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Abstract 

We address the challenge of building an automated fraud detection system with robust classifiers 
that mitigate countermeasures from fraudsters in the field of information-based securities fraud. Our 
work involves developing design principles for robust fraud detection systems and presenting 
corresponding design features. We adopt an instrumentalist perspective that relies on theory-based 
linguistic features and ensemble learning concepts as justificatory knowledge for building robust 
classifiers. We perform a naive evaluation that assesses the classifiers’ performance to identify 

suspicious stock recommendations, and a robustness evaluation with a simulation that demonstrates 
a response to fraudster countermeasures. The results indicate that the use of theory-based linguistic 
features and ensemble learning can significantly increase the robustness of classifiers and contribute 
to the effectiveness of robust fraud detection. We discuss implications for supervisory authorities, 
industry, and individual users. 

Keywords: Fraud Detection, Market Manipulation, Design Principles, Text Mining, Data Mining, 
Instrumentalism, Ensemble Learning 

Sandeep Purao was the accepting senior editor. This research article was submitted on February 22, 2016 and 
underwent four revisions.  

1 Introduction 
Fraud detection systems (FDS) have gained importance 
in both business and societal contexts. For instance, FDS 
have been used to identify suspicious employee 
communications (Holton, 2009), fraudulent corporate 
disclosures (Ravisankar et al. 2011), and unauthorized 
financial transactions (Chen, Chen, & Lin, 2006). A 
common problem in the field of fraud detection is that 
fraudsters constantly adapt their behavior to avoid being 
detected by contemporary systems (Bolton & Hand, 
2002). For instance, consider a text categorization 
system that uses certain keywords to determine whether 
a document is suspicious. If the keywords become 
known, fraudsters will refrain from using them and 
adapt the content of their messages (Webb, Chitti, & Pu, 

2005). However, the robustness of fraud-detection 
efforts against these types of countermeasures, 
especially in terms of identifying fraudulent texts, has 
rarely been addressed thus far. We respond to this 
theoretical and practical research gap by conducting a 
multiyear design science research (DSR) project with a 
multinational project consortium to address the problem 
of information-based market manipulation. 

In this type of market manipulation, fraudsters 
frequently attempt to manipulate stock prices by 
disseminating highly positive but false information 
through fraudulent websites, spam messages, and 
advertising campaigns on legitimate websites (SEC, 
2012b). Fraudsters often follow a “buy low and spam 

high” strategy: They begin by purchasing a certain 

stock, then they recommend the stock to internet users 
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to increase demand for it, thereby raising the stock’s 

price, and, finally, the fraudsters sell their stocks at a 
profit (Frieder & Zittrain, 2006). These types of so-
called “pump and dump” schemes have become a 

serious problem and a number of spam campaigns have 
led to significant financial losses (FBI, 2011). Investors 
duped by such schemes risk losing significant portions 
of their investments after the spam campaign concludes, 
when prices typically fall below their original levels 
(Aggarwal & Wu, 2006). Moreover, the firms that 
issued the affected stocks suffer significant reputational 
loss (Hanke & Hauser, 2008). The research consortium 
that addressed this problem consisted of nine partners, 
including universities, financial institutions, and IT 
service providers from the finance and market 
surveillance domains. In addition, a financial market 
surveillance authority contributed within an advisory 
board. 

Previous studies have proposed various methods of 
detecting fraudulent websites or messages (Abbasi et al., 
2010; Caruana & Li, 2012). Financial fraud detection is 
an important field (Ngai et al., 2011), and scholars have 
repeatedly addressed the problem of identifying 
securities fraud in general (Fast et al., 2007). 
Nevertheless, the problem of information-based fraud in 
its various forms, such as the dissemination of 
fraudulent stock recommendations, remains 
underexplored, especially in terms of providing robust 
classifications. Specifically, a robust classifier is one 
that will “resist change without adapting its initial stable 

configuration” (Wieland & Marcus Wallenburg, 2012, 

p. 890).  

To address the problem, this study develops an IT 
artifact that can act as a robust classifier by providing an 
assessment of whether a given document is suspected of 
being fraudulent. The artifact is based on new design 
principles and exhibits new design features that make 
these classifications robust against potential fraudster 
countermeasures. To develop the artifact, we follow the 
problem-solving design science research (DSR) 
paradigm (Hevner, March, & Park, 2004; Newell & 
Simon, 1972) with a constructive and proactive 
approach (Iivari, 2007; Iivari, 2015). More specifically, 
we followed the process model of Kuechler & 
Vaishnavi (2008) to formulate specific design principles 
and design features (at the mesolevel) to address the 
identified problem and the specific design requirements 
in the field of information-based fraud.  

From a methodological perspective, our research 
illustrates how classifiers constructed on the basis of 
relevant kernel theories can support problem solving. 
Our work therefore differs significantly from traditional 
data mining research, which strictly follows the logic of 
induction, generating new knowledge by applying data 
mining methods to detect patterns within the existing 
data. In contrast, we adopt an instrumentalist 
perspective, which provides the “freedom to play 

around with different theories and different traditions of 
scientific knowledge production in a way that rival 
philosophies of science neglect” (Kilduff, Mehra, & 
Dunn, 2011, p. 1011). Specifically, we employ theories 
drawn from marketing and financial economics as 
kernel theories that inform our artifact construction 
(Gregor & Hevner, 2013). We demonstrate that our 
research approach, design principles, and design 
features are advantageous for problem solving and 
generate practicable outcomes. We conduct an empirical 
evaluation of the artifact’s validity in the context of 

stock market manipulations and assess its robustness by 
simulating a fraudster taking countermeasures against 
our solution. The remainder of this paper is structured as 
follows: Section 2 presents the research background, 
Section 3 focuses on the research methodology applied 
and our artifact design, Section 4 outlines our artifact 
evaluation, Section 5 discusses the results, and Section 
6 concludes the paper.  

2 Research Background 
2.1 Fraud Detection in Finance 
Data mining techniques have been applied to address 
diverse types of fraud, especially in the financial 
context. Ngai et al. (2011) provide an overview of this 
field and the major categories of financial fraud: bank 
fraud, insurance fraud, securities and commodities 
fraud, and other finance-related fraud. 

Regarding bank fraud, the extant research has focused 
primarily on credit card fraud (Chen et al., 2006), 
although insurance fraud and other finance-related 
fraud have been explored in diverse contexts, such as 
automotive insurance fraud (Caudill, Ayuso, & 
Guillén, 2005) and financial statement fraud (Glancy 
& Yadav, 2011; Ravisankar et al., 2011). By contrast, 
few studies have examined the process of detecting 
manipulations of securities and commodities markets 
(Ngai et al., 2011). Regarding securities fraud, three 
types of stock market manipulation schemes have been 
described in the literature: information-based, trade-
based, and action-based manipulations (Allen & Gale, 
1992). These schemes seek to manipulate stock prices 
through the release and spread of false information 
(information-based manipulation), the buying or 
selling of a stock (trade-based manipulation), or the 
execution of certain management activities (action-
based manipulation). Scholars have extensively 
studied trade-based manipulation (Felixson & Pelli, 
1999). The restrictions imposed upon managers who 
trade their own firms’ stock have led to action-based 
manipulation becoming rare (Öğüt et al., 2009). 

Information-based manipulation has gained increasing 
attention in recent years because the internet has 
facilitated the spread of fraudulent stock 
recommendations to large audiences. The 
manipulators typically attempt to profit by purchasing 
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a stock at a low price, recommending it to other 
investors, and then selling the stock at a higher price 
(Siering et al., 2017). Research has demonstrated that 
trading volumes increase if stocks are advertised 
through fraudulent recommendations (Böhme & Holz, 
2006). Furthermore, several studies have revealed that 
these fraudulent recommendations can generate 
increases in stock prices during the manipulation 
period. However, when no further recommendation 
messages are published, the prices of the manipulated 
stocks decrease rapidly to below their original levels 
(Aggarwal & Wu, 2006; Böhme & Holz, 2006; Hanke 
& Hauser, 2008). Even though the United States 
Securities and Exchange Commission (SEC) has taken 
countermeasures against these forms of manipulation 
(i.e., by releasing warnings, suspending trading, and 
prosecuting manipulators), manipulation campaigns 
can still be effective (Siering, 2019). 

