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ABSTRACT

Most acoustic levitation techniques are limited to objects smaller than half the wavelength. To overcome this limit, different strategies have
been proposed for suspending macroscopic objects in mid-air. Two approaches to levitate spherical and non-spherical macroscopic objects
have been recently presented: the acoustical virtual vortices and the boundary hologram method. However, the former approach places
high demands on the available hardware due to the mandatory high switching rate while the latter uses a computationally expensive model
that prevents future real-time manipulation. In the present work, we demonstrate the single-beam levitation of a Mie sphere using a 2D
transducer array. To achieve this, we employ a computationally fast sound field model based on spherical harmonics expansion. To obtain a
suitable array output, we formulate an optimization problem that maximizes the stability of the sphere while keeping the net force balanced.
In addition, we prove the local asymptotic stability for the equilibrium position and determine a domain of attraction using Lyapunov-based
methods. In experiments, we show that the macroscopic sphere is stably levitated in a twin tuning forks trap, which results from a superpo-
sition of two twin trap signatures and a bottle trap signature. This result could open up the possibility of a computationally fast and
convenient non-contact manipulation of macroscopic objects by a superposition of holographic elements in future applications.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0037344

I. INTRODUCTION

When a sound wave impinges on the surface of an object, it
exerts an acoustic radiation pressure on it.1 In general, the radiation
pressure is weak, but if the wave intensity is increased considerably,
the resulting radiation force can be strong enough to counteract the
gravitational force and levitate small particles in mid-air. The use
of sound waves for suspending objects in mid-air is called acoustic
levitation.2–5 One of the most interesting features of acoustic levita-
tion is that it can be used to trap a wide variety of materials, such
as solids,6 liquids,7–9 soap bubbles,10 and small living creatures.11,12

Acoustic levitation has also numerous potential applications in
biology,13–15 chemistry,16 pharmacy,17,18 and microassembly.19,20

Different strategies have been proposed for suspending objects.
The most common approach traps objects much smaller than the
acoustic wavelength at the pressure nodes of a standing wave field,
which can be generated either by a device consisting of a transducer
and opposing reflector,21–23 between two opposing transducers24 or

arrays of transducers.25,26 Another approach uses ultrasonic beams
generated by a single-sided array of transducers to trap small objects
in mid-air.27 In contrast to devices based on standing waves, acoustic
levitation based on single beams does not require the object to be
confined between opposing acoustic elements.

However, most acoustic levitation techniques are limited to
objects that are smaller than half the wavelength. In order to
overcome this limit, different strategies have been proposed for levi-
tating objects larger than the acoustic wavelength. For instance, the
near-field acoustic levitation method28,29 was used to levitate large
planar objects closely above a surface that is vibrating at an ultrasonic
frequency. However, the maximum levitation height for this techni-
que is on the order of tens of micrometers. It is also possible to levi-
tate an object larger than the wavelength by generating a standing
wave field between transducer and object, in which the object levitates
at a distance of approximately half the wavelength from the trans-
ducer surface.30–32 Another approach for levitating large spherical
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objects uses an array of transducers for generating virtual vortices of
high aperture.33 Recently, Inoue et al.34 have proposed the boundary
hologram method to levitate large non-spherical objects. They com-
bined an optimization algorithm with the boundary element method
to find the optimal phase angles of an array of transducers. This
method provides not only a restoring force to trap the object in posi-
tion but also a restoring torque to trap the object, e.g., a regular octa-
hedron made of polystyrene, in orientation. However, the boundary
hologram method uses a computationally expensive model that pre-
vents future real-time manipulation of macroscopic objects while the
method of acoustic virtual vortices places high demands on the avail-
able hardware due to the mandatory high switching rate.

In the present work, we demonstrate the acoustic levitation of
a Mie sphere, i.e., the sphere size and the wavelength have the same
order, using a 2D array of ultrasonic transducers. A numerical
approach based on spherical harmonics expansion35 simulates
the acoustic radiation force acting on the sphere, whereas an
optimization-based algorithm is used to find the emission phase of
each transducer. The method offers a remarkable and potentially
real-time alternative for levitating and manipulating macroscopic
objects in mid-air. This article is structured in six sections. After an
introduction to the sound field model (Sec. II A) and the calculation
of the acoustic radiation force (Sec. II B), we present a dynamic
model to describe the translational motion of the sphere (Sec. III A).
Subsequently, we state an optimization-based approach to determine
a suitable array output for a static levitation (Sec. III B), followed by
a detailed analysis of the stability of the equilibrium and its domain
of attraction (DoA) using Lyapunov-based methods (Sec. III C).
After a presentation of our hardware used for the experiments
(Sec. IV), we discuss our results (Sec. V). Finally, we give an outlook
on further research that is linked with the present work (Sec. VI).

II. ACOUSTIC RADIATION FORCE ON A SPHERE
GENERATED BY A TWO-DIMENSIONAL ARRAY

For the calculation of the acoustic radiation force we employ,
with minor modifications for the transducer model, the approach
of Andersson and Ahrens.35 This approach based on the work
of Sapozhnikov and Bailey36 is tailored to phased arrays and
offers notable advantages for numerical optimization, see also
Secs. III B and V.

