local contributions 13, K € Th(Q2), read as follows
n 1= Mg + Mxze

The construction of an equilibrated flux will be dealt with in the subsequent section.

5 Construction of an equilibrated flux

We construct an equilibrated flux p}* ¢ H@(div, 2) which allows us to apply the equilibrated a posteriori
errorestimator (4.33). The construction will be done locally by an interpolation on each element, In particular,
we denote by BDMi(K), k € N, the Brezzi-Douglas-Marini element BDMi(K) := Px(K)? (see, e.g., [12]), and
recall the following resuit.

Lemma 5.1 Let k > 1. Any vector field q € BDMy(K) is uniquely defined by the following degrees of freedom
[z apds, pee PulE), E e £4(0K) (51a)

q-Vpi1dx,  pr € Pra(K) (5.1b)

q- curl(bgpy-2)dx, pi-2 € Pi-2(K) (5.1¢)

E
]
K
where by in (5.1c) is the element bubble function on K given by by = [13., Af and Af,1 < i < 3, are the
barycentric coordinates of K.

Proof. We refer to [12]. O

Lemmabs.2. Let K € Ty There exists a constant Cg > 0, depending only on k and the local geometry of the
triangulation, such that for any q € Py (K)? it holds

I;gl"dstE( Z he Jlng-glqu+h§ jlv-glqu
K K

Ec£4(dK)
+ hi max { j iq - curl(bgpr-2)I? dx | px-2 € Pe-2(K), max [Pr-200] € 1}) (5.2)
K
Proof. The assertion can be proved by standard scaling arguments. 0

We construct an equilibrated flux g;qi x € BDMy(KX) by the specifications
[ et pcds = [ng-B, lepeds, pec PuB, E e £ak) (532)

-Vpk-1dx,  pi1 € Pra(K) {5.3b)

E
[o5n- w110 [,
14

1V pg 2upP~2Vpg,2up) - curl(bgpe-2)dx, P2 € Pra(K)  (53¢)

N, N, b

jgﬁq -curl{bgpy-2) dx =
K

where p_ €V, satisfies the two-field formulation (3.33).

P
Zh
Thearem 5.1 The flux p},’ as given by (5.3) is an equitibrated flux, i.e., p; € H9(div, @) and it satisfies (4.9b),
(4.9¢).
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eq

Proof. Due to (5.3a) the normal components of g:q on E € &,(Q) are continuous across E, and hence, P, €
H@(div; Q), i.e., (4.9a) is satisfied.
Furthet, it follows from Gauss’s theorem and (5.3a) that for py; € Pr_1(K), K € T4, itholds
IV- (P} pr-1)dx = j ok - Pyipk-1ds = I Dok - By, Pr-1 ds. {5.4)

K K aK

On the other hand, from (5.3b) we deduce

[V @ pidx= [ Vg3 pecadxe (B2 Tprade= [ V- prades [, Vo d
K K K K K

Hence, observing (5.4) and using (3.33b) with va!x = pr_1 and vilx = 0, K’ € T, K’ # K, we obtain

0 =JV-g§°‘pk-1dX+ Jg,,-Vpk-1dx- J nyk - P, Pr-1ds = Jv-g;qpk-ldﬂ thpk—l dx.
X K K 4 4

Since V - p 9 and f4|x are contained in Py_1(K), we readily deduce that (4.9b) holds true, Moreover, for E ¢
Ep(Ty) it follows from (5.3a) and (3.34) that

IUE'E;qudS =IDE‘EGKEEPkd3= Iuh,upkds. (5.5)
E E E

Since both ng- B;q and up, |z are polynomials of degree k on E, it follows from (5.5} that (4.9¢) is satisfied. [

6 Relationship with a residual type a posteriori error estimator

A residual-type a posteriori error estimator for the IPDG approximation of the p-Laplace equation with ho-
mogeneous Dirichlet boundary conditions in case p = 2 has been derived and analyzed in [36, 38, 39]. Its
generalization to arbitrary 1 < p < oo reads as follows:

