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Abstract – In an ongoing clinical study a sonohistology system is 
developed and evaluated towards its ability to perform 
computerized differential diagnosis of parotid gland lesions. First 
order statistics are used to calculate fused features from spatially 
resolved parameter images. Thereby, characteristics of patterns 
representing the type of lesion are quantified. Complex baseband 
ultrasound data have been acquired during the common 
examinations of patients who were scheduled to have parotid 
surgery shortly after the acquisition. Data of benign and 
malignant parotid-gland alterations originating from 135 
patients have been included in the study. For data acquisition, a 
conventional diagnostic ultrasound scanner controlled by custom 
software running on a laptop computer was used. Lesions were 
manually contoured in the B-mode images. Acquired data were 
stored on an external PC. Fused features were calculated offline. 
From a large number of fused features, a best performing subset 
is chosen by a selection algorithm to form a feature vector 
representing each case. The best feature set was used to classify 
each case using leave-one-out cross validation. Two different 
classifiers have been used for comparative reasons: a 
probabilistic neural network based on radial basis functions, and 
a maximum likelihood classifier, yielding areas under the ROC-
curve of 0.85 and 0.91 with standard errors of 0.04 and 0.03, 
respectively. The system can be adjusted to reach a sensitivity 
of 1 to catch all positive cases, leaving a remaining maximal 
specificity of 0.55. Therefore, the system can be used to optimize 
treatments of parotid gland lesions and to reduce the number of 
unnecessary surgical interventions. 
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I. INTRODUCTION

Sonohistology is an ultrasound based diagnostic method for 
the computerized differentiation of different kinds of biological 
tissue. The method takes advantage of the ability of certain 
textural, spectral and morphological features extracted from 
ultrasound radiofrequency data as well as demodulated data to 
quantify different tissue conditions or different types of lesions. 

Sonohistology has been used successfully for different 
tasks in the past. As an imaging modality it has been applied 
for the visualization of prostate tumors [1], for monitoring of 
thermal therapies [2] and for the visualization of coronary 
plaques in intravascular ultrasound (IVUS) imaging [3]. As a 
tool for differential diagnostics it has been used for staging 
venous thrombosis [4], and, recently, for the classification of 
parotid gland lesions [5,6]. 

In a first approach to use sonohistology for differential 
diagnostics of parotid gland lesions, classification was 
performed for small regions of interest (ROI) into which each 
data frame was subdivided. A classification score for the whole 
lesion was obtained by averaging the classification results from 
the ROIs of each case. The score was then used to assign each 
case to either target group positive (malign) or negative 
(benign) [5,6]. This approach led to promising results, 
exceeding the hit rates of experienced physicians using B-mode 
ultrasound as well as palpation and information taken from the 
anamnesis. However, this methodology does not necessarily 
account best for characteristic differences in the global pattern 
of different kinds of lesions. Since a single score should be 
found for the entire lesion, it might be of advantage to find 
features characterizing the specific patterns of lesions. 
Therefore, in this paper an approach is introduced to generate 
fused features from spatially resolved parameter images. 
Instead of an ROI-based classification, a case-dependent 
classification is performed using two kinds of classifiers for 
comparative reasons. The classification system can be adjusted 
to reach a sensitivity of 100%, meaning all positive cases are 
identified correctly. The remaining specificity in that case is up 
to 0.55. Therefore, this method could be used to add valuable 
information when a decision about a proper treatment is 
required. If a lesion is classified as negative, a surgical 
treatment could possibly be avoided or needs not to be as 
extensive as for positive cases. This is of importance, since 
parotid surgery is a challenging intervention due to the 
intraglandular course of the facial nerve. A damage of the 
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facial nerve can decrease facial motion or lead to facial palsy 
and should be avoided for this reason. 

II. MATERIALS AND METHODS

A. Clinical Study and Data Acquisition 
For the clinical study, a Siemens Elegra digital ultrasound 

scanner was used. The linear probe (7.5L40) was set to a center 
frequency of 7.2 MHz. All data were captured during the 
routine examination of patients using standard ultrasound 
imaging equipment. Patient compliance to the procedure was 
high, as the new method does not extend the normal 
examination time when applying ultrasound imaging to the 
head and neck region. 

The internal operating system of the Elegra could be 
accessed via telnet to download baseband ultrasound echo data. 
These data could be used to reconstruct the original 
radiofrequency (RF) data by modulating with a dynamic carrier 
of known characteristics. This is of importance, since RF data 
are required for the calculation of spectral features. 

Controlling of the Elegra was done using custom made 
software (SynchroSuite, KMR, Bochum, Germany) running on 
a laptop computer. All relevant imaging settings were taken 
care of by the software to guarantee a standardized data 
acquisition. 

The download of data was done via FTP. A dump file 
containing all relevant parameters of the Elegra was also stored 
along with each frame and used later to compensate for TGC 
settings. Two orthogonal frames per lesion were recorded. 