A. Sound field generated by the phased array

The incident sound field pi that affects an object exposed to it
can be calculated by a spherical harmonics expansion as37

pi(r) ¼
X1
n¼0

Xn
m¼�n

jn(kr)S
m
n Y

m
n (θ, w), (1)

where jn(kr) are the nth order spherical Bessel functions of the first
kind and the wave number is given as k ¼ ω=c, where c denotes the
speed of sound and ω is the angular frequency. The position vector
r ¼ xex þ yey þ zez from the center of the levitated sphere to a
point in Cartesian space can be expressed in spherical coordinates

(r, θ, w) with the relations

x ¼ rsin(θ)cos(w),

y ¼ rsin(θ)sin(w),

z ¼ rcos(θ),

(2)

where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, r [ Rþ denotes the Euclidean

distance, θ ¼ arccos z=rð Þ, θ [ 0, π½ � the polar angle and
w ¼ atan2(y, x), and w [ �π, πð � the azimuth angle. Moreover, Smn
are the expansion coefficients and the time dependency e�iωt is
implicit, where i denotes the imaginary unit. The spherical har-
monic bases Ym

n are defined as

Ym
n (θ, w) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1
4π

(n�m)!
(nþm)!

s
Pm
n (cos(θ))e

imw, (3)

where the associated Legendre polynomials Pm
n (x) are related to the

Legendre polynomials Pn(x) by the formula37

Pm
n (x) ¼ (� 1)m(1� x2)

m=2 dm

dxm
Pn(x): (4)

Similar to Eq. (1), the scattered sound field is given as

ps(r) ¼
X1
n¼0

Xn
m¼�n

hn(kr)Ŝ
m
n Y

m
n (θ, w), (5)

where hn(kr) ¼ jn(kr)þ iyn(kr) are the nth order spherical Hankel
functions of the first kind and yn(kr) are the spherical Bessel func-
tions of the second kind. Since the incident and scattered waves are
calculated in the frequency domain, the model does not consider
time delays when the sphere moves with a finite velocity such as
that considered by Rudnick and Barmatz.38 For compressible
spheres, the coefficients Ŝmn ¼ cnSmn are39

Ŝmn ¼ � jn(k0a) j0n(kpa)� eZ j0n(k0a)jn(kpa)

hn(k0a) j0n(kpa)� eZh0n(k0a)jn(kpa)
Smn , (6)

where a is the radius of the sphere, eZ ¼ (ρ pc p)= ρ0c0ð Þ is the
relative impedance, and the prime 0 indicates the derivative of a
function with respect to its argument. In addition, the subscripts 0
and p of the speed of sound c and the density ρ denote the
medium and the material of the sphere, respectively. For sound-
hard or sound-soft surfaces, the corresponding formulas for the
coefficients Ŝmn are given in Gumerov and Duraiswami (p. 146).40

Andersson and Ahrens35 have shown that the expansion coeffi-
cients Smn can be written as sum of coefficients jSmn from each trans-
ducer as

Smn ¼
X
j

jSmn ¼
X
j

1
jn(kr0)

ð
Γ
pj(r)Ym

n (θ, w)
* dΓ (7)

if the sound pressure field is created by a discrete transducer array.
In Eq. (7), r0 is the radius of the spherical integration surface Γ and
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the superscript * indicates the complex conjugated element. For the
elements of the transducer array, we employ a single-frequency
piston source model in the far-field that is given as

p j(r) ¼ q j

jr � r jjDf (ξ
j)eikjr�r j j, (8)

where r is the position in which the pressure is calculated and r j

denotes the position of transducer j. Its source strength q j ¼ Ajeif
j

is determined by the amplitude Aj and the phase angle f j. The
directivity function Df (ξ

j) of the transducer is taken as

Df (ξ
j) ¼ 2J1(krpsin(ξ

j))

krpsin(ξ
j)

, (9)

where J1 is the first-order Bessel function of the first kind, rp is the
piston radius, and ξ j denotes the angle between the transducer
normal n j and the vector r � r j. Since the expansion coefficients
jSmn are known for point sources, we adapt the solution by
Williams, Eq. (8.22)37 to Eqs. (8) and (9) and employ

jSmn ¼ q j4πikhn(kr
j)Ym

n (θ
j, w j)

*
Df (ξ

j) (10)

for the region r , r j as the solution of Eq. (7) for the computation
of the expansion coefficients jSmn of the sound field model for each
transducer.