5 4
e = z(q;ﬁ T+ ) A (6.1a)
i= i=3
Here, the clement residuals n & and the edge residuals nT5 nir2 €i<5,are given by
Mhy = Z hy I If+ V'Ekq)(lVDG,zunlp‘z(VnG,zuh)lq dx (6.1h)
KeTr g
Mhp:= ) he I I - [1Vp6, 2417 Vg, 2unlgl? ds (6.1c)
EeEnD) g
'I;Ie'sB = Z *Pl'q I |[uh]E|p ds (6.1d)
EcEnl) E
M= T s uolds (6.1¢)
Ee&p(lp) E
M= Y he | luy - ng-[Vpg.aunlP VoG aunl? ds. {6.11)
EebTy) |

The residuals 7} 7, 1 < i< 5, and 73, 3 < i < 4, read as follows:

s = ()Y \Vpg.ounlpg,0, 1<i<5 (61g)

res (”res)llp |Vuh|DGQ’ 3<i<h (6.1h)
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where
P 1/p
IVo6,2Unlp6,0 ==( Y | Vo, 2usl dx) (6.2)
Ke'Ty e
Vunlpga = Y, | [VunlP dx. (6.3)
KeT, X

In addition to (4.18) and (4.31) we define data oscillations 05¢p,;, 1 < i < 2, according to

83E,1 1= (05¢8,1)" [Vunlpd (6.42)
85Ta,2 1= (0scr, )" IVunl oy, (6.4b)
where
IVvilpgr:= Y | IVvalPds, I'ef{lp,In). (6.5)
Eelall") g

Remark 6.1. Residual-type a posteriori error estimates for P1 conforming finite element approximations of
the p-Laplace problem with homogeneous Dirichlet boundary conditions have been considered in [5] (see
also [41, 42]). We note that in this case the residuals ﬁ;ﬁf, 3<i<5,and n}:’}, 3 <1< 4,as well as the data
oscillations oscg,i, 2 <1 < 3, and 55, vanish. The residuals 773, 1 < i < 2, reduce to

- 3 i

KeTy K
M= ¥ he [ g (9w 2unlel s 65)
Ee€p()) E

Using the relationships between the || - [wir¢g) norm and quasi-norms provided in [4}, it can be shown that
(6.6) and the data oscillation 05Cy,; are closely related to those in [5].

The goal of this section is o establish the relationship between the equilibrated a posteriori error estimator My
and the residual-based a posteriori error estimator nj>. For notational convenience, throughout this section
we set Z, 1= |Vpg,2unlP 2V pg,2up. In view of the definitions (2.3a} and (24a} of the primal and dual enecrgies
we have

nff"ﬁé ) ]qu;,!”dx+% y IIE;qlqu— > Ifuhdx— y IuNukds- Y Jupng-g‘;qu.
KE'T),K

KeTn g Key g Eeénlly) g Eeépln)
{6.7)
Fer the first two terms on the right-hand side of (6.7} we obtain
1 1 1 1
Ly [mwpacs 2 3 [iporar=2 3 [wuPax- 3 [ 1906miP x
P, F 4 kT, ¥ P kT, % P ke, F
1 1
+ (1 - -) Z IIVDG.ZUh|p dx + m Z Ilg;qlqu- (6.8)

KeTy K KeTp K
Using (6.8) in (6.7) it follows that

ﬂi?1= Z Izh-VDg_zuth— Z quhdx— Z janE-E;qu— Z IHNUhdS
KeTy K KE'T),K Ec&n(Ip) E Ec&n(ly) E

1
‘1 > JIVuhI”dx—l Y IlvDG,Zuh|de+l Y Iigj‘ll“dx—— y ij.;,zu;,v’dx. (69)
P xem P Kemy 9 §em 9 Kemn g

We will estimate the terms on the right-hand side in (6.9) by a series of Lemmas.
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Lemma 6.1. There exists a constant (:‘g,) > 0, depending only on at, Cp, Cg}(p), 1<ig 2,andonp,q, such
that it holds

