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The lung is the first site of distant metastases in many cancers
making resection of pulmonary metastases a frequent interven-
tion. Already in 1965, Thomford et al. [1] postulated patient
selection criteria for resection of lung metastases, namely: (1)
controlled primary tumor; (2) R0 resection feasible; (3) no
extra-pulmonary lesions (except resectable liver lesions) and (4)
sufficient functional status. These criteria remained mostly
unchanged until today and validated biomarkers for selection of
truly oligo-metastatic patients are still not available. Nevertheless,
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long-term overall survival is reported in about 20% of the patients
after resection of lung metastases [2], similar to the experiences in
oligo-metastatic liver disease [3].

Based on the promising results of stereotactic body radiother-
apy (SBRT) for early stage non-small cell lung cancer (NSCLC),
the value of SBRT is currently explored in the treatment of
pulmonary metastases. The practice of SBRT for pulmonary
metastases has been mostly adapted from experiences of SBRT
for primary stage I NSCLC [4–6]. Few phase I dose escalation
studies specifically addressed lung metastases and they reported
the safety of irradiation doses similar to primary NSCLC. However,
there is a lack of evidence for which irradiation dose is actually
needed or sufficient to achieve local tumor control in SBRT for
pulmonary metastases. Additionally, it is unknown whether to
adjust the irradiation dose according to the primary cancer. To
address these issues, the working group ‘‘Stereotactic Radiother-
apy” of the German Society of Radiation Oncology (DEGRO)
established a retrospective multi-national and multi-institutional
database of SBRT for pulmonary metastases and stage I NSCLC, in
which >1500 SBRT treatments are recorded.

Materials and methods

This analysis is based on a retrospective multi-institutional and
multi-national database of SBRT for primary stage I NSCLC and lung
metastases. Patients were treated at German, Austrian and Swiss
institutions, mostly academic centers, between 1998 and 2011.
The NSCLC cohort consists of 582 NSCLC patients with clinical
stage IA or IB treated at 13 institutions [7]. The lung metastasis
cohort comprises of 715 patients treated for 964 lesions at 22 insti-
tutions. The analysis was approved by the Ethics committee of the
University Hospital Heidelberg (S-280/2014).

In the current analysis we included only patients with follow-
up periods P6 months and complete information on physical
treatment planning parameters, resulting in 399 NSCLC patients
with one lesion each and 397 metastatic patients with a total of
525 lesions.

The dose calculation algorithm varied between institutions and
over time (unknown 13%; Pencil beam (PB) 36%; Collapsed Cone
(CC) 31%; Anisotropic Analytical Algorithm (AAA) 15%; Monte
Carlo (MC) 5%). The influence of the dose calculation algorithm
on the isocenter dose is substantially smaller compared to the
PTV encompassing dose and we therefore used the isocenter dose
for modeling in this study [8]. The isocenter was located in the
center of the gross tumor volume (GTV) and is approximately the
maximum planning target volume (PTV) dose. Biologically effec-
tive doses (BEDs) were calculated using the linear-quadratic model
with an a/b ratio of 10 Gy. Missing values of the maximum tumor
diameter for 64 (12%) metastatic lesions were estimated with
maximum-likelihood-values from a linear regression model using
the number of fractions, prescribed dose, dose heterogeneity, type
of primary tumor and institution as predictors.

Follow-up for evaluation of local control was performed using
CT imaging in all institutions. Local tumor recurrence was defined
as tumor progression or regrowth in the treated area observed in
CT follow-up. In cases of uncertainties to differentiate between
local tumor recurrence and pulmonary fibrosis, FDG-PET imaging
was performed with local failure defined as increased FDG uptake
Local progression was captured separately to distant progression in
the database.
Statistical analysis

Tumor control probability (TCP) was defined as the probability
that no clonogenic cell survives the treatment. For generic lesion i,
a binomial response variable yi was specified such that yi ¼ 1 if
local control was achieved at last follow-up and yi ¼ 0 if not. TCP
for lesion i was then modeled using Bayesian logistic regression
in which the regression parameters are assumed to follow a weakly
informative prior t-distribution with one degree of freedom and
scale 2.5 [9]:

TCPi � Prðyi ¼ 1Þ ¼ logit�1 aþ
XK
k¼1

bkxk

!

K is the number of predictors. All input variables used for the
regression were standardized to have mean 0 and standard
deviation 0.5 in order to make the magnitude of the regression
coefficients bk comparable and more easily interpretable [10].