B. Acoustic radiation force on a sphere

To calculate the acoustic radiation force Fac(r) ¼ Fxex
þFyey þ Fzez for the model of the sound pressure field in Sec. II A,
we utilize the equations obtained by Andersson and Ahrens35 that
are given as

Fx ¼ 1
8ρ0c

2
0k2

<
X1
n¼0

Xn
m¼�n

ΨnA
m
n G

m
n

( )
, (11)

Fy ¼ 1
8ρ0c

2
0k2

=
X1
n¼0

Xn
m¼�n

ΨnA
m
n H

m
n

( )
, (12)

Fz ¼ 1
8ρ0c

2
0k2

<
X1
n¼0

Xn
m¼�n

ΨnB
m
n Smn S

m
nþ1

*� �( )
, (13)

where < �f g and = �f g denote the real and imaginary parts of the
argument, respectively. In addition, the coefficients Ψn, Am

n , B
m
n ,

Gm
n , and Hm

n are given as

Ψn ¼ 2i cn þ c*nþ1 þ 2cnc
*
nþ1

� �
, (14)

Am
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(nþmþ 1)(nþmþ 2)

(2nþ 1)(2nþ 3)

s
, (15)

Bm
n ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(nþmþ 1)(n�mþ 1)

(2nþ 1)(2nþ 3)

s
, (16)

Gm
n ¼ Smn S

mþ1
nþ1

* � S�m
n S�m�1

nþ1
*

� �
, (17)

Hm
n ¼ Smn S

mþ1
nþ1

* þ S�m
n S�m�1

nþ1
*

� �
: (18)

For the calculation of the spatial derivatives, one can use either the
equations given in Gumerov and Duraiswami (Chap. 2)40 or
employ a numerical approximation as

@Fa(r)
@a

¼ lim
h!0

Fa(r þ eah)� Fa(r � eah)
2h

(19)

for small values h, where ea denotes the unit vector of the
Cartesian axis a [ x, y, zf g. Regarding the optimization in
Sec. III B, the derivatives of the radiation force with respect to the
phase angles f can be obtained by using

@Smn
@f j ¼ i jSmn : (20)

For implementation purposes, the infinite sums in Eqs. (11)–(13)
have to be truncated to a certain order N . Its choice involves a
trade-off between the accuracy of the calculation and the compu-
tational effort, which particularly plays a role in future real-time
applications. To ensure an upper limit of the absolute error ϵ of
the acoustic radiation force Fac(r), we employ the formula by
Gumerov and Duraiswami (p. 432)40 for the approximation of
order N as

N ¼
σ kað Þ*, ka � (ka)*,

kaþ 1
2 3 ln 1

ϵσ

� �� �2
3(ka)

1
3, ka . (ka)*,

(
(21)

where σ ¼ d=a, d is the radial distance from the center of the
sphere, and the threshold value kað Þ* is given by

kað Þ*¼
3

23=2(σ � 1)3=2
ln

1
ϵσ

� �
: (22)

Additional formulas for the approximation of N are given in
studies of Andersson and Ahrens35 and Xu et al.41

III. DYNAMIC MODEL, OPTIMIZATION APPROACH,
AND STABILITY ANALYSIS

A. Dynamic model

The translational movement of a sphere in an acoustic field
can be described by the nonlinear state space model

_x ¼ f 1 xð Þ
f 2 xð Þ

	 

¼ v

M�1 Fac(r)þ Fd(v)þ Fg
� �	 


, (23)
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where the state vector x ¼ r`v`½ �` contains the position r and
velocity v ¼ vxex þ vyey þ vzez of the sphere, Fac(r) is the exerted
acoustic radiation force, and Fg ¼ �mgez the gravitational force
that acts on the sphere, whose mass is m ¼ 4

3 πρpa
3 and the

mass matrix M ¼ diag(m), M [ R3�3. For the drag force
Fd(v) ¼ Fd,xex þ Fd,yey þ Fd,zez , we employ the formula used by
Fushimi et al.42 as

Fd(v) ¼ � 1
2Cdπa2ρ0 vk k2v, R . 0,

0, R ¼ 0,

�
(24)

where vk k2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y þ v2z

q
and Cd ¼ 24

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

16R
q

. The Reynolds

number R is calculated by R ¼ 2a vk k2ρ0
μ , where μ . 0 denotes the

kinematic viscosity of the fluid. Since typical Reynolds numbers
for our experiments ranges from 0 to 100, a nonlinear damping
model was chosen instead of a linear model based on Stokes law.
The system in Eq. (23) has an equilibrium at xe ¼ r`e 0

1�3
� `

if
the condition Fac(re) ¼ �Fg at re ¼ xeex þ yeey þ zeez is met.
Defining bx ¼ x � xe, the system is represented with the new state
vector bx as

b_x ¼ g1 bxð Þ
g2 bxð Þ

	 

¼ f 1 bx þ xeð Þ

f 2 bx þ xeð Þ
	 


, (25)

which has an equilibrium point at the origin bx ¼ 0.

B. Optimization approach

For a successful levitation of the sphere at a given position re,
the net force as well as the net moment must be zero. In addition,
restoring forces and torques should be generated to deal with trans-
lational and rotational perturbations of the macroscopic object.34

Unfortunately, the fast method of holographic acoustic elements by
Marzo et al.27 cannot be used to calculate a suitable array output
because it is only applicable to Rayleigh spheres, i.e., the particle
size is much smaller than the acoustic wavelength. Moreover, a sin-
gular value decomposition (SVD) recently applied by Helander
et al.43 is also not feasible since there is no linear relation between
the source strengths q j and the acoustic radiation force. Hence, the
array output has to be determined by solving a nonlinear optimiza-
tion problem, where usually the amplitude Aj of each transducer is
kept constant and the phase angles f j are solely used as optimiza-
tion variables.27,41