Y j 1Vo6,2unl" VoG, 2un - Vpg,2up dx — ) [fuh de- Yy Iun ng-pyids— I UNUR dSI
KeT, X KeTy, K EcEy(lp) E Eelp(ly) E
< ng(qﬁ +0SCh,3 +05Ch,1 + EE‘TL"},,Z). (6.10)
Proof. In view of (3.12b), (3.13b), and (3.22) we get
y jz,, ~Vpgaupdx =y Iz;, I (Vpgaupn)dx = Y jﬂ_ﬁf)@h) - Vg,2ttn dx
KeTy K KeTh X KeTy X
- ¥ [BP@) - vosamax+ T [ M0 Resupdx
KeTy 1 KeT, K
= ¥ [fondcr T [unnunds-a T [ tunlet ol Cunlz ds
KeTy Eeéally) i Ee£a(@) 7
) h;P/e J lup - uplP2(un -up)unds + Y mg-zyuppds  (6.11)
Eebnl) Ecéalrs)
where we have used that
P ds = -} . ds = . H(P) ds = . d
Y npHP@)upds = Y HPmpzpupds= Y npz P p)ds= ) np-zyuapds.
Ee&n(lp) Ec&u(lp) Ectullp) Ec&u(lp}

On the other hand, observing (5.3a), (3.34), and ng - E;q = I (ng Ea <lED: it follows that

IanE'Ezqu= Z jupﬂk(ng-éaxlf)ds
Ee&wIn) g Eeéy(ln)

= ¥ [mtunng pyleds= Y [unone-pleds
Ee&nlp) ¢ EcEnln)

h;:p/q J Euh — uvlp'z(uh - uD) Up,D ds. (6.12)

=y Iuh_ung-ghds-a
2T SR

Eeyllo) ¢

From (6.11) and (6.12) we deduce
ngh-VDg,zuhdx—ZIfuhdx- Y Iupng-gmds— Y JuNuhdsl

KeTn g KeTy i Eeq(lp) g Eeéy(lw) g

> j(fh"ﬂuth’+ Y I(uh,N-uN)uhd5|

KeTn i EeE;,(r,;)E

T ol I lutp — up|P~2(up - up) (unp - u;,)ds|. (6.13)
Eeéniln)

<

+ a

Applying Holder’s inequality, the Cauchy-Schwarz inequality, observing (3.20) with po = JK up dx, and the
Poincaré-Friedrichs inequality (4.14), the first term on the right-hand side of {6.13) can be estimated from

above as follows:
t/q i/p
Y [tn-nurar=| ¥ [ta-peun-porax|< 3 (Ilf‘fhl"dX) ([m—mpdx)
Ke’],,K KE'I,,K KeTy K K
1/q 1/p
<Colq ¥ (IV‘fh!qu) hx(jl‘?’uhl”dx)
KeTy k K
g
scgl(p)( ¥ h?gj|f—fh|qu) Vurlpe,a = Cop(p) 05Ch,1- (6.34)
KeTy K
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Likewise, with pg = fE upds, E € Ex(I'y), we obtain

Y J(uh,n - un)up dsl =l X j(uh,N - unNup -Po)d5|

EcElln) g Eeéh(Tn)

/g —
<cBeN( T nluw-unnt?dx) " Wunloer, = CEHRY 32 (619
Ee&nfy)

Likewise, using the same arguments and (1.2), for the last term on the right-hand side of (6.13) we obtain

al ¥ n I | — up|P~* (up - up) (un,p - Un) d5|
Eeéallp) ;
-plq -2 l'lp
ca ¥ n{ [ - uoP *up - up)?ds) (j|uh—umpds
Eee.(rn) E E
1/P
sa hp/qjluh uDIPds _p/qjluh—uhplpds
EEEH(rn) F Eeeh(rﬂ) E
1,1v\-9/p
sa (E( 2) Mo+ —Cp(qﬁ + osch,g)). (6.16)
The assertion now follows from (6.11)-(6.16). a