In general, the detection of stock market manipulation 
remains underexplored (Ngai et al., 2011). While the 
general characteristics of such manipulation schemes 
and potential system designs have been taken into 
account (Gregory & Muntermann, 2014; Siering et al., 
2017), the use of unstructured data sources such as 
financial news or investment newsletters does not 
appear to have been analyzed. This is a critical gap 
because this type of textual data is a frequent source of 
malicious and misleading information in the context of 
information-based manipulations. Furthermore, the 
potential countermeasures that fraudsters may use to 
circumvent fraud-detection mechanisms also remain 
underexplored. 

2.2 Theoretical Perspectives on the 
Robustness of Fraud Detection  

2.2.1 Related Work from Machine Learning 
Fraud-detection systems must satisfy the general 
requirement of being able to achieve good 
classification performance. However, the development 
of robust fraud-detection classifiers is a challenging 
task: If fraudsters are aware that their activities may be 
detected, they might implement appropriate 
countermeasures to evade the fraud-detection systems. 
A robust classifier is one that will “resist change 

without adapting its initial stable configuration” 

(Wieland & Marcus Wallenburg, 2012, p. 890). This 
consideration significantly complicates the 
classification task for these systems, making their 
challenge “quite different from traditional 

classification problems, as intelligent, malicious, and 
adaptive adversaries can manipulate their samples to 
mislead a classifier or a learning algorithm” (Biggio et 
al., 2011, p. 350). Different approaches have been 
explored to increase the robustness of classifiers 
against the countermeasures of potential attackers. 
Several studies suggest adaptations of classifiers 

during feature processing (Kolcz & Teo, 2009), but the 
potential use of linguistic features as textual 
representations has rarely been investigated. 

Linguistic features are derived from an original feature 
set, such as a “bag of words” from a document 
(Djeraba, 2002). Such features have been successfully 
applied for author identification (Zheng et al., 2006) 
and speaker recognition tasks (Campbell et al., 2007) 
but only to increase classification performance, not to 
increase classifier robustness. Furthermore, the 
selection of linguistic features has typically been ad 
hoc, rather than based on theoretical insights drawn 
from kernel theories serving as “justificatory 

knowledge” (Gregor & Jones, 2007) to improve 

classification robustness. 

A different category of studies seeks to increase the 
robustness of classifications by training collections of 
different classifiers and implementing various rules 
such as majority voting or classification averages to 
combine classification results (Biggio, Fumera, & 
Roli, 2010; Perols, Chari, & Agrawal, 2009). Although 
this research stream provides guidance for the 
development and combination of multiple classifiers 
that use the same input data, no study has yet attempted 
to construct classifiers guided by relevant kernel 
theory to achieve better robustness against potential 
countermeasures. 

2.2.2 Related Work from Financial 
Economics and Marketing Research 

In the following, we focus on related work from the 
field of financial economics and marketing research to 
explain the aspects that make stock recommendations 
effective. We incorporated this work into the 
development of our design features. In financial 
economics, it is assumed that information processing 
is the basis of investment decisions (Fama, 1970). 
Behavioral finance theory states that investment 
decisions can also be driven by irrational factors such 
as information presentation, including the sentiment 
expressed within a stock recommendation (de Bondt, 
1998). Persuasive communication is also typically the 
focus of marketing research: Stock recommendations 
represent a form of advertising that is sent to internet 
users to influence their information processing and 
ultimately promote desired behavior—specifically, the 
purchase of a specific stock (Vakratsas & Ambler, 
1999).  

Marketing research has recognized the important role 
of advertisements’ information content (Abernethy 
& Franke, 1996). Advertisements are often used by 
consumers to acquire product-related information, 
which is then incorporated into purchase decisions 
(Nelson, 1970). Moreover, if advertisements disregard 
customers’ search for relevant product information, the 

advertisers’ “non-informative advertising policy may 
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self-destruct” (Resnik & Stern, 1977, p. 53). In 
addition, in the financial context, the price-
determination process for various instruments such as 
stocks is driven primarily by the information available 
to market participants (Fama, 1970). Therefore, the 
information content of advertisements is particularly 
important and should be considered by advertisers who 
promote financial products (Jones & Smythe, 2003). 

Text readability encompasses the question of how 
easily a text can be read and the educational level 
required to understand its content (Bailin & Grafstein, 
2001; Korfiatis, García-Bariocanal, & Sánchez-
Alonso, 2012). It has been shown that readability is a 
prerequisite for advertising efficacy (Abruzzini, 1967). 
Thus, advertisers seek to increase the productive 
attention devoted to their advertisements by ensuring 
that they are easy to read (Clark, Kaminski, & Brown, 
1990). The effect of text readability on investors’ 

reactions has also been investigated in the financial 
context. In particular, the readability of corporate 
disclosures has been found to influence trading 
behavior, with investors demonstrating delayed 
reactions to corporate disclosures that are difficult to 
read (You & Zhang, 2009), and improved disclosure 
readability significantly affects small investor trading 
(Loughran & McDonald, 2010).  

The important role of sentiment within advertisements 
and the effects of these emotions on consumers’ moods 

and reactions have been the subject of various studies. 
Emotional advertising appears to increase consumers’ 

attention to a product and bolster consumers’ 

memories of product-related features (Chandy et al., 
2001), and product-related emotional communications 
can intensify consumers’ attitudes (Sonnier, 

McAlister, & Rutz, 2011). These arguments are 
supported in the financial context by behavioral 
finance theory. In particular, it is assumed that 
investors are influenced by the tone of discussions that 
involve certain financial instruments, and it has been 
shown that investors are influenced by sentiments 
expressed in newspapers, message boards, and even 
Twitter messages (Bollen & Huina, 2011; Das & Chen, 
2007).  

3 Research Methodology and 
Artifact Design 

3.1 Design Science Research 
We adopt the DSR paradigm, which is generally 
related to the development of IT artifacts (Hevner et 
al., 2004; March & Smith, 1995; Peffers et al., 2007). 
A key characteristic of this research paradigm is that 
DSR researchers search for satisficing (though not 
necessarily the best) problem solutions that meet the 
formulated problem requirements (Simon, 1996). 
Because DSR is focused on problem solving, problem 

analysis and appropriate domain knowledge are 
especially important for developing suitable problem 
solutions (Peffers et al., 2007). In this case, both gained 
insights and justificatory knowledge become integral 
parts of the developed problem solution (Simon, 
1996). 

The role of theory in DSR is twofold (Kuechler 
& Vaishnavi, 2008). First, so-called “kernel theories,” 

which often originate from non-IS disciplines, may 
inform the search for a satisficing problem solution. 
We consider the work introduced in the previous 
section to be such kernel theory. Second, DSR seeks to 
make theoretical contributions by providing explicit 
prescriptions for “how to do something/solve a 

problem.” Such prescriptive guidance is provided by 
design principles that represent “core principles and 

concepts to guide design” (Vaishnavi & Kuechler, 
2015, p. 20), which can be applied for “use in the 
design and implementation of the IS product” (Hevner 
& Chatterjee, 2010, p. 49). We develop and present 
such design principles, which are mapped to design 
features at the instantiated level. Our design principles 
provide “a clear statement of truth that guides or 

constrains action” for the development of robust fraud-
detection systems (Hevner & Chatterjee, 2010, p. 66) 
and can thus be considered to be essential design 
principles (Gregor, Müller, & Seidel, 2013). By 
offering a more effective solution to a well-known 
class of problem (fraud detection), our study belongs 
to improvement research: Here, new and better 
solutions are developed for known problems (Gregor 
& Hevner, 2013). 

