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INTRODUCTION

The incidence of parotid gland tumors is one of the
highest of all incidences of tumors in otorhinolaryngol-
ogy. In some cases, differentiation between benign and
malignant lesions is difficult. At later stages of the dis-
ease, some types of benign parotid gland tumors, such as
the pleomorphic adenoma, may even become malignant.
Therefore, the possibility of early detection, differentia-
tion and excision is important. The initial characteriza-
tion of the tumor will define the extent of surgical inter-
vention and treatment. The excision of parotid gland
tumors is extensive, time-consuming and, therefore,
costly because several facial nerves are situated within
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the extent of the parotid gland; thus, requiring precise
surgery to prevent damage to the nerves.

Usually, B-mode medical ultrasound (US) is ap-
plied as the main diagnostic modality to differentiate
among the various types of parotid gland tumors. How-
ever, the results of medical US imaging of the parotid
gland are dependent on the skills of the examining phy-
sician. Two typical examples of tumors of the parotid
gland are shown in Fig. 1. Doppler-based US modes,
such as color Doppler and power Doppler, can help differ-
entiate between different types of parotid gland tumors, if
used in combination with conventional B-mode US (Izzo et
al. 2004; Martinoli et al. 1994; Schade et al. 1998; Schick et
al. 1998). However, the lack of distinctive vessel patterns
prevents the exclusive application of Doppler modes for the
differentiation of tumors of the parotid gland (Schade et al.
1998). The application of US contrast agents can only
increase the ability to differentiate between certain types of

parotid gland tumors (Steinhart et al. 2003).
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Overall, the current methods of diagnostics of pa-
rotid-gland tumors, including medical US and magnetic
resonance imaging (Izzo et al. 2004), lack accuracy,
especially when it comes to differentiate between benign
and malignant forms of alterations. Currently, only the
histopathologic examination of tissue specimen can pro-
vide the information needed for a definite diagnosis. The
application of ultrasonic tissue characterization can add
additional information to the currently available methods
of diagnosis. In the future, ultrasonic tissue characteriza-
tion might replace histopathologic examinations.

Methods of ultrasonic tissue characterization have
been evaluated on various organs. Representative over-
view articles on ultrasonic tissue characterization in gen-
eral have been published by Thijssen (2000) and De-
lorme and Zuna (2000). Shimizu et al. (1999) compared
sonographic and histopathologic findings of parotid
gland tumors, providing a baseline for ultrasonic tissue
characterization of parotid glands. Texture analysis of
parotid glands was formerly performed by Ariji et al.
(1996) and Yonetsu et al. (2004).

The ultrasonic tissue characterization system used
for the approach described in this work was formerly
developed at Ruhr-University Bochum for the early de-
tection of prostate carcinoma (Scheipers et al. 2001,
2002, 2003a, 2003b, 2004). The whole system was
adapted for application in diagnostics of parotid glands.

By using US baseband data instead of video data,
various tissue-describing parameters that contain suffi-
cient information to classify the underlying tissue with
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Fig. 1. Exemplary B-mode images of (left) a negative c
cell adenoma). Differentiation between different types o

experienc
satisfactory accuracy, can be calculated. Often, only the
use of US baseband or radiofrequency data can provide
the information needed to calculate parameters that char-
acterize biologic tissue in an adequate way.

Because the different parameters used in this ap-
proach have a highly nonlinear interdependence, only a
nonlinear model is able to combine the parameters and,
thus, lead to reliable classification results (Scheipers et
al. 2001, 2002, 2003a, 2003b, 2004). Both radial basis
neural networks, which are based on symmetrical model
functions of typically Gaussian shape, and network-
based fuzzy inference systems perform reliably when
applied in pattern recognition for ultrasonic tissue char-
acterization (Bishop 1995). In this approach, a network-
based fuzzy inference system was used (Zadeh 1973,
1989; Jang 1993; Mendel 1995; Furuhashi 2001). Most
classification approaches only work satisfactorily if the
underlying parameters are normally distributed. Some
parameters used in this approach cannot be assumed to
be distributed normally (Lizzi et al. 1997a, 1997b). Un-
der these circumstances, a network-based fuzzy infer-
ence system that is quite robust to the distribution of
input vectors, still performs sufficiently well (Blackmore
1994).