Lemma 6.2. There exists a constant C2) > 0, depending only on Cp_1, Cp, Crec, and on p, g, such that it holds

) leunl”dX—; Y [ 1vnoaunt x|« E (i + A5 + 1% + 155 (6.17)

K(—:‘J‘ KeTy K
Proof. By Taylor expansion, observing (3.13), applying Holder’s inequality, the Cauchy-Schwarz inequality,
and using (1.2) as well as (3.15), we find

Z jlvuhlp dxl

1
’— I VD6, 2unlP dx - =
P KTy P ket

1
j I IVatp + A(Vpg,2un — Vun)l”2(Vup + A(Vog,2un — Vi) dA- (Vpg,2un - Vun)dX|
KE'T);K [

1
< J IWUh + A(Vpg,2un - Vup)lP ! |Vpg,2up - Vup| dAdx
KE'TMK 0

< Cp—l( J Vunl? |V pg,2un — Vup| dx + = Z I |Vpg,2uh — Vurl? dx)
KeTn i p KeTh i
1/q
<Coa 3 [P @)™ ([ R, stum) - Ry st ) "
KeTy K KeTa

1
# =G j IRy, 1 (un) - Ry ()P dx
K

KeT,
< Cp—icrec(ﬁf; + ?Ih 1.) + - Cp lcpCrec(’lh 3+t 71 ) (618)
This completes the proof. (1

Lemma 6.3. There exists a constant Cgl) > 0, depending only on a, cg, C4, C¢, andonp, g, such that it holds

Z j |pe9? dx - % ¥ J [Vpg,2unl? dx < Cszl’( ¥ (1155 + FES) + 05Ch,1 + 05T, 1) (6.19)
KE':T,, KE'T,.K
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Proof. We have

1 1 1 1
7.2 J'Ef.q'qd"‘a 2 I'Vvﬁ.zuhl"dﬁg ¥ it ¥ Jlﬂg’)(zh)l"dx
KeTy K KeTy K KeTy e KeTy 4
1 1
D) I!Qf”(z,,)l"dx—a ¥ [ 1osausbax. (6.20)

KeTy K KeTn K
For the first two terms on the right-hand side of (6.20), applying Taylor expansion and using (1.2) we cbtain
1 1
g % [imran-2 3 [mfara

Ke‘.)'.. KET;,

1
Y | [P+ At - P @20 @) + e - P ad- (@57 - I e dx
K0

KeTy

1
”I D2, + AP - I0(2,) 1 Ip - B (z,)] dAdx
Ke‘I,,KO
@7, \ig-11mea _ @ 1 eq _ @y i
<Cq- 1( I )" gy - I ()l dx + o D jlg,, - Izl dx)

KeT, p, KeTy K

¢ i/p 1/q
< Cp 1( Y [iife I"idX) ) jlg;Q—y_ﬁ"’(z,,)wdx)
KeT, (5 Ke‘J‘;.K

) ] 150~ 1@ ). 621
KeT)y

Qli—-

In view of (5.2) and (5.3c) we deduce

¥y j|g‘;°I~aL"*@,,)|"dx<cE( Y e [ Inox- (2 - Mytzieds+ 3 hiIIV-(gjq—_llk(zh))l"dX)-
KeTy K KeTy 3K KeTy K
(62)

Since (5.3a) implies nak - plg = Hiq)(nax B, ) we get

Y i | Inox- @51~ I, (Vos.2unl>Vog 20l ds
KeTa K
= 3 ke [ 1P 00k By = Wos.zun” Vo 2un)i9ds
KeTn  aknn
+ ¥ b [ 110@or- @,y - VoausP Vosawlfds.  (623)
KeTw  agnr