3.2 Research Process 
Our DSR project follows the process model of Kuechler 
and Vaishnavi (2008), which provided guidance during 
our research process (see Figure 1). In the first step 
(awareness of the problem), the goal is to develop an 
understanding of the problem faced by stakeholders. 
After collecting, structuring, and condensing this 
information, the problem description and design 
requirements are formulated (see Section 3.3). These 
may be revised during the problem-solving process. The 
design requirements are addressed in the following step 
(suggestion), in which the initial ideas (tentative 
designs) for solving the problem are produced. New 
ideas may be brought forward deductively on the basis 
of a relevant kernel theory or abductively from other 
sources (e.g., similar cases; Kuechler & Vaishnavi, 
2012) and are condensed in the form of design principles 
(see Section 3.4). However, while our approach to 
problem solving is inductive and data-driven, our logic 
of action is also characterized by truth-independent 
problem solving. Here, we consider theories to be 
“useful instruments in helping predict events and solve 

problems” (Kilduff et al., 2011, p. 302).
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Figure 1. Employed Design Science Research Process Model Based on Kuechler & Vaishnavi (2008) 

In the third step (development), the design principles are 
mapped to design features—the specific artifact 
capabilities that result from (for example) a chosen 
algorithm (Meth, Mueller, & Maedche, 2015). We 
present these design features in Section 3.5 in terms of 
an instantiated IT artifact—algorithm implementations 
that are evaluated in step four. Here, suitable measures 
are used to assess the performance of the IT artifact. The 
results may provide support for the previously coded 
design knowledge, as illustrated in Section 4 or, 
alternatively, may necessitate alterations during the 
previously taken steps. When the evaluation results 
provide support for the successful design of a satisficing 
problem solution, the codified design knowledge is 
finalized and presented in the context of future research 
in the final step (conclusion). The knowledge 
contribution is thereby made. In the following sections, 
we outline the steps taken to develop robust FDS. 

3.3 Problem Description and Design 
Requirements 

The phenomenon of information-based market 
manipulations (i.e., the spread of false information to 
affect stock prices) has existed for many years. As seen 
in the historical cases reported by the SEC (1959), 
information-based market manipulation used to be the 
exclusive preserve of privileged market participants 
such as broker-dealers, who capitalized on the fact that 
investors attentively listened to them. Today, the group 
of manipulators has grown and the way in which they 
use technology has changed significantly. Now, almost 
anyone can use the Internet to spread rumors throughout 
the world at nearly no cost. Thus, the problem of 
information-based market manipulation has become 
more urgent, while its detection and prevention have 
become more difficult (SEC, 2012b). 

In our DSR project, this problem was explained by the 
participating domain experts. Our group of experts 
consisted of representatives of a market supervisory 

authority and an IT company that develops software for 
capital market surveillance. They reported that it is 
imperative to process the large and ever-growing 
universe of web documents to obtain knowledge of this 
type of market manipulation. Based on these insights, 
we derived design requirement DR1. 

DR1:  Process a large volume of unstructured data. To 
detect information-based securities fraud, FDS 
should support the processing of large 
collections of documents published on the 
internet. 

Further interviews with domain experts showed that 
being able to easily access large collections of 
documents is not sufficient. Manually processing and 
assessing documents is not adequate because of the large 
number of documents available. Consequently, an 
automated assessment of documents is required. 
However, full automation in the field of market 
manipulation detection is not feasible. As a domain 
expert explained during an interview, it is ultimately up 
to the courts to decide whether to find a market 
participant guilty of market manipulation. Instead, FDS 
should direct its attention to cases in which documents 
are found to be suspicious and require further manual 
analysis. Against this background, design requirement 
DR2 was derived. 

DR2:  Provide automated identification of suspicious 
documents. The FDS should direct its attention 
to cases that merit further manual detailed 
exploration and provide an automated 
classification of documents (suspicious versus 
non-suspicious). 

After the first steps within the research process (Section 
3.2) were taken, we presented an initial tentative design 
(see sections below) to domain experts. While the initial 
reaction to design requirements DR1 and DR2 was 
positive, the domain experts sensed a problem with the 
suggested artifact that had not been clearly articulated. 
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Based on their experiences with other types of market 
manipulation, the experts intuited that market 
manipulators will adjust their behavior after becoming 
aware that corresponding FDS have been developed. 
Consequently, an FDS must provide reliable document 
classifications to address manipulators’ adjustments of 

their writing style to prevent documents from being 
classified as suspicious. This feedback led us to derive a 
third and final design requirement, DR3. 

DR3: Limit system vulnerability to fraudster 
countermeasures. The FDS should, without 
reconfiguration, provide reliable classifications 
of documents when the manipulator adjusts the 
writing style to mislead the system. 

3.4 Design Principles of Robust Fraud 
Detection Systems 

To address these design requirements, we developed 
several design principles that guided our artifact 
development. Following the requirements whereby a 
large volume of unstructured data must be processed 
(DR1) and document classifications should be 
conducted automatically (DR2), a related knowledge 
discovery process (Fayyad, Piatetsky-Shapiro, & 
Smyth, 1996) must extract patterns from existing 
documents. The most important aspect of this process is 
the development of a proper problem understanding. 
Based on that problem understanding, an appropriate 
feature set can be derived for data mining purposes. 
Therefore, it is essential to understand which features 
are well-suited for identifying suspicious documents. 

Regarding “pump and dump” campaigns, we recognize 

that fraudsters will try to convince customers to buy a 
specific stock. Thus, we assume that the campaigns are 
formulated in a way that maximizes fraud effectiveness. 
Consequently, we infer that theories from financial 
economics and marketing seeking to explain 
information processing in financial markets and 
purchase decision-making behavior might be useful in 
the identification of relevant document characteristics. 
We therefore formulated our first design principle to 
focus on these kernel theories during the knowledge-
discovery process. 

DP1: Theory-guided knowledge discovery process: 
The FDS development process should be 
informed by kernel theories explaining fraud 
effectiveness. 

Additionally, following DR1 and DR2, we inferred that 
the automated processing of stock recommendations 
and of classifying documents as either suspicious or 
non-suspicious is required. This finding is in line with 
earlier FDS from other domains, which has largely 
relied on automated solutions for data processing and 

automated classifications of cases via machine learning 
technologies (Ngai et al., 2011). Thus, following these 
design requirements as well as the literature stream 
outlined in the research background section, we 
formulated the second design principle, DP2. 

DP2:  Automation of document processing and 
classification: FDS should provide automated 
document processing and classification 
(suspicious vs. non-suspicious). 

Finally, to fulfill the design requirement of limiting 
system vulnerability to fraudsters’ countermeasures 

(DR3), we inferred that these countermeasures must be 
anticipated if the system is to be made more robust 
against them. This inference is particularly important 
because fraudsters have been shown to manipulate their 
deceptive content to mislead existing FDS (Biggio et al., 
2011). This phenomenon has been observed in the field 
of spam detection, especially with regard to textual 
content (Goodman et al., 2007). Awareness of such 
potential countermeasures should thus help increase 
FDS robustness—specifically, the degree to which the 
classification process functions correctly in the presence 
of stressful environmental conditions (IEEE, 1990). 
Consequently, we formulated the third design principle. 

DP3:  Anticipation of fraudsters’ countermeasures: 

FDS should provide reliable document 
classifications even when adapted documents 
prevent correct FDS classifications. 

3.5 Artifact Design Features 
Based on our design principles, we developed the design 
features that guide our artifact development to realize a 
robust FDS classifier. The resulting classifier can be 
integrated within an FDS as the core component to 
provide such classifications. The design features thus 
resemble the specific artifact characteristics that are 
necessary to satisfy the design principles (Meth et al., 
2015). The specific mapping between design principles 
and features is shown in Figure 2. We present two 
design features that are related to document 
transformation (DF1a, DF1b), one design feature used 
for automated document classification (DF2), and two 
design features used to increase classifier robustness 
(DF3a, DF3b). In the case of document transformation, 
we first focus on the classic “bag-of-words” model and 

then emphasize the theoretically derived linguistic 
features. The theory-guided knowledge discovery 
process plays a central role in determining the design 
features, as the linguistic features are used for document 
transformation, classification, and increased classifier 
robustness. The specific design features and their 
relationships to the design principles are outlined in the 
following sections.
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Figure 2. Mapping of Design Requirements, Principles, and Features 

3.5.1 Design Feature DF1a: Document 
Transformation with a Bag-of-Words 
Model 

We implemented document transformation via a bag-
of-words model as a basic design feature (DF1a) to 
address the design principle of the automation of 
document processing and classification (DP2; Russell, 
Norvig, & Davis, 2010). Because classical machine 
learning techniques cannot assess plain text, we first 
used several pre-processing steps for the text of the 
examined recommendations (Apté, Damerau, & 
Weiss, 1994; Wei & Dong, 2001). We decomposed 
each document into its individual words, regarding 
each word as a feature (i.e., a bag-of-words model; 
Russell et al., 2010). To increase computational 
efficiency and classification performance, we reduced 
the number of features by removing stop words and 
applied minimum and maximum thresholds for the 
number of documents in which each feature should 
occur (Groth, Siering, & Gomber, 2014). We also 
applied a stemmer (Porter, 1980). To avoid overly 
optimistic classification results, we filtered out stock 
symbols, firm names, publisher names, and 
disclaimers that are contained only in suspicious stock 
recommendations. The remaining features were used 
to construct a document-feature matrix for the training 
and evaluation of the models. The term frequency-
inverse document frequency (TF-IDF) measure was 
used to calculate the corresponding weights (Hotho, 
Nürnberger, & Paaß, 2005). 