For successful application of spectral parameters,
the compensation of depth-dependent diffraction and at-
tenuation effects was found essential (Oosterveld et al.
1991; Huisman and Thijssen 1996; Lizzi et al. 1997a,
1997b; Schmitz et al. 1994, 1999). For estimation of
some texture parameters, the compensation of these ef-
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effects should also not be ignored when using texture
parameters.

Because the information of tissue parameters of
different parameter groups (e.g., spectral parameters,
first-order texture parameters or second-order texture
parameters) is highly uncorrelated, the combination of
tissue parameters originating from different parameter
groups can lead to better classification results (Hartman
et al. 1993; Thijssen et al. 1993; Schmitz et al. 1994,
1999; Siebers et al. 2002). From our point of view, only
a combination of different groups of parameters (e.g.,
spectral and textural parameters) can provide the classi-
fication system with enough information to support an
accurate and reliable decision.

METHODS

Data acquisition
Baseband US echo data of the parotid gland were

captured during routine examination of the patient using
standard US imaging equipment. Patient compliance to
the procedure was high because the new method does not
extend the normal examination time when applying US
imaging of the neck and facial region. The proposed
system is operator-independent, which means that no
special knowledge or training is necessary for a success-
ful application of the system.

For the clinical study, a Siemens Elegra (Issaquah,
WA, USA) digital US scanner equipped with a research
interface was used. The conventional linear model
7.5L40 probe was set to a center frequency of 7.2 MHz.
For every frame, 2400 samples were recorded for 360
lines. The approximate size of the images was 5.1 cm in
the axial direction and 4 cm in the lateral direction,
respectively. Only one transmit focus was applied using
a depth of 2 cm. Time-gain compensation was set to a
neutral position. Internally, the dynamic low-pass filter
and the frequency of the dynamic local oscillator were
set to a constant value. Radiofrequency echo data were
acquired at 36 MHz and 12 bits. Baseband data were
provided by the research interface for downloading to a
personal computer using the local area network.

Two orthogonal frames per lesion were recorded
successively and every data frame was subdivided into
numerous regions of interest (ROIs) using the sliding
window technique to attain spatially distributed tissue
characterization maps. Each ROI comprises an area of
approximately 2.7 mm in the axial direction and 3.5 mm
in the lateral direction. Thus, the smallest region that can
be analyzed by the system covers approximately 9.5
mm2. The ROIs consist of 128 sample points in the axial
direction and of 16 scan lines in the lateral direction. The
axial and lateral overlaps of the ROIs were 75% and

50%, respectively. For attenuation measurements, adja-
cent ROIs were combined, because the sizes of the ROIs
mentioned above were too small to support reliable at-
tenuation estimation.

In the following, all ROIs were transformed into
frequency domain using Fourier transform on every scan
line of the ROI. Before applying the Fourier transform,
all ROIs were windowed by a Hamming window of the
ROI length to avoid spectral leakage. Spectral leakage
can affect the estimation of spectral parameters, espe-
cially when analyzing short time signals (Kroschel 1996;
Proakis and Manolakis 1996).

The baseband data were compensated for system-
and depth-dependent effects using the system transfer
function over depth as an inverse filter within the effec-
tive band width of the system. The effective band width
was determined as the frequency range of the spectrum
that could clearly be distinguished from the noise floor.
Using this approach, the systems effects caused by fo-
cusing and the electromechanical characteristics of the
transducer can be partly compensated (Thijssen 2000;
Huisman and Thijssen 1996). An error was induced
because the system transfer function was constructed by
interpolating echo sequences recorded at different dis-
tances of the transducer from a wire phantom in degassed
water (Angelsen 2000). A detailed discussion of the
data-correction method implemented here can be found
in Schmitz et al. (1999).