Now, using (3.1), (3.34) and observing 1 - p = —p/q it follows that

Yt [ I or - (B - 24
KeTn  aknn

siit Y e [(1zads - 2als. ¢ zale - (ke 1) ds

EeEp(0) E

+cpla? Y hgjIhg”"’l[uhlgl”‘z[unlsl"ds
Eetnt) 3

scg‘( Y hEJ![IZ,,]EI'?ds+a" Y h;”/qfl[u;.]};lpds)=c§‘(q§,‘j‘z+aqqﬁ). {6.24)
£

Ecnl®) Ecérl)
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Using (3.1) and (3.34) again, we obtain
Y he [ I0Pmar- @,y - 217 s

Keln  aknr
<t T e[l @le-zidse eyt Y he [ing- (b ezl as
Ee&plp) E EcEn(ly) E
<dlcl ¥ ke j BgPlup - uplPHup - up)¥ds+ g Y R | lluw-ng-z,)|%ds
Ec&n(lp) E Ec€u(ln) E

<aleg Y h_;”/qjluh—upiplds+c§1 ¥ hEI|(uN—nE-gh)|qd5=c§1(aqq“+n;f§)

Ee€p(lp) E Ee&p(In) E
{6.25)
Moreover, due to {1.2) and (4.9a) we have
Y hi I v (p?- oP@ )=y h I fn + V- I (2,)1? dx
KG'.T], K KE'IA X
<C; Y h[If-Fifax+C; ¥ A ][f+ V- H,(Z,)17 dx = Cy(n +0sch,q). (6.26)
KeTy k KeTy k
Finally, we have
Y [mP@yeaxs ¥ [ 19062 ax
KeTy g KeTp
and hence,
- > [ L ()19 dx - 2 D j V¢, 2unlP dx < 0. (6.27)
1Kz 9 xetny
The assertion now follows from (6.20)~(6.27). O

The following result establishes the relationship between the equilibrated and the residual a posteriori error
estimator,

Theorem 6.1. Let up, € Vi be the IPDG approximation as given by (3.22) and let q,m, Mho Mpp 1 €
5, n,“.3 <i<4,andoscn, 1 €1 < 3,05Ch1,1 <1 < 2, be the equilibrated and the residual a posteri-

ori error estimators as well as the data oscillations as given by (4.32b), (6 1) and (4.18), (4.31), (6.4). Then there
exists a constant C,es > 0, depending on a, ¢, Cp-1, C,,, Cg» Crec,s Cks PF(p), 1<i<2,andonp, g, such that

’1?1 £ Cres(ﬂ;,es + Z 0SCp,i + Z fTS—éh,i)- (6.28)
i=1 =1

Moreover, if we use (3.30) in (4.32b), then n;qz can be estimated from above in terms of the residuals 175,

My 4 and the data oscillations oscp,i, 1 <1 < 3.

Proof. The estimate (6.28) follows from (6.9) and Lemmas 6.1, 6.2, and 6.3, whereas the second assertion can
be established by means of the definition of '1;(,12 in (4.32b) and (3.30). a

Remark 6.2. Theorem 6.1 implies the reliability of the residual-type a posteriori error estimator via the re-
liability of the equilibrated error estimator. The constants in the estimate are specified in the theorem and
are computable. In general, the reliability estimate for residual-type error estimators involves interpelation
constants which can be computed as well, The number of constants increases with the polynomial degree k.
The computations involve eigenvalue-type problems whose solutions may require a substantial amount of
computational time (see, for example, [47] for details).

The efficiency of the residual-type error estimator can be established using techniques as in [51] involving
suitably chosen bubble functions. The constants in the efficiency estimate depend on the local geometry of
the triangulation and can be computed as well.
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7 Numerical results

We have implemented the IPDG approximation (3.22) with the penalty parameter a chosen asa = 12 k%
Further, we have implemented the adaptive algorithm based on the equilibrated error estimator nf,q by Dotfler
marking [27], i.e., given a bulk parameter 6 € (0, 1}, we have selected a set My ¢ Ty according to
6y ng< y n
KeTy KeMy

and we have refined elements K € Mp, by newest vertex bisection. We note that for the evaluation of 'l:f,lz we
have not computed uj, by postprocessing according to (3.29) but used the estimate (3.30) instead. In case of
the residual-based error estimator n;* we have implemented the adaptive refinement likewise.