In order to create more complex sound fields, the simultane-
ous optimization of the amplitudes Aj and phase angle f j as well
as the transducer frequency f j was investigated in the studies of
Andersson and Ahrens44 and Puranen et al.45 However, the
choice of optimization variables always depends on the available
hardware since for many arrays one can only adjust the phase of
the transducers, see also Table 1 in the work of Zehnter and
Ament46 for a brief overview. Furthermore, additional variables
increase the complexity of the optimization problem which has a
negative impact on real-time applications. Since an exclusive
optimization of the phase angle vector f is sufficient in our case,
we formulate an optimization problem similar to Inoue et al.,34

as we employ the objective function

min
f

J(f) ¼
X
i[C

wi Fi(f)� Fe,ið Þ2þvi< λi(f)f g: (26)

The function consists of two terms: the weighted mean
squared error between the acoustic radiation force F(f) and an
external force Fe for each Cartesian axis C ¼ x, y, zf g ensures that
the latter acts on the sphere at a given position re. For static levita-
tion, typically Fe ¼ �Fg ¼ mgez is chosen. In the context of
dynamic applications, Fe can also be provided by a higher-level
open or closed-loop controller to implement a motion request
along a desired trajectory. Examples of this hierarchical controller
structure can be found in the studies of Zemánek et al.47 and
Matouš et al.48 Regarding the second term, similar to the studies of
Inoue et al.34 and Xu et al.,41 we suppose that the equilibrium posi-
tion re (br ¼ 0) is located in a small region B # R3 where the first-
order expansion of the Taylor series is valid. Consequently, the
translational motion of the sphere for bx [ B can be approximated
by the linear system

b_rb_v
	 


¼ 03�3 I3�3

A3�3 03�3

	 

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

As

brbv
	 


, As ¼
g1(@bx)
@bx

g2(@bx)
@bx

264
375
�������bx¼0

, (27)

that results from the nonlinear model in Eq. (25) by a linearization
at the equilibrium point bx ¼ 0 near which the assumption bv � 0 is
valid. Thus, the linear dynamics in Eq. (27) is mainly determined
by its subsystem

b_v ¼ b€r ¼ Abr, A ¼ M�1@Fac(br)
@br

����br¼0

: (28)

By minimizing the real parts of λ(f) ¼ eig A(f)f g, a placement of
the eigenvalues λ(f) on the negative real axis is enforced to
achieve local asymptotic stability at the position re. In addition to
stability, the term < λi(f)f g in Eq. (26) plays an important role for
the generation of appropriate restoring forces to deal with transla-
tional perturbations of the sphere.

Similar to the study of Inoue et al.,34 we employ positive
hyper-parameters wi and vi in the objective function in Eq. (26) to
tune the importance of supporting and restoring forces, respec-
tively. A careful adjustment of these weights is essential since the
acoustic radiation force F(f) is typically in the range of several μN
to mN, whereas the eigenvalues λ(f) are scaled by the term (1=m),
see Eq. (28). It is also noteworthy that these two terms represent
contradictory objectives. Thus, a high overweight of one term often
leads to the case that the other term is weakly regarded during opti-
mization to achieve an overall better minimum of the objective
function J(f). Hence, we have observed in experiments that these
results often lead to deviating or even unstable equilibria.
Therefore, we presume that for each Cartesian axis i [ x, y, zf g, a
balanced weighting of the corresponding terms in Eq. (26), ensured
by each pair (wi, vi) of hyper-parameters, strongly favors the
quality of the obtained optimization results. Besides the absolute
difference of both terms, a good indication for the choice of each
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pair (wi, vi) is also provided by the selected upper limit of the abso-
lute error ϵ of F(f) in Eq. (21).

To solve the unconstrained optimization problem in Eq. (26),
we employ the gradient-based Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method because it has been successfully applied to similar
problems in literature studies.27,34,44 Since the problem is non-
convex, it cannot be guaranteed that the method always finds the
global minimum. It is also possible that no feasible solutions exists.
This may be the case if the sphere is too heavy for the array or
should be stabilized at a certain position for which no suitable
array output can be found.34

C. Stability analysis

In Sec. III B, the local asymptotic stability at the position re
was achieved by minimizing the real parts of the eigenvalues
λ(f) ¼ eig A(f)f g in Eq. (26). However, assuming < λAif g , 0 8i,
the eigenvalues λAs ¼ eig Asf g of the matrix As in Eq. (27) are not
hyperbolic since < λAs ,if g ¼ 0 8i. Therefore, unlike the position re,
no conclusions about the local stability of the origin bx ¼ 0, i.e.,

xe ¼ r`e 01�3
� `

, of the dynamic model in Eq. (25) can be
made.49 This result is caused by the fact that, compared to the
linear viscous damping assumed in the studies of da Silva et al.,50

we use a nonlinear friction model in Eq. (24) whose terms vanish
during linearization at bx ¼ 0, and, therefore, they do not contribute
to the stability of the equilibrium in the linearized model. Thus, the
successful levitation that was observed in the experiments (see
Sec. V) has to be proven in a different way. To achieve this, we use
Lyapunov-based methods, which are common in nonlinear control
theory. In particular, we utilize the invariance principle of
Krasovskii–LaSalle.49