Parameter extraction
Several tissue-describing parameters were calcu-

lated for each ROI. The authors do not claim that the
extracted parameters are completely independent of the
US imaging equipment. The parameters used for classi-
fication were calculated from the frequency spectrum
and from the time domain, partly before and partly after
compression and envelope detection of the baseband
data.

Spectrum parameters were calculated after convert-
ing the power spectrum to dB. Spectral results of each
scan line were averaged to form an estimate of the
average power spectrum (Lizzi et al. 1983, 1997a; Lang
et al. 1994; Thijssen 1989). The primary set of spectrum
parameters consisted of five measures of backscatter
calculated for the signal band width. The parameters
used in this approach were: axis intercept, slope, mid-
band value, deviation and normalized square deviation of
the linear regression spectrum fit (Scheipers et al. 2001,
2002, 2003a, 2003b, 2004; Feleppa et al. 2001, 2004).
The estimations of backscatter were compensated for
attenuation effects using an attenuation model that is
based on the multi-narrow-band method (Cloostermans
and Thijssen 1983; Oosterveld et al. 1991; Thijssen et al.
1993). Three measures of this attenuation model were

also evaluated by the system. The three attenuation pa-
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rameters used in this approach were: axis intercept, slope
and midband value. These three parameters were derived
from the frequency-dependent attenuation coefficient
over depth. As was shown by Oosterveld et al. (1991)
and Thijssen et al. (1993), the exclusion of all ROIs with
overflows, underflows or severe inhomogeneities (e.g.,
specular reflections or strong shadows) is important for
the calculation of attenuation parameters. ROIs contain-
ing these properties were discarded before calculation. A
statistical framework for ultrasonic spectral parameter
imaging was proposed by Huisman and Thijssen (1996)
and Lizzi et al. (1983, 1997a, 1997b) and was taken into
consideration in this approach.

Texture parameters evaluated in this work consist of
first and second-order (i.e., co-occurrence) parameters.
Texture parameters were calculated after envelope detec-
tion of the complex baseband data using rectification.

First-order texture parameters consist of eight dif-
ferent estimates of echo amplitude, maximum, minimum,
mean, variance, kurtosis, signal-to-noise ratio (SNR),
ratio of squares and the full-width at half-maximum of
the grey-level histogram.

Common co-occurrence parameters as proposed by
Haralick et al. (1973); Valckx and Thijssen (1997) and
Valckx et al. (2000) were calculated in the spatial do-
main of demodulated data for different distances (i.e.,
step sizes between samples) up to 0.5 of the full-width at
half-maximum measure (Scheipers et al. 2002; Basset et
al. 1993). Sizes of co-occurrence matrices (i.e., the num-
ber of grey levels incorporated) were varied in the range
of 16 to 64. In contrast to first-order texture parameters,
second-order texture parameters are based on spatial
relationships between grey levels of the samples and can,
therefore, describe spatial distributions of information in
data. The nine second-order texture parameters evaluated
in this approach were: angular second moment, which is
a measure of the local homogeneity of the data; contrast,
which is a measure of the amount of local variations
present in the data; correlation, which is a measure of
local linear dependencies; dimension, inverse difference
moment, kappa, peak density, variance and the SNR of
co-occurrence matrices. The lateral resolution of US data
changes over depth, thus leading to an increase in lateral
speckle size for deeper imaging positions. Grey-tone
spatial dependency matrices were calculated only in the
axial direction to keep effects of focusing and diffraction
as low as possible. Another problem that occurs when
texture parameters are evaluated is the dependence of
some co-occurrence parameters on the linear attenua-
tion of the system. Depth-variant parameters of this
kind used here are: correlation, inverse difference
moment and variance. It is possible to compensate
partly for this type of depth-dependence by normaliz-

ing the data as proposed in Haralick et al. (1973) or by
normalizing each ROI locally. All other co-occurrence
parameters evaluated in this approach are independent
of local grey levels.