For each frame, 2400 samples were recorded for 360 lines. 
The approximate size of the images was 5.1 cm in axial 
direction and 4 cm in lateral direction, respectively. The single 
transmit focus was set to a depth of 2 cm. Sampling rate and 
resolution of reconstructed radio frequency echo data was 
36 MHz and 12 bits, respectively. 

The tumors were manually contoured in the B-mode 
images by an experienced physician to define an area of 
interest. Thus, it was ensured that only signals originating from 
the lesions and not from surrounding tissue have been used for 
feature extraction and classification. 

During the routine examination, the diagnosis of an 
experienced physician on the basis of ultrasound B-mode 
imaging, occasional Doppler imaging, palpation and anamnesis 
was recorded. Histopathological examinations after 
parotidectomy were used as the "gold standard". The results of 
histological examinations and subdivision into different classes 
(see section C) are shown in table 1. 

B. Feature Extraction 
For the calculation of fused features, parameter images 

have been generated as described in [6]. The spatially resolved 
parameter images were obtained by subdividing each data 

frame into numerous regions of interest (ROIs). Each ROI 
spanned an area of about 4.6 mm2 extending approximately 2.7 
mm in the axial direction and 1.7 mm in the lateral direction. 
The ROIs consist of 128 sample points in the axial direction 
and of 16 scan lines in the lateral direction. The axial and 
lateral overlaps of the ROIs were 50 % each. For each ROI, a 
set of features was calculated using first and second order 
statistics [7,8,9] as well as spectral estimates (slope, intercept, 
midband value, attenuation coefficient) [10,11]. Thus, 
parameter images have been compiled representing the spatial 
arrangements of features. 

From the ROIs that were enclosed by the manually 
contoured boundary of the lesion, fused features were 
calculated using statistical measures of first order. These 
measures were mean, standard deviation, signal to noise ratio, 
variance, kurtosis and skewness. A subset of these features was 
used for the subsequent classification. In addition, Fourier 
descriptors [12] were applied to account for differences in the 
shape of lesions.  The descriptors were calculated from the 
manually delineated contour lines. An inner boundary tracing 
algorithm was used to yield a uniformly sampled representation 
of the contour in 4-neighborhood. Fourier descriptors were 
obtained after discrete Fourier transforming the manually 
drawn contour line. 

The choice of a combination of features quantifying the 
characteristic patterns of lesions as well as their shape is 
motivated by the physician's common approach to type lesions, 
where texture and shape as appearing in ultrasound B-mode 
images are also criteria for diagnosis. 

C. Feature Selection and Classification 
According to the histological findings, datasets were 

subdivided into five groups or subclasses for classification. 
Subclasses Spos1Ω  and Spos2Ω  contained all positive cases, 
while subclasses Sneg1Ω , Sneg2Ω  and Sneg3Ω  contained all 
negative cases. This division into subclasses was chosen to 
yield intermediate classification results, which are then used to 
assign a case to either target group posΩ  or negΩ . The cases 
having occurred during this study and the subdivision into 
classes is outlined in table 1. 

Two different classifiers were used to process the data, a 
maximum likelihood classifier, and a probabilistic neural 
network based on radial basis functions. 

The maximum likelihood (MLH) classifier yields 
likelihoods id  for each test vector c  to belong to either 
subclass 1 to 5: 

where ic  are vectors of training data of subclass i , iC  are 
covariance matrices of training data of subclass i , and i =1..5. 
The test vector is assigned to the class jΩ  with the highest 

( ) ( )( ) ( ) ( )11 1ln det ,
2 2

T
i i i i id −= − ⋅ − ⋅ − ⋅ ⋅ −c C c c C c c
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likelihood { }1 2 3 4 5max , , , ,jd d d d d d= . The likelihoods can be 
scaled to reach a higher sensitivity at the cost of specificity and 
vice versa. The ROC-curve in Fig. 1 is compiled that way. 

The probabilistic neural network consists of two layers. In 
the first layer, distances of the test vector to the training vectors 
of the five subclasses are calculated and weighted by a radial 
basis function to yield probabilities for the test vectors 
similarity to any training vector. The second layer sums these 
probabilities for each class. The test vector is assigned to the 
class with the highest probability. Again, the probabilities can 
be scaled as with the MLH-classifier. 

To reduce the dimensionality of the feature space and to 
eliminate features which possess high linear dependencies, a 
correlation analysis was performed. 

Each case was classified separately. Classification was 
performed by leave-one-out validation over cases. Therefore, 
for classification of one case, the remaining cases were left out 
of the training dataset. The area under the receiver operating 
characteristics curve ROCA  was used as a quality measure of the 
classification [13]. 

To evaluate each feature separately, a first classification 
pass was done using one feature at a time. ROCA  was 
determined for each case and used as a performance criterion 
for each feature. The features were then arranged according to 
their performance. To find the best performing set of features, a 
second classification pass started with the active set consisting 
of the best feature exclusively. After each classification pass 
the active set was updated with the next feature in the queue. If 

ROCA  increased, the new feature remained in the set, otherwise 
it was removed again. 