3.5.2 Design Feature DF1b: Document 
Transformation with Linguistic 
Features 

We implemented another design feature (DF1b), 
document transformation with linguistic features to 
address the design principles of a theory-guided 
knowledge discovery process (DP1) and to enable 
automated document processing (DP2). In line with 
our instrumentalist research perspective, we sought to 
discover the theory “that has the highest likelihood of 

solving [our] particular problem” (Kilduff et al., 2011, 
p. 303). Theoretical foundations from financial 
economics and marketing serve as justificatory 
knowledge for our artifact design, guiding us to take 
into account information content, readability, and 
sentiment as linguistic features. 

Information content. To increase the advertising 
effect of their stock recommendations, fraudsters need 
to provide a significant amount of relevant information 
about that stock. Thus, we determined that the 
document information content in the context of DF1b 
had the capacity to facilitate the identification of 
suspicious stock recommendations. We measured 
information content by relying on the “entropy 
measure” (Shannon, 1951). Entropy is a widely used 
measure of information content and can also be applied 
to measure the information content and redundancy of 
text samples (Shannon, 1951). In this study, we used 
an adaptation of Shannon entropy (Shannon, 1948), 
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which is provided by Equation (1) below. This metric 
is also extensively used in the field of machine learning 
(Han & Kamber, 2006): 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑𝑝𝑖log(

𝑛

𝑖=1

𝑝𝑖) (1) 

In the above calculation of entropy, n denotes the 
words contained in a document, and pi represents the 
probability that specific word i will occur. Here, high 
entropy values symbolize high information content 
(Martin & Rey, 2000; Teahan, 2000). 

Readability. Fraudsters seek to increase the demand 
for a stock; therefore, because readability increases 
advertising efficacy and investors’ reactions, 
suspicious stock recommendations should be easy to 
understand. Consequently, we used document 
readability as another linguistic feature to identify 
suspicious stock recommendations. We measured text 
readability by calculating the automated readability 
index (ARI), the Flesch Reading Ease Score (Flesch), 
and the Fog Index (Fog), which are provided by 
Equations (2), (3), and (4), respectively (Hu, Bose, 
Koh, & Liu, 2012; Loughran & McDonald, 2010; 
Smith & Senter, 1967). The ARI, as calculated by 
Equation (2) 2 below, has been used in the context of 
manipulation detection (Hu et al., 2012):  

𝐴𝑅𝐼 = 0.5
𝑤𝑜𝑟𝑑𝑠

𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
+ 4.71

𝑠𝑡𝑟𝑜𝑘𝑒𝑠

𝑤𝑜𝑟𝑑𝑠
− 21.43 (2)       

𝐹𝑜𝑔 = 0.4 (
𝑤𝑜𝑟𝑑𝑠

𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
+ 100

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑤𝑜𝑟𝑑𝑠

𝑤𝑜𝑟𝑑𝑠
) (3)  

𝐹𝑙𝑒𝑠𝑐ℎ = 206.835 − 1.015
𝑤𝑜𝑟𝑑𝑠

𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠

− 84.6
𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑠

𝑤𝑜𝑟𝑑𝑠
 

(4)  

In the above equations, words, sentences, syllables, 
and strokes represent the total number of words, 
sentences, syllables, and strokes in the text, 
respectively. Complex words indicates the total 
number of words consisting of three or more syllables. 
Both ARI and Fog are intended to represent the grade 
level required to understand a text; thus, lower scores 
for these metrics indicate that a document is easier to 
read. By contrast, low Flesch scores indicate 
documents that are difficult to read (Loughran 
& McDonald, 2010). 

Sentiment. It can be assumed that suspicious stock 
recommendations will have a very positive tone 
because fraudsters seek to increase the demand for and 
the stock price of the targeted stock. By contrast, stock 
recommendations published by professional 

journalists are not aimed simply at convincing readers 
to purchase particular stocks but should instead aim to 
provide an unbiased analysis. Against this background, 
we propose document sentiment as an appropriate 
linguistic feature for identifying suspicious documents. 

We examined the sentiments expressed in stock 
recommendations using an unsupervised, dictionary-
based approach (Zhou & Chaovalit, 2008). We used 
the Harvard-IV-4 dictionary, which is commonly used 
in studies related to the current investigation (Hu et al., 
2012; Tetlock, 2007; Tetlock, Saar-Tsechansky, & 
Macskassy, 2008). We counted the occurrences of 
positive and negative words using the categories 
defined by this dictionary, and also considered 
negations (Loughran & McDonald, 2011). 

Next, we adapted several document-level sentiment 
metrics, as presented in Equations (5), (6), and (7) 
below (Hu et al., 2012; Tetlock et al., 2008; Zhang & 
Skiena, 2010): 

𝑃𝑜𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑝𝑜𝑠 − 𝑛𝑒𝑔

𝑝𝑜𝑠 + 𝑛𝑒𝑔
 (5) 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑝𝑜𝑠

𝑛
 (6) 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑛𝑒𝑔

𝑛
 (7) 

These metrics consider pos, which represents the 
number of positive words, and neg, which represents 
the number of negative words, both calculated as 
described above. In addition, n is defined as the total 
number of words. If a document contains neither 
positive nor negative words, the value of the above 
metrics is defined as zero. A positive polarity value 
indicates the predominance of positive words in a 
document; similarly, a negative value indicates the 
predominance of negative words. We also calculated 
the proportion of positive and negative words (relative 
to total words) in each document (positivity and 
negativity, respectively). 

3.5.3 Design Feature DF2: Automated 
Document Classification with an SVM-
based Classifier 

As a further design feature that addresses the design 
principle of the theory-guided knowledge discovery 
process (DP1) and the design principles of the 
automation of document processing and 
transformation (DP2), we applied automated document 
classification using SVM-based classifiers that 
identify suspicious stock recommendations (DF2). We 
thus followed a supervised learning setup whereby we 
used suspicious and non-suspicious stock 
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recommendations to train and evaluate several 
classifiers that should then be able to classify new 
recommendations. For this training, we used a Support 
Vector Machine (SVM) because it has been proven 
useful for analyzing both structured and unstructured 
data (Joachims, 1998; Kim, 2003; Tay & Cao, 2001). 
Based on this design feature, we built two fundamental 
classifiers. 

Classifier A is based on a bag-of-words model and thus 
builds upon design feature DF1a. For this classifier, the 
text is pre-processed, and the words are used as 
features to represent the text. This approach reflects a 
classical text categorization task. Classifier B utilizes 
linguistic features to represent the stock 
recommendations and thus builds upon design feature 
DF1b. For this classifier, the different measures for 
information content, readability, and sentiment are 
used as input variables to determine whether a 
document is suspected to be a fraudulent stock 
recommendation. 

3.5.4 Design Feature DF3a: Classifier 
Robustness with Combined Feature 
Sets 

To implement design principle DP3—to consider the 
fraudster’s countermeasures and to develop a classifier 
that is robust to these countermeasures—we 
implemented design feature DF3a by increasing 
classifier robustness with combined feature sets. We 
assumed that combining the bag-of-words model and 
linguistic features would improve classifier robustness, 
as avoiding being detected by classifiers that rely on 
two feature sets can be assumed to be more difficult 
than taking countermeasures against one feature set. 
Consequently, we addressed the theory-guided 
knowledge discovery process by focusing on the 
related feature set (DP1). Thus, we trained Classifier 
C, which builds upon both feature sets. This classifier 
incorporates the linguistic features for information 
content, readability, and sentiment and the features of 
the bag-of-words model. 