Selection of parameters
A preselection of parameters was made by covari-

ance matrix analysis. Parameter vectors that were highly
linearly dependent on others were found and discarded.
In addition, parameter vectors that have a very small
influence on the classification results also were found
and discarded. For the detection of these parameters,
each single parameter was evaluated on its own, using
separate classification experiments. During the preselec-
tion procedure, the number of tissue parameters was
reduced to six, using a stepwise selection algorithm
based on hypothesis testing. The parameter selection
procedure starts by calculating the classification perfor-
mance of each single tissue parameter using fourfold
cross-validation over cases. Fourfold cross-validation
was performed by dividing the whole number of cases
into four data sets. Three data sets were combined and
used as the training data and the remaining fourth data
set was used as the test data. Every iteration of the
classification system was performed 4 times in a row,
with all different combinations of data sets involved.
While dividing the whole data into four separate data
sets, strict separation between patients was reserved to
keep the results unbiased.

To use a decision-based criterion (Kung and Taur
1995) instead of an approximation-based criterion (e.g.,
mean squared error) as used in other approaches, the
classification power is expressed as the area AROC under
the ROC curve (Swets 1982; Kroschel 1996).

The overall performance of a classification system
that is not dependent on a separation threshold or a
cut-off point, can easily be provided using the area AROC

under the ROC curve as a measure (Metz 1986; Obu-
chowski 1997). The ROC curve sometimes is con-
structed by plotting the sensitivity against the specificity
for all possible separation thresholds. The ROC curve
generally is constructed by plotting the sensitivity
against one minus specificity, which is the probability of
a false alarm. However, both methods yield the same
value for the area under the ROC curve.

After the area under the ROC curve was calculated
for every tissue parameter, the tissue parameter with the
largest area AROC was chosen as the first feature of
choice. During the next step, this parameter was com-
bined with all other remaining tissue parameters and the
parameters of the pair with the largest area AROC were
then chosen as the features of choice. This procedure was
repeated until the area AROC decreases or stalls as the
total number of parameters increases. Because this pro-

cedure is quite time-consuming, a reduction procedure
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was proposed by Sugeno and Yasukawa (1993) that, in
successive steps, only combines the current tissue pa-
rameters of choice with additional tissue parameters that,
during the last step, performed as the best combination of
tissue parameters two steps ago. In other words, if any
combination of N parameters performed worse than the
best combination of N � 1 parameters, the last parameter
of the combination of N parameters is no longer used
during the iterative search for the optimal parameter
combination. In most cases, this reduction was proven
useful because the optimum combination of parameters
could be found with a decreased number of evaluations.
However, this procedure of selecting the optimum set of
tissue parameters is not the best method from a statistical
point of view. The best set of tissue parameters can only
be estimated when every possible combination of tissue
parameters is evaluated and compared with all other
possible combinations. At any rate, the statistically best
method is too time-consuming to be practical. The opti-
mum method that was used in this approach is consid-
ered the best alternative.

The number of ROIs used in this work was rela-
tively high (Table 1). Thus, using up to six tissue param-
eters for the classification procedure was still a safe
approach (Foley 1972; Chan et al. 1997). The distribu-
tions of the tissue parameters used in the classification
procedure could be estimated with a sufficiently low
variance, although the number of ROIs that were com-
pletely independent of each other may be smaller than
the total number of ROIs of this approach, because the
ROIs overlap and because several ROIs usually originate
from the same case.

Fuzzy inference systems
Network-based fuzzy inference systems (FIS) were

used to classify and separate the ROIs into two classes
(negative � benign, positive � malignant). Fundamen-
tals of fuzzy logic and the idea behind this approach were
published by Zadeh (1973, 1989) and Mendel (1995). An
overview of network-based fuzzy inference systems is
given by Jang and Sun (1995). The mathematical back-
ground, especially the learning process of the FIS, is also
described by Jang (1993). The fuzzy inference systems
used in this work are based on first-order Sugeno-type
systems (Sugeno and Yasukawa 1993) with Gaussian
membership functions and up to eight rules to model the
feature space. The number of rules was adaptively cho-
sen by the system (Yager and Filev 1994). Subtractive
clustering, which is an extension of the mountain clus-
tering method proposed by Yager and Filev (1994), was
used as the initial step in the supervised learning proce-
dure to find natural clusters in the data space (Chiu
1994). During this step, the center position of the Gaus-

sians in the feature space was determined. Subtractive
clustering is a realization of the “scatter partitioning”
method described by Jang and Sun (1995). A Sugeno-
type system was chosen because this type of fuzzy in-
ference system is computationally efficient and easily
allows the use of propagation algorithms.