Theorem 1 (Invariance principle). Let X be a compact,

positive invariant set for b_x ¼ g(bx) and V :X ! R a continuously
differentiable function V ¼ V(bx) such that _V(bx) � 0 in X. Let Y
be the set of all points in X, where _V(bx) ¼ 0. Let Z be the
largest invariant set in Y . Then, the following applies
limt!1 bx(t) [ Z 8 bx [ X:

Corollary 1. Let bx ¼ 0 be an equilibrium for b_x ¼ g(bx).
Let V :Ω ! R be a continuously differentiable, positive definite
function on a domain Ω , Rn containing the origin bx ¼ 0 such
that _V(bx) � 0 in Ω. Let the set S be S ¼ fbx [ Ω j _V(bx) ¼ 0g and
suppose that no solution can stay identically in S, other than the
trivial solution bx(t) ; 0. Then, the origin is asymptotically stable.

Based on the theorem and the corollary, the following steps
are necessary to prove the local asymptotic stability of bx ¼ 0: first,
we need to define a domain Ω with bx ¼ 0 [ Ω and then find a
function V :Ω ! R that is continuously differentiable and satisfies
V(0) ¼ 0, V(bx) . 0 for bx = 0, and _V(bx) � 0 in Ω. Finally,
we have to show that in S no solution except the trivial solutionbx(t) ; 0 can remain. As it can be seen from Figs. 4(a)–4(c), the
components of the acoustic radiation force Fac(br) are Lipschitz
and fulfill

eFa(0) ¼ 0, � ba eFa(bra) . 0, ba [ �ca, cað Þn 0f g (29)

in ΩR , R3 around br ¼ 0 for some ca [ Rþ, whereeFa(br) ¼ Fac,a(br)þ Fg ,a, a [ C ¼ x, y, zf g, and ΩR is given as
ΩR ¼ S

a[CΩa, assuming the three subsets Ωa as

Ωa ¼ bra [ R3
��� ba [ �ca, cað Þ

n o
, (30)

where the two other Cartesian axes b, c [ C with b, c = a in bra
kept constant at the equilibrium position. The components of the
drag force Fd(bv) are also Lipschitz and fulfill

Fd,a(0) ¼ 0 and bvaFd,a(bv) . 0 for bva = 0 (31)

in a domain ΩV # R3. Defining Ω ¼ ΩR ΩV½ �`[ R6, a
Lyapunov candidate is the continuously differentiable, positive defi-
nite function V1 :Ω ! R that is chosen as

V1(bx) ¼ X
a[C

ðbra
br0 �eFa(br) dbaþ 1

2
mbva2, (32)

where br0 ¼ re. Since _V1(bx) ¼ h∇V1(bx), g(bx)i yields
_V1(bx) ¼ X

a[C

�eFa(br)bva þmbva 1
m

eFa(br)þ Fd,a(bv)� �
¼ bvxFd,x(bv)þ bvyFd,y(bv)þ bvzFd,z(bv) � 0, (33)

we conclude that _V1(bx) is negative semi-definite. Since the implica-
tion chain for the model in Eq. (25) for _V1(bx) ¼ 0 yields

bv ; 0 ) Fd(bv) ; 0 ) b_v ; 0 ) eF(br) ; 0 ) br ; 0, (34)

where eF(br) ¼ Fac(br)þ Fg , it becomes clear that only the trivial sol-
ution bx(t) ; 0 remains in the set S ¼ fbx [ Ω j _V1(bx) ¼ 0g: By
applying the invariance principle, we conclude that the equilibriumbx ¼ 0 is locally asymptotically stable.

In addition to stability, the domain of attraction (DoA)

ΩD ¼ x0 [ Rn
��� lim

t!1 x(t) ¼ xe
n o

is of particular interest since it

can be regarded as a quality measure for the stability of an equilib-
rium xe. The larger ΩD, the more likely it is that the system will
return to its equilibrium after a deflection that may be caused by an
external disturbance. In terms of our application, this means that
high imprinted restoring forces that act like a spring (see also
Fig. 4) ensure a robust static levitation and allow, for example, a
higher initial misplacement of the sphere inside the acoustic trap.
Apart from well-researched system classes, e.g., robotics, or systems
of low complexity, e.g., a pendulum, the DoA for an equilibrium of
a nonlinear system can usually only be approximated by a set
ΩE , ΩD. To calculate ΩE from a given dynamic model, several
simulation-based methods have been proposed, which can be
classified into Lyaponov-based methods, e.g., sum of squares
programming, and non-Lyapunov-based methods, e.g., trajectory
reversing.51 Among these methods, we decided to use Lyapunov-
based sampling. Although this method allows only a conservative
estimation of ΩE,

52 the existence of a Lyapunov function can be
guaranteed,49 whose search is often a time-consuming process.
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Furthermore, it is usually significantly less computationally inten-
sive than methods based on techniques like trajectory reversing.
Since < λA,if g , 0 8i applies (see Sec. III B), we can state a
Lyapunov function for the nonlinear subsystem b_v ¼ g2(bx) forbv ¼ 0 as