To find the dose–response model that best fits the metastases
data we compared different logistic regression models using the
second-order bias corrected Akaike Information Criterion (AICc)
from which evidence ratios giving the relative probability of
one model versus the other can be estimated [11]. To compare
dose–response curves between primary NSCLC and metastatic
tumors, both datasets were combined and the tumor entity (NSCLC
or metastasis) and its interaction with BEDISO as predictors were
included into the dose–responsemodel. This methodology is equiv-
alent to fitting two different regression lines with different inter-
cepts and slopes to the NSCLC and metastatic data, respectively.

For a more thorough analysis including the influence of the pri-
mary tumor site on the dose–effect relationship in the metastatic
group, a multilevel/hierarchical logistic regression model was
used, in which the slope and intercept are allowed to vary by pri-
mary cancer site of the metastases [12]. This generated an average
dose–response relationship for metastases as well as a dose–
response relation separately for each primary tumor site. The
multilevel model considers the uncertainty associated with small
group sample sizes by pulling the regression coefficients more
toward the average estimates that would be obtained by
performing regression on all groups pooled together (see Appendix
for more details).

Model fitting was done using R version 3.0.2 together with the
arm package.

Results

Both patient cohorts are compared in Table 1. Median tumor
diameter was 2.6 cm (0.8–4.8) and 1.9 cm (0.4–9.0) for patients
with primary NSCLC and pulmonary metastases, respectively
(p < 0.0001). Tumor diameter was missing for 47% (primary NSCLC)
and 12% (metastases) of the lesions. Median follow-up was 19
months (6–139; primary NSCLC) and 16months (6–125; metastases)
(p = 0.15). A large range of irradiation doses and fractionations
was used for primary NSCLC and pulmonary metastases. Most
treatments were planned with inhomogeneous dose distributions:
PTV encompassing doses were most frequently 80% (31% of all
SBRT treatments), 65% (28%) and 60% (24%) of the maximum
dose. BED doses at the isocenter were significantly lower in the
metastases cohort compared to the primary NSCLC cohort, whereas
PTV encompassing BED doses were not different between the
cohorts. The distribution of SBRT doses is illustrated in Fig. 1.

Biopsy confirmation of the treated lung lesion was performed in
86% and 21% of patients in the NSCLC and pulmonary metastases
cohort, respectively. Most frequent primaries of lung metastases
were NSCLC (28%), colorectal cancer (CRC) (25%) and renal cell can-
cer (RCC) (11%). Information on chemotherapy prior to SBRT was
available in 89% (n = 352) of the metastatic patients, of whom
49% (n = 173) had received chemotherapy. Information on the
number of additional metastases was available in 76% (n = 302)
of the patients. Of these, 52% (n = 157) had a solitary metastasis,
21% (n = 63) had one additional metastasis and 27% (n = 82)



Table 1
Patient and treatment characteristics in this study. Two-sided p-values have been estimated through Wilcoxon rank sum test and v2-test for continuous and discrete variables,
respectively.

Primary NSCLC (N = 399) Pulmonary metastases (N = 397
with 525 lesions)

p-Value

Number Median (range) Number Median (range)

Age [years] 399 72 (31–92) 397 67 (15–99) <0.0001
Baseline Karnofsky Index 373 80 (40–100) 294 90 (40–100) <0.0001
Gender
Male 282 266 0.30
Female 117 131

Maximum tumor diameter [cm] 210 2.60 (0.80–4.80) 461 1.90 (0.4–9.0) <0.0001
Tumor location 374 452 0.45
Peripheral 316 372
Central 58 80

Local control 399 525
Yes 350 455 0.71
No 49 70

Number of fractions 399 3 (1–17) 525 3 (1–12) 0.005
Prescribed (PTV encompassing) dose [Gy] 399 12.5 (2.9–33.0) 525 12.5 (3.0–32.3) 0.06
Maximum (isocenter) dose [Gy] 399 20.8 (3.1–41.2) 525 20.0 (3.3–38.4) 0.45
BED at PTV periphery (BEDPTV) [Gy] 399 84.4 (38.3–180) 525 84.4 (22.5-180) 0.19
BED at isocenter (BEDISO) [Gy] 399 168.2 (48.0–262.5) 525 138.1 (24.3-288.3) <0.0001
Dose inhomogeneity (PTV periphery dose/maximum dose) [%] 399 65 (60–100) 525 78 (55-105) <0.0001
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patients P2 additional metastases. In the majority of patients
(144/194 patients for which this information was available) the
additional metastases were also located in the lung. Local control
was achieved in 350 (87.7%) and 455 (86.7%) of the primary and
secondary lung tumors, respectively.