As numerical examples, we have chosen 0 as the L-shaped domain Q2 := (-1, +1)2\ ([0, 1) x{-1, 0]) with
Dirichlet boundary I'p = ({0}x(-1, 0)}U({0, 1)x{0}) and Neumann boundary I'y = dQ2\TI'p with interior angle
@ = 3m/2 at the origin. In [26] (see also [5]) it has been shown that in polar coordinates (r, ¢) the solution u
of the p-Laplace problem (2.1) behaves as u ~ r¥ with

y=0@) - \o2p) - 43, o(p) = ;g—ji).

We have considered the cases p = 1.5 and p = 3.0 with the solution given by
u(r, ¢)=r¥ sin (%(p)

and the right-hand side f in (2.1a), the Dirichlet data up in (2.1b), and the Neumann data uy in (2.1c}) given
accordingly. This results in homogeneous Dirichlet data up = 0. We note that u € W*Y-5P(Q) forany £ > 0
and u has a singularity at the origin, The same applies to the solution z of the boundary value problem {4.15).
However, since I'y is located off the singularity at the origin, the trace of Vz on I'y is more regular and the
regularity assumption (4.16) is satisfied.

We have performed computations for p = 1.5 and p = 3.0 and the polynomial degrees k = 1 and k = 3.
The discrete data fy|K, K € T, and up nlg, E € En(In), have been obtained according to Remark 3.1. More-
over, the numerical solution of the nonlinear IPDG approximation (3.22) has been done by Newton’s method
with a relative tolerance of tol = 1073 as termination ctiterion for the Newton iterates. As outlined in [5], the
expected convergence rate for the discretization error in the broken W'? norm s 0.5.

Figure1shows the adaptively generated mesh in case p = 1.5 and bulk parameter 6 = 0.5 for polynomial
degree k = 1 (left} and polynomial degree k = 3 (right) where the adaptive mesh refinements were based on
the equilibrated error estimator. As expected, we observe a pronounced refinement around the reentrant cor-
ner and substantially less refinement off the singularity for the higher polynomial degree k = 3. The meshes
in case p = 3.0 and bulk parameter © = 0.5 for k = 1 and k = 3 as well as the meshes obtained by the
residual-based error estimator look similarly and are therefore omitted.

Figure 2 displays the discretization error in the broken WP norm, the equilibrated error estimator nzq,
and the residual-based error estimator n}* as a function of the total number of degrees of freedom {DOFs)
on a logarithmic scale. As expected by the theory, the convergence rate appears to be 0.5. The equilibrated
error estimator is smaller than the residual-based etror estimator by approximately 1/2 of an order of mag-
nitude. Figure 3 shows the corresponding results for the polynomial degree k = 3. Here, we observe thatina
pre-asymptotic phase the error decays faster, but asymptotically approaches the predicted convergence rate
of 0,5.

Figures 4 and 5 contain the corresponding results for p = 3.0, 8 = 0.5, and the polynomial degrees k = 1
and k = 3. We observe a similar behavior as for p = 1.5.

Remark 7.1. As far as the robustness of the a priori error estimators is concerned, in our numerical exam-
ples the equilibrated error estimator turned out to be robust with respect to the termination criterion for
the approximate solution by Newton’s method and the choice of the penalty parameter a. In contrast, the
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Fig.1: p = 1.5, 8 = 0.5: Adaptively generated mesh (equilibrated error estimator) for polynomial degree k = 1 (leff) and k = 3
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residual-type estimator has shown less robustness with the efficiency index (estimated error versus true er-
ro1} increasing slightly with a reduction of the tolerance in the termination criterion and for choosing larger
penalty parameters.

Funding: The work has been supported by the NSF grant DMS-1520886.
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