V2(br) ¼ br`Pbr, P [ R3�3, (35)

where P is determined by the Lyapunov equation

A`P þ PA ¼ �Q (36)

for a positive definite matrix Q [ R3�3, e.g., Q ¼ I3�3, where P
has to be positive definite, i.e., P . 0. It shall be noted that
it is always possible to find a valid solution for P . 0 when
< λA,if g , 0 8i is satisfied.49 Since the additional differentiation
has no influence regarding the DoA ΩE, we assume that _V2(br) can
be calculated by

_V2(br) ¼ g2(bx)`Pbr þbr`Pg2(bx): (37)

Using Eqs. (35) and (37), the DoA ΩE can be expressed as the
largest compact, positive invariant set,

ΩE ¼ br [ R3
��� V2(br) � c, _V2(br) , 0, c . 0

n o
, (38)

where the constant c [ R can be determined via numerical
methods.52 The application of this technique for the determination
of ΩE is shown in Sec. V.

IV. EXPERIMENTAL SETUP

To carry out the experiment, we utilize a 16� 16 array of
40 kHz ultrasonic transducers (Manorshi MSO-P1040H07T) of
9:8 mm in diameter to levitate a polystyrene sphere with a diameter
of d ¼ 8:9 mm and a density of ρ p ¼ 15 kg m�1. The sphere can
be regarded as Mie sphere because its size and the wavelength
λ ¼ c

f ¼ 343ms�1

40 kHz � 8:6mm are in the same order. The transducers

are driven by square wave signals generated by a Field-programmable
gate array (FPGA) (Altera Cyclone IV-EP4CE6). Shift registers (Texas
Instruments 74HC595) are used for converting 32 outputs of the
FPGA into 256 independent signals, which are amplified up to
20Vpp by MOSFET drivers (Microchip MIC4127). Although the
transducers are driven by square wave signals, the emitted acoustic
wave is sinusoidal due to the narrow bandwidth of the transducers.53

For the experiments, a phase resolution of π
16 rad is employed, and the

phase of each transducer is transferred from MATLAB to the FPGA
via a serial interface using a data transfer rate of 256 kbit=s. The setup
of Fig. 1 is used for measuring the acoustic field emitted by the array
without the presence of the sphere. The ultrasound signals are cap-
tured by a calibrated microphone (Brüel & Kjaer, type 4138-A-015)
which is moved by a 3-axis XYZ translation stage (NRT150/M
Thorlabs stages and BSC203 Thorlabs motor controller). The micro-
phone signals are amplified by a conditioning amplifier (Brüel &
Kjaer, Nexus 2690-A-0S2) and captured by an oscilloscope (Keysight
DSOX2014A), which communicates with the PC via USB. In the

experiments, the sound field was measured over the XY, XZ, and YZ
planes with a spatial resolution of 0.5mm. To reduce the signal distor-
tion caused by nonlinear propagation and microphone saturation, the
sound fields were measured with the array operating at a low voltage
amplitude of 3Vpp. The setup was also used for measuring the indi-
vidual responses (amplitudes and phases) of each transducer for a
better prediction of the acoustic field generated by the array. In addi-
tion to the measurements made with the setup of Fig. 1, a high-speed
camera (FASTCAM Mini UX50, Photron) was used for recording the
sphere oscillation in y and z directions. To record the oscillation in the
z direction, the trapping position was switched from z ¼ 49mm to
z ¼ 50mm. Similarly, the sphere oscillation in the y direction was
recorded by keeping z constant at z ¼ 50mm and switching the hori-
zontal trapping position from y ¼ 1mm to y ¼ 0mm. The videos
were recorded with a spatial resolution of 28 pixels=mm. A tracking
algorithm was used to extract the sphere position from the videos.

V. RESULTS

In preparation of the experiments, we stored the positions r j

and normals n j of each transducer as well as their individual
manufacturing-related tolerances ΔAj and Δf j in a calibration file.
Subsequently, we implemented the model in Sec. II B for the calcu-
lation of the sound field and the acoustic radiation force as well as
the force gradients with respect to (x, y, z) and phase f j of each
transducer in MATLAB.

To solve the optimization problem in Eq. (26), we used the
C-based solver L-BFGS-B-C54 for enhanced execution speed. Since
the coefficients jSmn , Ψn, Am

n , B
m
n , G

m
n , and Hm

n in Eq. (10) and
Eqs. (14)–(18) can be pre-calculated for a given position r, the
model of Andersson and Ahrens35 offers considerable advantages
since no computationally expensive terms like Bessel functions
have to be evaluated during optimization. These two factors con-
tributed significantly to being able to achieve wall times of � 40ms
for one optimization step. Considering the smaller amount of
transducers, the required time should still not be as high as the
values given in the literature, e.g., in the work of Inoue et al.34

Although the BFGS method only converges to a local minimum,
the quality of the obtained results in our tests was usually very

FIG. 1. Overview of the experimental setup.
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good. Thus, we omitted other methods such as genetic algorithms
or basin hopping, which have also been applied to similar optimi-
zation problems.34,41