In order to determine the model, which describes tumor control
of the metastases data best, it was assumed that TCP is mainly
influenced by the irradiation dose BED and the maximum tumor
diameter d. Accordingly, four different models model_1–model_4
were evaluated (Table 2): (model_1) constant b0 (constant effect
independent of dose); (model_2) BEDISO; (model_3) BEDISO and d;
(model_4) BEDISO, d and an interaction BEDISO � d between BEDISO

and d. There was a strong dose–response relationship when using
BEDISO as an input variable. Furthermore, the evidence for model_2
is slightly higher than for models model_3 and model_4, indicating
that inclusion of tumor size into the model does not improve
the fit. We repeated the model comparison using exclusively the
461 lesions with known tumor diameter and obtained results
consistent with Table 2.

Datasets of the primary NSCLC and the metastatic patients were
combined into one and tumor entity (primary NSCLC versus metas-
tases), BEDISO and an interaction term were included in the Baye-
sian logistic regression model. The regression coefficients for
tumor entity and BEDISO � tumor entity interaction were
�0.14 ± 0.22 (SE) and 0.12 ± 0.45, respectively, indicating no signif-
icant differences of the dose–response between primary NSCLC
and lung metastases.

Additionally, two separate models were fitted to the primary
NSCLC and metastases data (Table 3 and Fig. 2). The BEDISO

TCD90 (the dose to achieve 90% TCP) median point estimates and
95% credible intervals were 160 Gy (123–237) for the metastatic
cohort and 176 Gy (151–223 for the primary NSCLC cohort, respec-
tively. Thus, primary NSCLC may require slightly higher irradiation
doses compared to metastases, although the estimates overlap
within their standard errors and differences were not statistically
significant. For the metastases of NSCLC origin the estimate for
BEDISO TCD90 was 167 Gy (100–249), again not significantly
different to primary NSCLC.

In the multilevel model, dose–response relationships were
fitted separately for each of the eight most frequent primary cancer
sites using BEDISO as both the within-group and between-group
predictor [12]. This simultaneously generated a dose–response
relationship for an average metastasis as well as the deviation from
this relation for each primary cancer site (Fig. 3; Table 3). Although
all TCP curves were very similar above a BEDISO J 150 Gy, results
do not exclude variations by primary cancer site in the lower dose
range: metastases of breast cancer, RCC, esophagus carcinoma and
sarcoma appeared to follow a shallower dose–response
relationship than NSCLC or other metastases.

Finally, Bayesian logistic regression was used to compare
dose–response curves of the three metastatic subgroups with the
largest sample sizes (NSCLC n = 148; CRC n = 133; RCC n = 56). No
statistically significant differences between the dose–response
curves were detected; there was only a trend for RCC metastases
having a more shallow dose–response curve compared to NSCLC
metastases (p = 0.10).
Discussion

The current study has two main findings. (1) There were no sig-
nificant differences in tumor control probability models between
primary NSCLC and secondary NSCLC, between primary NSCLC
and secondary lung tumors in general and between pulmonary
metastases of various solid cancers. (2) TCD90 values were below
maximum tolerated doses, which may form the rational for dose
de-escalation trials especially in metastatic stage of disease.

From a radiobiological perspective, this large multi-institutional
study based on >1500 SBRT treatments offered the unique oppor-
tunity to perform tumor control probability modeling of cancers
independently from their original host (micro-) environment and
mostly independently from tumor volume. Despite some variabil-
ity in the TCP curves was observed in the lower-dose region, TCD90
values for primary NSCLC, secondary NSCLC and pulmonary
metastases in general differed by <10% and differences did not
reach statistical significance. Consequently, our analysis does not
support the hypothesis that SBRT irradiation doses need to be
adapted to primary tumor site.

A number of mostly small, retrospective and single-institution
studies about SBRT in the metastatic setting has been published.
The majority of authors, however, report on heterogeneous patient
collectives regarding primary tumor, number and location of
metastases e.g. liver, bone, adrenal and other metastases. Several
studies described a dose–response relationship for local tumor
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Table 2
Each cell gives the ratio of the likelihood of the model on top of the column to the
likelihood of the model on the left of the corresponding row, also termed the evidence
ratio. Evidence ratios can be interpreted such that values above 3 start to indicate
positive strength of evidence in favor of one model over the other: (�) Insignificant
differences (ratio <3); (+) Strong evidence in favor of one model compared to the
other (ratio >20); (++) Very strong evidence in favor of one model compared to the
other (ratio>100).