3.5.5 Design Feature DF3b: Classifier 
Robustness Based on Ensemble 
Learning 

In addition to directly combining the feature sets in a 
single classifier, ensemble learning can also increase 
the robustness of a fraud-detection approach 
(Dietterich, 1997). Therefore, we also implemented 
design feature DF3b by training and combining several 
classifiers to increase the robustness of the resulting 
classifier by anticipating the fraudsters’ 

countermeasures (DP3). Given our focus on building 
robust classifiers, we constructed two additional 
classifiers based on an ensemble learning approach. To 

do this, we combined the outputs of Classifiers A and 
B and thus also considered the feature set resulting 
from the theory-guided knowledge discovery process 
(DP1). As a simple approach, Classifier D combines 
the outputs of Classifiers A and B as follows: 

D(𝐱) = {
suspicious, A(𝐱) > 0 ∨ B(𝐱) > 0

non-suspicious, otherwise
 (8)  

Thus, document x is classified as suspicious by 
Classifier D if either Classifier A or Classifier B 
evaluates it as being suspicious ( > 0); this technique 
represents the basic multiple-classifier approach 
proposed by Jorgensen, Zhou, and Inge (2008). 

Finally, we constructed Classifier E, which addresses 
the concern that a fraudster may adopt 
countermeasures that involve adjusting the message 
content. Classifier E combines the outputs of 
Classifiers A and B in a more complex manner. 
Because of the nature of the SVM classification, the 
vector space underlying a classifier is separated into 
two half-spaces by a hyperplane. Consequently, a 
document can lie on either the “suspicious” or “non-
suspicious” side of the hyperplane. A hyperplane can 
be formally described as 𝐰 ⋅ 𝐱𝟎 + 𝑏 = 0, where 𝐱𝟎 is 
a point lying on the hyperplane, 𝐰 is the weight vector 
(normal to the hyperplane), and 𝑏  denotes the 
hyperplane bias (offset from the origin of the vector 
space). The parameters 𝐰 and 𝑏 are both determined 
by the SVM training algorithm in an attempt to 
separate the positive training examples (i.e., suspicious 
documents) from the negative ones (i.e., non-
suspicious documents) by the widest possible margin 
with respect to the SVM optimization function. 

Let us examine Classifier A more closely to explain the 
concept of document manipulation. In the case of 
Classifier A, each document is represented as a high-
dimensional vector of TF-IDF weights, with each 
weight corresponding to one feature in the document. 
Given document vector 𝐱, Classifier A performs the 
following assessment to determine whether the 
document is suspected of being fraudulent: 

A(𝐱) = 𝐰 ⋅ 𝐱 + 𝑏 = 𝑤1𝑥1 + 𝑤2𝑥2 +⋯+ 𝑤𝑛𝑥𝑛 + 𝑏 

In this formulation, 𝑛 is the size of the vocabulary (i.e., 
the number of different features in the document 
collection), 𝑥𝑖 is the TF-IDF weight of the i-th feature 
(it is 0 if that particular feature is not present in the 
document), and 𝑤𝑖  is the SVM weight that corresponds 
to the i-th feature. If A(𝐱) is positive, the document lies 
on the positive side of the hyperplane and is considered 
to be suspicious; if it is negative, the document lies on 
the negative side of the hyperplane and is considered 
non-suspicious. 
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Figure 3. Pushing Documents from One Side (Suspicious) of the Hyperplane to the 
Other (Non-Suspicious) 

To present a suspicious document as non-suspicious, 
the fraudster needs to replace words that indicate fraud 
with words that indicate trustworthiness (according to 
Classifier A). Technically, this requires replacing 
feature 𝑖  with feature 𝑗  so that 𝑤𝑖𝑥𝑖 > 𝑤𝑗𝑥𝑗 , which 
decreases the overall value of A(𝐱) . By performing 
such swaps, the fraudster “pushes” the document from 

the positive side of the hyperplane toward the negative 
side. Pushing a suspicious document far into non-
suspicious territory is not feasible, as doing so requires 
a high degree of manipulation. An altered document is 
thus most likely to lie relatively close to the hyperplane 
on the non-suspicious (i.e., negative) side. In fact, such 
a document is expected to be found in subspace SA, 
which is parameterized by 𝑡ℎ𝑟 ≥ 0 and defined by 
SA(𝑡ℎ𝑟) = {𝐱;−𝑡ℎ𝑟 <x∙w + 𝑏 ≤0}={𝐱;−𝑡ℎ𝑟 < A(𝐱) 
≤ 0}. The basis for a robust classifier follows the 
intuition that, even for a relatively small value of the 
threshold thr, the manipulated documents are pushed 
from the suspicious space into SA(thr). Figure 3 
illustrates the described approach in a two-dimensional 
space. 

This reasoning implies that the documents that fall into 
SA(thr) may have been altered. Therefore, for 
Classifier E, if a document falls outside of SA(thr), the 
output of Classifier A is accepted. However, if the 
document falls into SA(thr), Classifier B is instead 
employed to categorize the document. Changing single 
words in a document (i.e., the bag-of-words document 
representation) is straightforward, whereas changing 
linguistic features requires more effort and is not 
typically desirable for fraudsters because they want 

their recommendations to retain their advertising 
effects; thus, Classifier B is considered to be a superior 
approach for assessing potentially altered documents. 
This new design feature of robust classifiers, which is 
represented by Classifier Ethr, is defined as follows: 

E𝑡ℎ𝑟(𝐱) = {

suspicious, A(𝐱) > 0 ∨

(𝐱 ∈ SA(𝑡ℎ𝑟) ∧ B(𝐱) > 0)
non-suspicious, otherwise

   (9)  

This definition can be restated as follows: 

E𝑡ℎ𝑟(𝐱) = {

suspicious, A(𝐱) > 0 ∨

(|A(𝐱)| < 𝑡ℎ𝑟 ∧ B(𝐱) > 0)
non-suspicious, otherwise

  (10) 

The following conclusions hold for extreme conditions, 
when the boundary of SA lies on the hyperplane and SA 
thus effectively does not exist (E0 ), and when SA 
occupies the entire negative half-space (E∞): 

E(𝐱) = D(𝐱) = 

{
suspicious, A(𝐱) > 0 ∨ B(𝐱) > 0

non-suspicious, otherwise
 

 

 

(11) 

E0(𝐱) = {
suspicious, A(𝐱) > 0

non-suspicious, otherwise
 (12) 
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4 Evaluation 
The important considerations for conducting 
evaluations of IT artifacts in DSR include choice of 
evaluation criteria (the “what”) and evaluation method 

(the “how”; Prat, Comyn-Wattiau, & Akoka, 2015). Our 
selections are guided by the design requirements. As 
evaluation criteria, we selected “validity,” which 

suggests “that the artifact works correctly, i.e., correctly 

achieves its goal” (Prat et al., 2015, p. 265). This is, 
referring to our design requirements, closely related to 
robustness, “the ability of the artifact to handle invalid 
inputs or stressful environmental conditions” (Prat et al., 

2015, p. 266). To gain insights into how well the 
classifier performed, we first examined how the 
classifier identified suspicious documents in normal 
circumstances (see section 4.3). Next, to understand 
robustness, we evaluated how the classifier performed 
in the presence of countermeasures (see Section 4.4). 
The evaluation followed 10-fold cross-validation and a 
simulation-based evaluation setup that modeled the 
fraudsters’ behavior on the basis of inputs by the domain 

experts.  

In the following, we outline our evaluation hypotheses 
concentrating on the question of which classifiers are 
most suitable to address the design requirements. 
Thereafter, we outline the acquisition of the corpus of 
documents used to train and evaluate the classifiers. 
Finally, we outline our evaluation approach and the 
corresponding results. 

4.1 Hypotheses 
The ability to manage a large volume of unstructured 
data (DR1) and to support the automated identification 
of suspicious documents (DR2) are basic characteristics 
of all classifiers. Thus, we concentrate on the question 
of which implementation of our design features 
performs best in the provision of robust classifications 
(DR3) when formulating our evaluation hypotheses. 