A hybrid, adaptive-training algorithm based on
backpropagation and least-square error estimation with
adaptive step sizes was used to train the system (Jang
1991, 1993). Batch learning was applied to set the width
of the Gaussians and to refine their center position.
Network-based fuzzy inference systems were chosen for
the classification of US data because fuzzy inference
systems can model nonlinear functions of arbitrary com-
plexity and tend to provide satisfying results when con-
sidering generalization performance. During the training
procedure, the best combination of tissue parameters and
the appropriate membership functions were stored in a
rule base, which was used during the evaluation proce-
dure and during further application of the system.

Postprocessing
The fuzzy output maps of the network-based fuzzy

inference systems were transformed into binary maps
applying a separation threshold. The separation threshold
is used to separate the quasicontinuous output vectors
into two classes or target groups. The separation thresh-
old can be chosen freely by the operator because the
implemented system is a quantitative system. The binary
output maps were averaged to provide a mean decision
criterion for the complete parotid gland. The decision
criterion can be scaled according to probabilities for
certain target groups. The classification results of the
system before and after the postprocessing procedure
will be presented and discussed later.

Clinical study
During 3.5 months, between March and July 2004,

US baseband data of 23 parotid glands originating from
18 patients were recorded. The parotid glands were con-

Table 1. Occurrence of different types of parotid gland
tumors and parotid gland alterations during the clinical study

Type of tumor Cases in study Amount of ROIs

Basal cell adenoma 2 1320
Monomorphic adenoma 14 8444
Pleomorphic adenoma 3 1843
Adenoid cyst 1 48
Cyst 1 783
Canaliculous adenoma 1 776
Lymph nodes 1 1357

Sum 23 14571
toured in the US B-mode images using custom software
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to make sure that only signals originating from the
glands and not from surrounding tissue were analyzed.
All patients were scheduled to have parotid surgery dur-
ing the next day or during the next week after acquisition
of the US data.

At the day of the examination, the youngest patient
was 25 years old, the eldest 88 years old. The mean age
of the patients was 65 years, and the median age was 70
years. Over all, 11 of the patients were women and 7
were men. Histopathological examinations after parotid-
ectomy were used as the “gold standard.” (Histologic
analysis is usually accepted as the “gold standard.”) The
results of the histologic examinations are presented in
Table 1.

In this first approach, the system was trained to
differentiate between a first target group containing all
cases of monomorphic adenoma and a second target
group containing all cases of other types of parotid gland
alterations. The second target group contained all non-
monomorphic adenoma types of parotid gland alterations
that occurred during the clinical study, not making any
difference between benign and malignant parotid gland
alterations. The first target group was called “negative”
because the incident of monomorphic adenoma is con-
sidered benign. The second target group was called “pos-
itive” because all other types of tumors and alterations of
the parotid gland would obviously be considered to be
malignant. Even those diseases that are actually of be-
nign nature were counted in the second group, because
they occur too seldom to achieve a high probability for
being considered safe if left untreated.

Table 2. Overview of tissue parameters with initial mean
values (mean) and standard deviations (SD)

Parameter
Negative target group

mean � SD
Positive target group

mean � SD

Contrast �0.1963 � 1.0049 0.2706 � 0.9273
Correlation �0.0527 � 0.6518 0.0726 � 1.3355
Dimension �0.0398 � 0.7528 0.0549 � 1.2617
Variance �0.0509 � 0.7213 0.0702 � 1.2855
Midband value �0.0232 � 1.0532 0.0320 � 0.9207
Slope �0.1710 � 1.0439 0.1241 � 0.9478

Table 3. Overview of interme

Cross-validation set

Intermediate results estimated
over ROIs

A*ROC SE*ROC E*EER

1/4 0.80 0.01 0.73
2/4 0.64 0.02 0.60
3/4 0.65 0.01 0.62
4/4 0.75 0.01 0.68
Mean � SD 0.71 � 0.07 – 0.66 � 0.05
The baseband data sets were divided into numerous
ROIs, as described above, resulting in a sum of 6127
negative and 8444 positive ROIs. An overview of all
different types of tumors and alterations of the parotid
glands analyzed during this study together with their
number of ROIs is shown in Table 1.