M1 M2ðBEDISOÞ M3ðBEDISO;dÞ M4ðBEDISO;dÞ
M1 1 514(++) 273(++) 161(++)

M2ðBEDISOÞ 1.9 � 10�3 1 0.53 0.31
M3ðBEDISO;dÞ 3.7 � 10�3 1.9(�) 1 0.59
M4ðBEDISO;dÞ 6.2 � 10�3 3.2 1.7(�) 1
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control [13–16]. However, patient numbers and statistical methods
were insufficient for comprehensive TCP modeling. Most
importantly, all existing studies were too small for a modeling of
primary cancer specific dose–response relationships. While some
studies reported decreased local tumor control for CRC metastases
[17–20], this was not confirmed by others [13,21,22]. The current
analysis includes the largest number of CRC lung metastases
treated with SBRT (n = 133) but did not find a difference in the
dose–response relationship as compared to lung metastases of
other primaries.

The finding of very similar TCP dose–response relationships
between lung metastases originating from various primary cancer
sites and between primary and metastatic cancer is surprising
considering the genetic variability, which is expected in our patient
cohort. This genetic variability, however, does not appear to influ-
ence radio-sensitivity in the context of hypo-fractionated SBRT. It
is important to note that we only had information about the clas-
sical histo-pathological diagnosis. More in-depth data about
molecular tumor characteristics are lacking. This may be important
based on a recent study by De La Rosa et al., where EGFR mutation
and ALK translocation were independent prognostic factors for
local control after radiosurgery for brain metastases in NSCLC
patients [23].

Until today, the practice of SBRT for lung metastases has fre-
quently been adapted from experiences of SBRT for primary stage
I NSCLC. There, the maximum tolerated dose is based on a phase
I dose escalation study, which established an accepted interna-
tional standard: three fractions of 18 Gy as PTV encompassing dose
with PTV maximum doses of 20–30 Gy [24]. Three dose escalation
studies have been performed in the oligo-metastatic setting
[25–27] and maximum tolerated SBRT doses appear similar com-
pared to primary NSCLC. However, it is questionable whether the
maximum tolerated dose is truly the best practice in the metastatic
setting. The average number of metastases was 1–2 in all three
phase I trials. However, many oligo-metastatic patients present
with >1–2 pulmonary lesions and safety of SBRT in this setting
remains unknown. Additionally, many patients will develop
distant progression and the lung is the most frequent organ for
recurrence [28]: if still oligo-metastatic, safety of another SBRT
course might be compromised if the maximum tolerated dose



Table 3
Sample sizes and regression coefficients corresponding to the multilevel model fitted to the pulmonary metastases cohort as well as for the primary NSCLC cohort. Note that the
regression coefficients have been estimated with BEDISO standardized to have mean 0 and standard deviation 0.5.

Sample Primary cancer site Sample size Number with local control BEDISO [Gy] b0 b1 [Gy�1] BEDISO TCD90 [Gy]

MET Breast 33 32 138.1 (41.7–219.4) 2.15 ± 0.14 0.52 ± 0.46 151
NSCLC 148 123 137.8 (60.0–288.3) 1.84 ± 0.09 1.51 ± 0.29 167
CRC 133 115 141.1 (44.9–262.5) 1.97 ± 0.11 1.09 ± 0.33 162
RCC 56 51 120.7 (40.8–262.5) 2.14 ± 0.12 0.57 ± 0.39 151
Sarcoma 20 14 144.3 (24.3–206.4) 1.92 ± 0.13 1.24 ± 0.42 165
Esophagus 15 14 138.1 (76.2–219.4) 2.13 ± 0.15 0.59 ± 0.49 151
Melanoma 15 13 154.9 (112.3–262.5) 2.02 ± 0.16 0.95 ± 0.51 161
Others 105 93 138.1 (52.7–262.5) 2.07 ± 0.11 0.78 ± 0.36 159
Average 525 455 138.1 (24.3–288.3) 2.04 ± 0.17 0.89 ± 0.39 160

NSCLC 399 350 168.2 (48.0–262.5) 2.11 ± 0.17 1.28 ± 0.33 176
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Fig. 2. (a) Dose–response relationship of the metastatic (black) and primary NSCLC (blue) cohort. The crosses show the proportion of metastatic lesions for which local
control was achieved in six equally sized bins. The bin width is indicated by the horizontal bars, while the vertical bars show the adjusted 95% Wald confidence interval. (b)
Kaplan–Meier curve showing local tumor control for primary NSCLC with irradiation doses <TCD90 and PTCD90. (c) Kaplan–Meier curve showing local tumor control for
lung metastases with irradiation doses <TCD90 andPTCD90. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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has already been delivered because there is limited recovery of
lung tissue from previous irradiation. Finally, maximization of local
tumor control beyond 90% is questionable in a clinical situation
with high competing risk of distant progression.