In addition, we have measured the sound field of the created
acoustic trap without the sphere, starting from re and altering each
spatial direction by +20mm. The resulting XY, XZ, and YZ planes
are depicted in Figs. 2(b), 2(d), and 2(f ). Comparing them with
simulation results in Figs. 2(a), 2(c), and 2(e), one can see that the
contours of the field coincide to a large extent and there is only a
maximum deviation of the sound pressure of 60 Pa. This difference
between simulated and experimental results can be attributed to
the measurement uncertainty. According to our estimates, the mea-
sured pressure can differ up to 22 Pa from the true value due to the
microphone uncertainty itself (0.2 dB) and the uncertainty caused
by the angle of incidence of the incoming wave (up to 1:56 dB).
In addition to the microphone uncertainty, one has to take into
account that the resulting sound pressure field differs from the
measured free sound field due to the presence of the sphere.
Further simulative studies lead to the conclusion that the contribu-
tion of the scattered field to the total sound pressure field for the
experiment in Fig. 2(g) at 12Vpp is approximately up to 17%.
Based on these results, we can conclude that the measured sound
pressure field is overall sufficiently well reproduced by the model.

Moreover, Figs. 2(a)–2(f ) lead to the conclusion that the
sphere is levitated in a twin tuning forks trap (TTFT). This name
was chosen because in the isosurfaces of Fig. 2(h), the sphere seems
to be trapped by a pair of tuning forks. A video showing a rotating
3D view of the acoustic trap is available online (Multimedia view).
To retain with the terminology of Marzo et al.,27 its visual shape
could be regarded as superposition of two twin trap signatures and
a bottle trap signature, see also Figs. 3 and 5 in the mentioned
study.27 Following this idea, we subtracted a focusing element from
the obtained phase angles related to Fig. 2 to reveal the signature of
the trap, see Fig. 3. The signature can be divided into eight different
parts. Comparing them with the signatures in Fig. 6 in Marzo
et al.,27 there is a noteworthy correlation. Apart from small devia-
tions, it can be clearly seen that there is a phase difference of at
least Δf � π between the areas “(1)–(4)” and “(5)–(8),” which
directly corresponds to a bottle signature. In addition, there is also
a notable phase difference of Δf � π between the areas “(5) and
(6)” as well as “(7) and (8).” It is quite obvious that this
corresponds to the signatures of two twin traps that are arranged
crosswise. This thought is underlined by a comparison of the pres-
sure fields in Figs. 2(a) and 2(b) with Fig. 3(d) in Marzo et al.27

While the bottle trap provides the necessary acoustic radiation
force in the vertical direction, the two twin traps increase the hori-
zontal restoring forces to enable stable trapping of the sphere. This
can also be seen in Fig. 4, where the simulated acoustic radiation
force related to the experiment in Fig. 2(g) is shown. Based on this
simulation results, the array at 12Vpp still has sufficient capacity to
levitate a bigger sphere than a Mie particle. However, the remaining
phase angles f � π=4 (green) and f � �π=4 (light blue) could
not be clearly assigned to any specific signature. We, therefore,
assume that these deviations result from the choice of the abort cri-
terion of the BFGS method in the optimization.

To investigate the DoA for the equilibrium re, we calculated in
Fig. 5, the phase portrait of the reduced dynamic system g2(bx)

related to the experiment in Fig. 2(g) for the XY (a), XZ (b), and
YZ planes (c). Based on these three figures, we assume that the
DoA ΩD [ R3 for the equilibrium re can be roughly approximated
by the set

ΩD ¼ br [ R3
��� brk k2� 4:0mm

n o
: (39)

It is also noteworthy that this set can possibly be derived from
the smallest common set of a pair of areas between two inflection
points which define the limits of one-dimensional stability. To give
an example, the course of Fx in Fig. 4(a) has inflection points at
xin ¼ +4:0mm, the same applies for Fy at yin ¼ +4:0mm in
Fig. 4(b). This observation directly corresponds to the area inside
the dotted black circle in Fig. 5(a). In our simulative study, we
applied the method of Lyapunov-based sampling to calculate the
set ΩE , ΩD for which local asymptotic stability for re can be
guaranteed and have determined this set as

ΩE ¼ br [ R3
��� V2(br) � c, _V2(br) , 0, c . 0

n o
, (40)

where V2(br) ¼ br`Pbr, c ¼ 2:4543� 10�10 m, and the matrix
P [ R3�3 is given as

P ¼ 10�4
0:2007 0:0125 0:0047
0:0125 0:2168 �0:0105
0:0047 �0:0105 0:9490

24 35 (41)

from Eq. (36), where A at br ¼ 0 was computed using Eq. (28).
The set ΩD is shown in Fig. 5 in red for the XY (a), XZ (b), and
YZ planes (c). If we compare ΩD and ΩE, we can conclude that
ΩE approximates ΩD quite well, although there is still a notable
difference in Figs. 5(b) and 5(c) due to the chosen conservative
approach. Furthermore, the small difference for ΩE regarding
the XZ and YZ planes in Figs. 5(b) and 5(c) can be explained
by the small deviation between the values 0:2007 and 0:2168 for
X and Y on the main diagonal of P in Eq. (41). In order to
correct these deviations and to enlarge ΩE even further, methods
like trajectory reversing52 can be used where ΩE is set as initial
value.