TABLE I. OCCURRENCE OF DIFFERENT TYPES OF PAROTID GLAND 
TUMORS AND ALTERATIONS DURING THE CLINICAL STUDY AND SUBDIVISION 
INTO SUBCLASSES AND TARGET CLASSES

Type of tumor n subclass target class 
Pleomorphic adenoma 29 

Spos1Ω
Acinus cell carcinoma 
Other Carcinomas 
Lymphoma 
Metastasis 

7
6
4
4

Spos2Ω
posΩ

Monomorphic adenoma 46 
Sneg1Ω

Basal cell adenoma 11 
Cyst 13 Sneg2Ω

Lymph nodes 8 
Nodular fasciitis 1 
Canaliculous adenoma 1 
Adenoid cyst 1 
Lipoma 4 

Sneg3Ω

negΩ

III. RESULTS

The ongoing clinical study comprises 135 cases origination 
from 135 patients so far. The diagnosis of experienced 
physicians on the basis of common diagnostic modalities 
during the routine examinations yielded a sensitivity (SE) of 
0.88 and a specificity (SP) of 0.61. Apparently, common 
diagnosis is uncertain, resulting in a large quantity of 
dispensable surgeries. 

The feature selection algorithm yielded 7 features as the 
best set of features for the MLH classifier and 9 features for the 
PNN. The results of both classifiers are resumed in table 2. 

TABLE II. RESULTS OF EXPERIENCED PHYSICIANS (EP) AND 
CLASSIFICATION USING PROBABALISTIC NEURAL NETWORK (PNN) AND 
MAXIUM LIKELIHOOD CLASSIFICATION (MLH). 

EP PNN MLH 

ROCA - 0.85 0.91 

ROCE - 0.04 0.03 

SP=0.61SE 0.88 0.90 0.98 

SE=0.88SP 0.61 0.60 0.80 

SE=1SP - 0.38 0.55 

The MLH system performed better than the PNN system. 
The area under the ROC curve was ROC 0.91A =  for the MLH 
system and ROC 0.85A =  for the PNN system with standard 
errors ROC 0.03E =  and ROC 0.04E = , respectively [13,14]. 
However, considering the current available number of cases in 
this study, this should not imply a general advantage of the 
MLH classifier against the PNN or other classifiers. 

It can be seen from the ROC curve (Fig. 1), that the 
classification results exceeded the results of the experienced 
physicians. Compared to the results of the physicians, the MLH 
classification achieved a specificity of 0.80 at a sensitivity of 
0.88. At a specificity of 0.61, the MLH classification achieved 
a sensitivity of 0.98 

In particular, the system can be adjusted to reach a specific 
sensitivity due to its quantitative output. Since the system 
should be used to facilitate or support a therapeutic decision, it 
should be adjusted to type all positive cases correctly, and 
therefore reach a sensitivity of 1. At a sensitivity of 1, the 
remaining specificity is 0.55, i.e. 55 % of the negative cases are 
classified correctly and could therefore be treated alternatively. 
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Figure 1. ROC curve of classification result obtained by MLH classification. 
The area under the ROC curve is ROC 0.91A =  with a standard error 

ROC 0.03E = . At a sensitivity of 0.88, specificity is 0.80. At a specificity of 
0.61, sensitivity is 0.98. At a sensitivity of 1, the remaining specificity is 0.55. 

IV. DISCUSSION AND CONCLUSIONS

In this paper, a sonohistology system for differential 
diagnostics of parotid gland lesions is presented. Overall 135 
cases originating from 135 patients examined during an 
ongoing clinical study were considered so far. 

Although the number of cases is yet too small to draw 
general conclusions, the results presented here are promising. 
The hit rates obtained by the decision support system exceeded 
the results of experienced physicians using B-mode ultrasound, 
palpation and information taken from the anamnesis. In 
addition, the classification system can be adjusted to reach a 
sensitivity of 1 to detect all positive (malign) cases correctly. 
The remaining specificity for a sensitivity of 1 is 0.55. This 
could be of advantage when it comes to making a reasonable 
decision whether a lesion should be surgically treated or not 
and to what extent a benign lesion should be treated, 
respectively. This is of high importance, since parotid gland 
surgeries can be hazardous due to the intraglandular course of 
the facial nerve. Therefore, an improved, quantitative 
diagnostic modality as presented here can be helpful to reduce 
surgical risks and costs. 

The classification rates will possibly increase if a larger 
database is available. Several alterations of parotid glands 
occurred only once during this study, others only a few times. 
However, for an appropriate training of the system, a larger 
number of each incidence is desirable. If so, evaluation of more 
subclasses or rather different compositions of subclasses may 
be beneficial. 

Furthermore, the application of second order statistics is 
well adapted for quantification of characteristics in textural 
patterns, and therefore might lead to yet another improvement 
when used to estimate fused features. 
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