Fraudsters seek to evade classifiers by avoiding terms 
that identify suspicious contents and/or replacing such 
terms with words that are typically contained in non-
suspicious messages (Biggio et al., 2010; Jorgensen et 
al., 2008). In the following, we define this behavior as 
an “attack” on the functioning of the classifier. If the 

classifiers subjected to these countermeasures are not 
retrained, the classification performance of the attacked 
classifiers will decrease significantly (Webb et al., 
2005). However, in a scenario that involves stock 
recommendations intended to convince readers to buy 
the advertised stock, we assume that fraudsters seek to 
maintain their advertising efficiency. Thus, fraudsters 
have a vested interest in retaining the message features 
that influence advertising efficiency. Based on this 
reasoning, we formulate the following hypothesis for 
classifiers that provide automated document 
classifications (DF2), following DF1b and taking into 

account linguistic features relating to advertising 
efficiency (in contrast to classifiers that solely follow 
DF1a and thus rely solely on a bag-of-words model). 

H1: When under attack, a classifier based on linguistic 
features outperforms a classifier based solely on 
a bag-of-words model. 

In addition to taking linguistic features into account, 
classification performance can be increased by 
combining feature sets (DF3a) or by applying 
ensemble learning (DF3b). In the case of a 
combination of feature sets, it can be assumed that it is 
more difficult to manipulate classifiers that consider 
both bag-of-words and linguistic features than 
classifiers that consider bag-of-words or linguistic 
features alone.  

In the case of ensemble learning, the individual 
decisions of different classifiers are combined to 
classify new examples (Dietterich, 1997). Ensembles 
can be more accurate if individual classifiers disagree 
(Dietterich, 1997; Hansen & Salamon, 1990) because 
“multiple learner systems try to exploit the local 

different behavior of the base learners to enhance the 
accuracy and the reliability of the overall inductive 
learning systems” (Valentini & Masulli, 2002, p. 4). 
Given the background of these general advantages in 
the case of different classification tasks, we 
hypothesize that these characteristics will continue to 
be advantageous if such classifiers, based on DF3a or 
DF3b, are attacked: 

H2a: When under attack, a classifier that combines 
linguistic features and the bag-of-words model 
will outperform other classifier configurations 
based solely on linguistic features or a bag-of-
words model. 

H2b: When under attack, a classifier based on 
ensemble learning incorporating linguistic 
features and the bag-of-words model will 
outperform other classifier configurations 
based solely on linguistic features or a bag-of-
words model. 

4.2 Dataset Acquisition and Descriptive 
Statistics 

4.2.1 Dataset Acquisition 
Training and evaluating classifiers require documents 
that represent both document classes: documents 
suspected to be fraudulent stock recommendations and 
documents that contain reliable recommendations. The 
identification of appropriate documents was carefully 
conducted in cooperation with our domain experts; it 
also incorporated feedback from financial institutions 
and the financial supervisory authority. The SEC has 
published several criteria that provide the basis for 
identifying documents that represent stock 
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recommendations as suspicious and/or fraudulent.1 We 
searched for stock recommendations that fulfilled these 
criteria and included small-cap stocks traded primarily 
in markets with little regulation, labeling these 
recommendations as suspicious. To acquire newsletters 
promoting stocks that matched these criteria, we used 
the newsletter.hotstocked.com archive. This internet 
service does not publish its own stock recommendations 
but aggregates diverse stock recommendations that are 
published either on the web or in investment 
newsletters.  

The identification of reliable stock recommendations 
was also carefully conducted. Stock recommendations 
published on the internet that do not fulfill the SEC 
criteria for suspiciousness are not guaranteed to be 
reliable (they can be manipulative without triggering the 
conditions required for a suspicious or fraudulent 
designation (Aggarwal & Wu, 2006)). Thus, we only 
considered documents that were published in more 
reliable sources, specifically financial newspapers. We 
used analyst reports that contain stock recommendations 
published by Dow Jones Newswires. Based on feedback 
from our domain experts, we selected Dow Jones 
Newswires as an appropriate source for reliable 
documents because it is a major financial news provider 
that is well-regarded by financial professionals (Tetlock, 
2007) and because its documents are created by many 
different authors. Thus, we downloaded the analyst 
reports published by Dow Jones Newswires and 
designated these reports as non-suspicious stock 
recommendations.  

Following the above procedures, we acquired a total of 
14,556 suspicious and 3,342 non-suspicious stock 
recommendations published between December 15, 
2010 and February 10, 2012. We removed stock 
symbols, firm names, and publisher names from the 
documents to ensure the generalizability of the results. 
In the Discussion section below, we elaborate on the 
finding that our classification results remain robust 
when taking a second dataset into account. 

We considered only the first suspicious 
recommendation that was published with regard to a 
specific stock to remove identical recommendations and 
to avoid overfitting. This restriction reduced the final 
number of suspicious stock recommendations used in 
this study to 896. In addition, a review of the non-
suspicious documents obtained from Dow Jones 
Newswires reveals that some of these documents 
consisted only of tables that span a large number of 
stocks but do not include any analyses. Thus, we 
discarded these documents from the analysis, and a total 
of 2,088 documents were used to train our fraud-

 
1 In this context, the SEC warns investors against trading 
stocks that are recommended if it is unclear whether the 
recommender holds a position in the recommended stock, 
whether compensation was paid to the recommender (if the 

detection classifiers. Our results remain robust 
regardless of whether the complete or the reduced 
datasets for suspicious and non-suspicious 
recommendations were assessed. 

All of the classifiers were trained with a biased cost 
function because of the unbalanced dataset (Witten, 
Frank, Hall, & Pal, 2016). Therefore, the error on 
suspicious examples was multiplied by the total number 
of non-suspicious examples divided by the total number 
of suspicious examples (2,088/896 = 2.33) during the 
training. We also trained the classifiers with a non-
biased cost function; the recall of the suspicious 
documents was most heavily affected by this (it 
decreased), significantly affecting the overall 
classification performance, as shown by the F-measure. 

4.2.2 Descriptive Statistics 
For both suspicious and non-suspicious stock 
recommendations, we determined information content, 
readability, and sentiment, as described above. We 
tested whether the theoretically derived linguistic 
features were suited for differentiating between the two 
document classes and were consequently useful in fraud 
detection by performing Wilcoxon rank-sum tests to 
assess the equality of medians (see Table 1). With 
respect to the information content of the examined 
recommendations, we found that Entropy was 
significantly higher for suspicious stock 
recommendations than for non-suspicious stock 
recommendations. This result indicates that suspicious 
stock recommendations contain more information than 
non-suspicious stock recommendations. With respect to 
readability, each readability measure indicates that 
suspicious stock recommendations are easier to 
understand than non-suspicious stock 
recommendations. Therefore, the null hypothesis of 
equal medians could be rejected for ARI, Flesch, and 
Fog at a 1% confidence level. Moreover, Table 1 shows 
that suspicious stock recommendations indicate 
sentiments that are more positive than the sentiments of 
non-suspicious stock recommendations. In addition, 
compared with non-suspicious recommendations, 
suspicious stock recommendations contain a higher 
fraction of positive sentiment-bearing words (positivity) 
and a lower fraction of negative sentiment-bearing 
words (negativity). Thus, all the examined linguistic 
features discriminate between the two document 
categories, and the observed differences are consistent 
with the kernel theories that justified our feature 
selection. Given these results, we consider the linguistic 
feature set to be useful in the fraud detection context. 

recommendation was an advertisement), or whether the 
recommended stock is a small, thinly traded company (SEC, 
2012a). 
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Table 1. Descriptive Statistics for Linguistic Features and Results of Wilcoxon Rank-
Sum Tests for the Equality of Medians (***/**/*:p<1%/5%/10%) 

Variable Linguistic 
feature 

Suspicious stock 
recommendations 

Non-suspicious stock 
recommendations 

p-value 

  Mean  Median Mean  Median  
Information 
content 

Entropy 7.1826 7.2858 6.8579 6.8833 < 0.01*** 

Readability 
 

ARI 13.951 13.755 15.739 15.561 < 0.01*** 
Flesch 45.111 44.276 39.240 39.475 < 0.01*** 
Fog 15.947 15.949 17.072 16.971 < 0.01*** 

Sentiment 
 

Polarity 0.4322 0.4390 0.1218 0.1261 < 0.01*** 

Positivity 0.0861 0.0864 0.0688 0.0686 < 0.01*** 
Negativity 0.0344 0.0333 0.0538  0.0525 < 0.01*** 