In our metastatic cohort, the plateau of the dose–response curve
with 90% TCP was reached at 160 Gy BED (PTV maximum dose).
This dose was delivered in a median of 3 fractions. For a three-
fraction protocol, our dose recommendation is equivalent to
3 � 18.7 Gy as maximum PTV dose. Using the RTOG planning con-
straints, this results in PTV encompassing doses of 11.2–16.8 Gy
(60% – 90% of maximum dose). Consequently, 90% TCP is achieved
at irradiation doses 7–38% and 10–53% below the current standard
(3 � 18 Gy PTV encompassing) based on physical and biologically
effective doses, respectively. Our study may therefore form the
basis for dose de-escalation trials in the future, especially in the
metastatic setting because of the high competing risk of distant
progression.

Limitations of our study include the neglect of factors besides
dose and tumor size that might influence local control, and the
assumption of an a/b ratio of 10 Gy for all metastases independent
of their origin when computing BEDs. The applicability of the LQ
model is discussed controversially for calculation of BED in high
dose per fraction SBRT. However, we have previously demon-
strated that local tumor control in fractionated SBRT for primary
NSCLC is well modeled using the classical LQ formula [29]. Further-
more, sample sizes of the metastases subgroups might have been
too small to detect small differences in dose–response relation-
ships. The retrospective nature is an obvious limitation but it
simultaneously generated a cohort with large variability of irradi-
ation doses, which is a pre-requisite for dose–response modeling
as performed in our study. Finally, patients treated for secondary
lung tumors are at increased risk for systemic progression
compared to patients treated for stage I NSCLC. Local and systemic
progression was captured as separate variables in our database. In
the primary NSCLC and metastatic patient cohorts, follow-up for
evaluation of local control was further assessed after detection of
systemic progression in 60% and 55% of the cases, respectively,
indicating no systematic difference in the follow-up practice.

Concluding, in this largest study of SBRT for primary and sec-
ondary lung tumors, a clear dose–response relationship for local
tumor control was observed. No significant differences in TCP
dose–response relationships according to primary and secondary
lung cancer and according to different primary cancer sites in the
metastatic cohort were observed. We therefore suggest not adapt-
ing the irradiation dose to the primary cancer site in SBRT for oligo-
metastatic lung disease. TCD90 for both primary and secondary
lung tumors were lower than currently used maximum tolerated
doses, which could form the rational for dose de-escalation trials
in the future, especially for secondary lung tumors with a high
competing risk of systemic progression.
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Appendix A

The multilevel logistic regression model may be written as,

TCPi � Prðyi ¼ 1Þ ¼ logit�1ðaj½i� þ bj½i�BEDISO;iÞ

where j ¼ 1; . . . ;8 is the group index denoting the primary metasta-
sis site, i ¼ 1; . . . ;n the index for the treated metastasis, and j½i�
codes the group membership. For example, it is j½20� ¼ 3, meaning
that metastasis number 20 stems from primary site ‘‘3” (colorectal
cancer). Both the intercept a and the slope b are allowed to vary
across the different groups and are estimated for each group sepa-
rately using BEDISO as the individual-level predictor, but not by
using least squares as would be the case if a separate regression
model would be fitted for each group individually. Instead, the
aj’s and bj’s are assigned a probability distribution

aj

bj

!
� N

la

lb

 !
;

r2
a qrarb

qrarb r2
b

!!
; for j ¼ 1; . . . ;8
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with the means, variances and between-group correlation parame-
ter q estimated from the data. In this way, the estimates for aj and
bj are pulled toward their mean estimates, but to different extents,
basically depending on how many observations there are in each
group [12].

Compared to using different groups directly as predictors in the
logistic regression model (and thus performing regression in each
group separately), the multilevel model thus has the advantage
that it automatically takes care of the uncertainty associated with
small group sample sizes by pulling the regression coefficients
more toward the estimates that would be obtained by performing
regression on all groups pooled together. For groups with large
sample size, on the other hand, the regression coefficients are close
to those that would be obtained when regression would be per-
formed on these groups separately.

There is basically no lower limit for the number of observations
in each group required to fit a multilevel model – even two data
points can provide partial information that allows estimation of
the coefficients and variance parameters of the individual- and
group-level regressions [12].
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