RESULTS

Six tissue-describing parameters were automatically
chosen by the classification system. Three parameters
originate from the second-order texture parameter group:
contrast, correlation and dimension. Two spectral param-
eters were chosen: midband value and slope. In addition,
one parameter of the first-order texture parameter group
was included: variance. An overview of the tissue pa-
rameters used in the final classification system, together
with their mean values and standard deviations (SD)
estimated over all data sets, is given in Table 2. The
optimum number of rules of the network-based fuzzy
inference system was iteratively found to be two.

The fuzzy inference system was trained using the
histologic findings as the “gold standard” or “teacher
data.” The fuzzy inference system provides a fuzzy value
for each ROI of the US data set. The fuzzy value is a
measure of the probability of the ROI belonging to the
positive or negative target group.

The area under the ROC curve given as the cross-
validation mean and the cross-validation SD is AROC �
0.95 � 0.07 when using fourfold cross-validation over
cases and differentiating between monomorphic ade-
noma as the first target group and all other types of
parotid gland alterations as the second target group. In
two cross-validation cases, exceptional ideal classifica-
tions of AROC were performed.

Intermediate results were evaluated for comparison
with the final classification results. Without the postpro-
cessing step, which provides the final score for each case,
the area under the ROC curve given as the cross-valida-
tion mean and the cross-validation SD is A*ROC, where
the asterisk simply denotes the “intermediate” status. The
ROC curve area was calculated by continuously varying
the separation threshold (Obuchowski 1997).

nd final classification results

Final results estimated over cases

AROC SEROC EEER

0.96 0.00 0.85
0.83 0.01 0.83
1.00 0.00 1.00
1.00 0.00 1.00
diate a
0.95 � 0.07 – 0.92 � 0.08
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All classification results are presented in Table 3. In
addition to the area under the ROC curve AROC, the stan-
dard error of the ROC estimate SEROC and the equal error
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Fig. 2. ROC curves for cross-validation subset 1 of 4. (—)
Intermediate classification results estimated over ROIs are plotted
as a solid line: A*ROC � 0.80, E*EER � 0.73. (----) Final classi-
fication results estimated over cases are plotted as a dashed line:

AROC � 0.96, EEER � 0.85.
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Fig. 3. ROC curves for cross-validation subset 2 of 4. (—)
Intermediate classification results estimated over ROIs are plot-
ted as a solid line: A*ROC � 0.64, E*EER � 0.60. (----) Final
classification results estimated over cases are plotted as a
dashed line: AROC � 0.83, E*EER � 0.83.
rate EEER are shown in the table. The standard error was
estimated over the number of ROIs involved in the study
(Hanley and McNeil 1982). Because the ROIs are corre-
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Fig. 4. ROC curves for cross-validation subset 3 of 4. (—)
Intermediate classification results estimated over ROIs are
plotted as a solid line: A*ROC � 0.65, E*ERR � 0.62. Final
classification results estimated over cases: AROC � 1.00,

EEER � 1.00.
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Fig. 5. ROC curves for cross-validation subset 4 of 4. (—)
Intermediate classification results estimated over ROIs are
plotted as a solid line: A*ROC � 0.75, E*ERR � 0.68. Final

classification results estimated over cases: A � 1.00,
ROC

EEER � 1.00.
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lated with each other to an undefined degree, the estima-
tions of standard error tend to underestimate the true error.
The equal error rate is the sensitivity or specificity of the
system at the operating point where sensitivity equals spec-
ificity. For the final system, an equal error rate of EEER �
0.92 � 0.08 was achieved. Intermediate results yielded an
equal error rate of E*EER 0.66 � 0.05. Because the classi-
fication procedure applied here represents a continuous
system, sensitivities and specificities can be chosen freely
under dependence of each other, which means that the
operating point of the system can be set to any separation
threshold requested by the operator or physician.