4.3 Naive Evaluation  
We evaluated the performance of the different 
classifiers and the general validity of the proposed 
problem solution utilizing k-fold stratified cross-
validation (k = 10), which avoids overly optimistic 
results (Mitchell, 1997). We created a contingency 
table that contains the number of correctly and 
incorrectly classified examples. These results were 
classified as true positives (TP), true negatives (TN), 
false positives (FP), or false negatives (FN). On this 
basis, the performance metrics of accuracy, precision, 
recall, and F1 (Hotho et al., 2005; Kotsiantis, 2007; van 
Rijsbergen, 1979) were calculated through micro-
averaging (Chau & Chen, 2008). We calculated 
precision, recall, and F1 for the “suspicious” and “non-
suspicious” classes. The evaluation metrics are defined 
as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (13) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (15) 

𝐹1 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (16) 

The results of the 10-fold cross-validation are 
presented in Table 2. This table presents the results for 
Classifier A, which accounts only for the bag-of-words 
model; for Classifier B, which accounts only for the 
linguistic features of information content, readability, 
and sentiment; for Classifier C, which utilizes both 
feature sets; and for Classifiers D and E, which are 

based on ensemble learning. For this classic 
evaluation, we selected thr = 0.5 for Classifier E, but 
other values between 0 and 1 produced similar results, 
as illustrated in the following section. If only the basic 
text-based features are taken into account (Classifier 
A), an accuracy of 99.67% is achieved. In addition, the 
precision, recall, and F1 scores are above 98% for all 
of the classes of results. These are excellent scores, 
although previous text mining studies have reported 
comparable results for related document classification 
tasks (Joachims, 1998; Webb et al., 2005). 

Furthermore, Classifier B achieves a classification 
accuracy of 83.61%; thus, 83.61% of all cases are 
classified correctly through this approach. 
Misclassification costs (i.e., the consequences of 
classifying suspicious recommendations as non-
suspicious and vice versa) are particularly important in 
fraud detection (Phua et al., 2010). Thus, the 
classification results for both classes should also be 
taken into account. In the case of Classifier B, 
significantly lower precision appears to be achieved 
for the suspicious class than for the non-suspicious 
class. However, the difference in recall between these 
two classes is less substantial: 86.84% of the 
suspicious recommendations are classified as 
suspicious, whereas 82.31% of the non-suspicious 
recommendations are classified as non-suspicious.  

Classifier C, which incorporates the bag-of-words 
model and linguistic features, produces results that are 
comparable to, but slightly lower than, the results of 
Classifier A. Regarding the classifiers based on 
ensemble learning, Classifier D demonstrates an 
overall classification performance that appears to be 
between those of Classifiers A and B. Finally, 
Classifier E0.5 produces an overall classification 
performance that is comparable to the performance of 
Classifiers A and C. Thus, Classifiers A, C, and E0.5 
achieve very good results in the identification of 
suspicious recommendations and produce slightly 
better overall performance than Classifiers B and D. 
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Table 2. SVM Classification Results (All values Are Given as Percentages) 

 Class suspicious Class non-suspicious 
 Accuracy Precision Recall F1 Precision Recall F1 

Classifier A 99.67 98.99 99.89 99.44 99.95 99.57 99.76 
Classifier B 83.61 67.72 86.84 76.10 93.54 82.31 87.57 
Classifier C 98.79 97.33 98.61 97.97 99.43 98.86 99.14 
Classifier D 87.50 70.54 100.00 82.73 100.00 82.17 90.21 
Classifier E0.5 98.69 95.83 100.00 97.87 100.00 98.14 99.06 

Table 1. The 20 Most Important Features for Classifier C by SVM Weight 

Rank (Linguistic) feature Weight Rank (Linguistic) feature Weight 
1 Alert 1.5032 11 fitch 0.5315 
2 Sp 1.3050 12 upgrade 0.5219 
3 Polarity 0.8393 13 gbp 0.5059 
4 Analyst 0.7964 14 bank 0.4732 
5 Entropy 0.6138 15 moodys 0.4674 
6 Said 0.6123 16 eur 0.4530 
7 Technology 0.6097 17 chart 0.4204 
8 pick 0.5844 18 read 0.4177 
9 Mid 0.5642 19 list 0.3927 
10 ratings 0.5400 20 Flesch 0.3572 

4.4 Robustness Evaluation 
To evaluate the robustness of the proposed classifiers, 
we first analyzed the relative importance of the 
linguistic features. Thereafter, we simulated an attack 
on the classifiers to evaluate how these performance 
figures change if the input documents are manipulated 
according to a document manipulation strategy 
described in the Appendix. 

During the training process, SVM assigns certain 
weights to the features that it assesses. We used these 
assigned weights to evaluate the importance of 
individual features (i.e., individual words or linguistic 
features). In particular, weights with higher absolute 
values exert greater influence on the classification 
decision (Guyon et al., 2002). Table 3 reports the 20 
most important features for Classifier C, sorted by 
weight. This table shows that linguistic features are of 
great importance. For Classifier C, polarity (i.e., 
sentiment) has the highest rank among the linguistic 
features, whereas entropy (i.e., information content) is 
ranked #5. Furthermore, Flesch (i.e., readability) is 
ranked #20 (out of the 9,990 features that are relevant 
in the model). 

Furthermore, a number of features of the bag-of-words 
model are also among the 20 most important features 

for Classifier C. For example, many suspicious stock 
recommendations alert (#1) investors about stock 
picks (#8). From a fraudster’s point of view, these 
words should be avoided in future stock 
recommendations to prevent detection by the 
classifiers. However, a fraudster would also need to 
alter the linguistic features of a message. As a 
consequence, we expect Classifier C to be more robust 
than Classifier A against manipulations because 
important linguistic features pose a dilemma for 
fraudsters—as marketing theory points out, t message 
manipulation of linguistic features to avoid 
identification by Classifier C would decrease the 
advertising effect of the fraudster’s recommendations. 

To further explore the robustness of the classifiers, we 
performed a simulation of a worst-case attack. We 
assumed that the fraudster has obtained or could fully 
replicate the feature weights of Classifier A and is 
thereby fully aware of the most relevant words that 
should be avoided; this assumption is much more strict 
than related attack simulation approaches that do not 
assume this type of insider knowledge (Jorgensen et 
al., 2008; Webb et al., 2005). Second, we assumed that 
the fraudster did not want to reduce the advertising 
effect of the document. As a result, the linguistic 
features (and thus also Model B) were expected to be 
relatively stable. For each suspicious document, given 
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the degree of manipulation m, the fraudster replaced 
the m% most important features that drive 
suspiciousness with suitable synonyms that are 
considered to be less suspicious (the detailed algorithm 
for document manipulation is presented in the 
Appendix). 

To evaluate the robustness of the different classifiers, 
we evaluated their classification performance by 
increasing the manipulation degree m (i.e., the 
percentage of words that are replaced by suitable 
synonyms). This assessment is graphically depicted in 
Figure 4. In accordance with H1, we see that, when 
under attack (i.e., if m is increased), the classifier based 
on linguistic features only (Classifier B) outperforms 
the classifier based on the bag-of-words model with 
respect to accuracy (Classifier A). Although the 
accuracy of Classifier B is below that of Classifier A 
at m = 0, Classifier B outperformed Classifier A for 

values of m that are equal to or greater than 0.3. The 
same result was observed for the F1 measure in the case 
of m ≥ 0.4, which combines the precision and recall 
factors. Thus, the results of this simulated attack 
support H1. 

Furthermore, Classifier C appears to be more robust 
than a classifier that uses only the bag-of-words model 
(Classifier A) or linguistic features (Classifier B), 
which supports H2a. With respect to the performance 
of the developed classifier based on ensemble learning 
approaches, it can be concluded that Classifier D and 
the various Classifier E configurations (i.e., for several 
different thr values) exhibit by far the best robustness 
to the attacks, as demonstrated by the various 
performance measures. However, Classifier E 
outperformed Classifier D in most scenarios and 
performed reasonably well at m = 0. 

 

  

  

  
Figure 4. The Robustness of Classifiers Against Countermeasures 
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In short, given a performance metric and a document 
manipulation level, Classifier E0.5 is either the outright 
best-performing classifier or performs similarly to the 
best-performing classifier (for instance, with regard to 
accuracy, the absolute difference between Classifier 
E0.5 and the best-performing classifier was always 
equal to or less than 1%). 

These findings support H2b, which states that, when 
under attack, a classifier based on ensemble learning 
that accounts for both linguistic features and the bag-
of-words model outperforms models based on either 
linguistic features or the bag-of-words model alone. 
However, the sensitivity of this classifier must be 
established by selecting an appropriate thr value. 
Classifier E0.5 is more robust to manipulations than 
Classifier C, which shows that the application of 
ensemble learning is more appropriate than the 
combination of feature sets at the classifier level. 

5 Discussion 
Our results show that the proposed design principles 
and features can be used to address the design 
requirements for robust fraud detection. We found that 
prior theories from marketing and financial economics 
provide a foundation (justificatory knowledge) for 
identifying suspicious stock recommendations. 
Notably, we found that such recommendations are 
easier to read, incorporate more positive sentiments, 
and provide greater information content (which 
supports advertising success). For the forecasting 
models, we confirmed the usefulness of theory-based 
linguistic features (see H1). A classifier based on just 
the linguistic features provides good results. The 
robustness evaluation confirmed the usefulness of 
theory-based linguistic features (see H2a, H2b) and 
demonstrates that an ensemble learning approach that 
uses linguistic features and bag-of-words models is 
appropriate for generating a robust fraud-detection 
classifier. 

We acknowledge that our approach has limitations. 
First, our approach addressed two different types of 
documents that can be regarded as examples of 
suspicious and non-suspicious stock recommendations 
(relying on criteria published by the SEC to identify 
suspicious stock recommendations and on analyst 
reports published by Dow Jones Newswires to identify 
non-suspicious recommendations). An alternative 
approach would be to assess recommendations by 
domain experts. This approach was criticized by our 
domain experts because one cannot be certain whether 
a recommendation that is labeled as suspicious actually 
aims to manipulate stock prices because they would 
not know the specific intentions of the publisher 
(supported by Bolton & Hand, 2002). As also argued 
by the involved market supervisory authority, any such 
assessment for training a classifier must follow 
documented criteria that can be disclosed. 

Our predictions are based on stock recommendations 
for which publishers self-disclosed that they were paid 
to advertise the stocks in question. Thus, the study does 
not assess recommendations without this disclaimer. 
However, the inclusion of this statement is obligatory 
(Hu, McInish, & Zeng, 2009), and the SEC cannot 
prohibit the publication of fraudulent stock 
recommendations that include this statement as doing 
so would obstruct “freedom of speech” (SEC, 2012a). 
Thus, we cannot claim that our study incorporates all 
possible types of suspicious stock recommendations, 
although it does include a significant subset of them. 
By excluding the disclaimers during training, we 
ensured that the classifiers could detect the remaining 
suspicious stock recommendations that did not contain 
disclaimers. 

To rule out the possibility that the results of this study 
were driven by fundamental differences in the 
document sources used for training (e.g., a news 
agency such as Dow Jones Newswires might have 
guidelines for the composition of related documents) 
that were different from suspicious documents (which 
are published by various promoters), we reran our 
experiments using another source of non-suspicious 
documents (recommendations published in the Yahoo! 
Finance category “Investing Ideas & Strategies,”). In 
this setting, the classification results remained robust. 
This allowed us to further establish robustness and 
overcome a major limitation of fraud-detection 
systems (manipulators adapt to them after their 
characteristics have been published) (Bolton & Hand, 
2002). 

6 Conclusion 
In this study, we present a fraud-detection approach for 
identifying suspicious stock recommendations. To 
improve the robustness of this approach, we propose 
new design principles, design features, and different 
classifiers that utilize both a bag-of-words model and 
linguistic features derived from domain kernel 
theories. 

We contribute theoretically and methodologically to 
the literature in several ways. Most importantly, we 
propose design principles and specific design features 
for robust fraud-detection systems that address the 
problem class of information-based market 
manipulations, and we demonstrate robust evaluations 
based on attack simulations. Our approach (that 
includes bag-of-words models and theory-motivated 
linguistic features in combination with ensemble 
learning) significantly increases the robustness of 
fraud-detection. Through our work, we demonstrate 
that the shift from foundationalism to instrumentalism 
in contemporary data mining research can contribute 
to problem solving. In this case, foundationalism seeks 
to progress toward truth by following inductive logic, 
whereas instrumentalism attempts to engage in 
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problem solving, provides the flexibility to build an 
approach on the basis of relevant theories, and utilizes 
different reasoning principles, including both 
induction and deduction (Kilduff et al., 2011). To the 
best of our knowledge, our study is the first to 
investigate the problem of information-based fraud 
detection by analyzing and classifying stock 
recommendations. 

The practical contributions of this study are threefold. 
First, the proposed fraud-detection classifiers can be 
included in a fraud detection system (FDS) to enhance 
the “information-based market manipulation detection 
capabilities” of firms and market surveillance 
authorities. In particular, existing detection schemes 
can be improved to clearly and correctly identify stock 

recommendations serving in pump-and-dump 
schemes. Additionally, the proposed fraud-detection 
classifiers could also be used to complement 
established FDS covering other manipulation 
scenarios (Gregory & Muntermann, 2014). Second, 
our findings may be relevant to security software 
developers who are addressing this problem domain, at 
least with respect to stock scam emails (Symantec, 
2011). Our classifiers could be included in browser 
toolbars, which already generate warnings for phishing 
websites. Finally, the design principles and design 
features for improving classifier robustness and its 
evaluation could be applied to other fields or languages 
apart from English to investigate the robustness of text-
based classifiers—for example, for opinion spam (Liu, 
2012) in the social commerce context.
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Appendix: Algorithm for Document Manipulation 
1. Extract all of the unique features from the document. 
2. Use the SVM decision function to rank the features according to their contribution to classifying the document 

into the suspicious class. Because classifier A is based on a linear kernel, this decision function takes the 
following form (Guyon et al., 2002): 

d(x) = x∙w + 𝑏 = 𝑥1𝑤1 + 𝑥2𝑤2 +⋯+ 𝑥𝑛𝑤𝑛 + 𝑏 (17)  

In this equation, x is the TF-IDF vector, w is the SVM weight vector, and b is the hyperplane bias. As shown 
above, each of the components (the summands) contributes to the final value of d(x). The components xiwi 
correspond to the features in the bag-of-words vocabulary. If the suspicious documents are labeled “1” and the 

non-suspicious documents are labeled “-1” in the training set, then a positive value for a particular component 

xiwi would indicate that it contributes to classifying the document into the suspicious class, and the absolute value 
of this component would represent the degree to which the feature contributes to the final outcome. The fraudster 
therefore ranks the features in descending order (i.e., largest to smallest) according to their xiwi values, such that 
the features that provide the greatest contributions to classifying the document into the suspicious class are at the 
top of this ranked list. 

3. In the document, the fraudster locates the words corresponding to the topmost (100  m)% features from the list. 
The fraudster considers only features with positive xiwi values (even if this means that fewer than (100  m)% 
features are considered). The fraudster replaces each of these words with a suitable synonym. The fraudster’s 
lexical knowledge is modeled with two lexical resources: WordNet (Fellbaum, 1998) and SentiWordNet 
(Baccianella, Esuli, & Sebastiani, 2010). The fraudster modifies a word in the following manner: 

a. The fraudster looks up the word’s lemma in WordNet and retrieves all of its synonyms 
b. The fraudster uses SentiWordNet to determine the amount of positivity pi and the amount of negativity 

ni to assign to each synonym si. If the word to be replaced bears a positive sentiment (pi > ni), then only 
the words with pi > 0 would be regarded as suitable replacements. Similarly, if the word to be replaced 
bears a negative sentiment (ni > pi), only the words with ni > 0 are regarded as suitable replacements. The 
intuition behind this supposition is that the fraudster wishes to preserve the marketing effect of the 
document (see assumption 2). 

c. The fraudster looks at the weight wi for each of the synonyms. If a synonym does not exist in the bag-of-
words vocabulary, its weight wi equals 0. The synonyms are ranked in ascending order (i.e., smallest to 
largest) according to their weights. This classification procedure means that the synonyms with the most 
negative weights (i.e., the synonyms that contribute the most to classifying the document in the non-
suspicious class) will be at the top of the list. The fraudster uses the topmost synonym from the list to 
replace the original word in the document. 
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