The ROC curves for all four subsets of the cross-
validation experiment are shown in Figs. 2 to 5. In the
figures, the intermediate results estimated over ROIs are
plotted as a solid line and the final classification results
estimated over cases are plotted as a dashed line.

During the clinical study, the diagnoses of an expe-
rienced physician were recorded for each case before the
US data of the cases was processed by the classification
system. The experienced physician achieved a sensitivity
of SEP1 � 0.67 and a specificity of SPP1 � 0.79. How-
ever, because the database is comparably small, the per-
formance of the classification system comparison can
only be rudimentary compared with the results of the
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Fig. 6. ROC curves of “blinded” experiment of two experi-
enced physicians. They reviewed the B-mode images generated
from recorded US data sets without knowledge of the age of the
patients or any other information of the patients’ records. The
probability of monomorphic adenoma had to be judged with a
grade between 1 and 5. The areas under the ROC curves are
AROC,P1 � 0.51 for the first physician and AROC,P2 � 0.60 for

the second physician.
experienced physician. At a sensitivity of SE� 0.67, the
final classification system achieves a specificity of SP �
0.96 � 0.08. At a specificity of SP � 0.79, the final
classification system achieves a sensitivity of SE � 0.98
� 0.04, respectively.

As an additional experiment, two experienced phy-
sicians were asked to review the B-mode images of the
data underlying the study. Both physicians were
“blinded” to all additional information, such as the ages
and the medical records of the patients. The physicians
had to choose one of five possible diagnoses for each
patient:

1. Definitely no monomorphic adenoma
2. Probably no monomorphic adenoma
3. Uncertain
4. Probably monomorphic adenoma
5. Definitely monomorphic adenoma.

Certainly, the setup of the experiment is far from
clinical practice; however, the outcome is interesting
because it is directly comparable with the results of the
system for the computerized differentiation of parotid
gland tumors. From the results of the physicians, two
ROC curves were estimated. Both curves are shown in
Fig. 6. The classification results of the first physician
yield an area under the ROC curve of AROC, P1 � 0.51,
and the classification results of the second physician
yield an area under the ROC curve of AROC,P2 � 0.60,
respectively. Both results are far from the classification
results achieved by the computerized differentiation.

DISCUSSION

Although only a relatively small database consisting
of n � 23 cases was evaluated in this work, the system
for ultrasonic multifeature tissue characterization differ-
entiates between monomorphic adenomas and all other
types of alterations of parotid glands with a satisfying
grade of accuracy. The area under the ROC curve is
AROC� 0.95 � 0.07 when using fourfold cross-valida-
tion methods to evaluate the underlying data. In two of
the four cross-validation cases, exceptional ideal classi-
fications were performed. The classification rates will
possibly increase if a larger database is available. Several
alterations of parotid glands only occurred once during
the clinical study, but a total of 14 cases of monomorphic
adenoma could be counted. The classification system
seems to have learned the typical characteristics of the
monomorphic adenoma sufficiently well. However, a
differentiation between the other types of tumors would
be interesting. This will be evaluated in the future, to-
gether with leave-one-out cross-validation tests, when a
larger database will be available.

The interobserver variability is a problem of con-

ventional B-mode US for the differentiation of diverse
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parotid gland alterations. The interobserver variability
is the dependence of the diagnostic results of the
experience and expert knowledge of the conducting
physician. A highly experienced physician may be
able to detect the features of malignant tumors, but a
novice physician may not be able to evaluate the
echographic properties sufficiently. An ultrasonic tis-
sue characterization system can automate the process
of differentiating between various types of parotid
gland tumors and, hence, may assist to reduce the gap
in diagnostic results between expert and novice phy-
sicians. Because the system evaluates characteristics
of the ultrasonic echo signal that are not shown in
conventional B-mode images or that cannot be visu-
ally interpreted by the person operating the US system,
the system may also be of great help to the expert,
giving additional data in small and polymorphic cases.
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