To evaluate the quality of levitation in Fig. 2(g), we recorded
the position of the sphere for approximately 150 s at 125 frames
per second (FPS). A video showing the sphere levitation
corresponding to Fig. 6 is available online (Multimedia view).
The horizontal and vertical sphere position over time are shown,
respectively, in Figs. 6(a) and 6(c). The corresponding Fast Fourier
Transform (FFT) of the sphere oscillation is also shown in
Figs. 6(b) and 6(d). The levitating sphere had a total deflection of
approximately 0:35mm along y and 1mm along the z direction.
The low-frequency oscillation of the sphere up to 2Hz is possibly
caused by acoustic streaming and external air currents, which are
not considered in our model. Future studies are required to under-
stand and minimize these low-frequency oscillations since it can
hinder applications requiring high precision manipulation of the
levitated object. The peak at 16Hz in Fig. 6(b) corresponds to the
natural frequency along the y direction, whereas the first peak is
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attributed to the natural frequency in the z direction. We do not
have a definite explanation for the third peak, located at 26:6Hz,
but our hypothesis is that the sphere behavior can be described by
a three-dimensional nonlinear oscillator, and the third peak arises

due to a nonlinear coupling between different modes of the
oscillator.

The levitation stability was also analyzed by switching the
trapping position and recording the sphere position over time

FIG. 2. In (a), (c), and (e), the simulated incident pressure fields for the XY, XZ, and YZ planes at 3 Vpp are shown. In these diagrams, the center and the circumference
of the sphere are indicated by a white dot and a dashed black circle, respectively. The corresponding measurements of the sound field without the sphere are depicted in
(b), (d), and (f ). In (h), the simulated amplitude isosurface of 275 Pa (red) corresponding to (a)–( f ) as well as the isosurface of the sphere (green) are shown. A video
showing a 3D view of the acoustic trap is available online (Multimedia view). A photography of the experiment with a polystyrene sphere which is levitated at [0, 0, 50] mm
is pictured in (g) using 12 Vpp for all 256 transducers. Multimedia view: https://doi.org/10.1063/5.0037344.1
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using a high-speed camera. In Fig. 7(a), the sphere was initially sus-
pended at [x, y, z] ¼ [0, 1, 50]mm and then, at t ¼ 0 , the trapping
position was switched to [x, y, z] ¼ [0, 0, 50] mm, causing the
sphere to oscillate horizontally along the y direction [see online
video—Fig. 7(a) (Multimedia view)]. Similarly, Fig. 7(b) shows the
vertical oscillation when the trapping position is switched from
[x, y, z] ¼ [0, 0, 49]mm to [x, y, z] ¼ [0, 0, 50]mm at t ¼ 0 s
[see online—Fig. 7(b) (Multimedia view)]. After switching the trap-
ping position, the sphere oscillated with a frequency of approxi-
mately 16:1Hz along the y direction, see Fig. 7(a), and 8:1Hz in
the z direction, see Fig. 7(b). The horizontal and vertical positions
over time of Figs. 7(a) and 7(b) were also used for calculating the
sphere acceleration. The acceleration was multiplied by the sphere
mass to find the force on the sphere. The comparison between
numerical and experimental forces is shown in Figs. 4(b) and 4(c).
As described in previous articles,55–58 the dynamic behavior of
the sphere can be described by a simple model based on a spring–
mass–damper-system, in which the oscillation frequency fa is
given as

fa ¼ 1
2π

ffiffiffiffiffi
ka
m

r
, a [ y, zf g, (42)

where ka is the linear trapping stiffness along direction a and m is
the sphere mass. Similar to what occurs for small particles in a
standing wave field,56,57 the trapping stiffness and, thus, the oscilla-
tion frequency of the sphere depend on pressure gradients, which
cause the sphere to move to the positions of low acoustic pressure
amplitude. The higher the pressure gradient, the higher is the oscil-
lation frequency. The numerical values for ky and kz are found by
calculating the angular coefficient from the curves of Fig. 4, which
results in ky ¼ 0:066Nm�1 and kz ¼ 0:023Nm�1. Since the
sphere has a mass m ¼ 5:54mg, the natural frequencies predicted
by Eq. (42) are fy ¼ 17:4Hz and fz ¼ 10:3Hz, which are in reason-
able agreement with the frequencies fy ¼ 16:1Hz and fz ¼ 8:1Hz
obtained in the experiments. The difference between the numerical
and experimental frequencies is possibly caused by the microphone
uncertainty, the approximation of the transducer by a plane piston
radiating in the far-field, and by nonlinear effects that are not

FIG. 3. Holographic signature of the acoustic trap. The phase modulation for the 256 transducers for generating the trap (left) as well as its decomposition into the focus-
ing element (center) and the holographic signature (right) are shown.

FIG. 4. Simulated acoustic radiation force related to the experiment in Fig. 2(g).
Starting at re ¼ [x, y, z] ¼ [0, 0, 50] mm, (x, y, z) are altered in (a)–(c) by
+20 mm, respectively. The fact that re is an equilibrium is well supported by
the intersections of Fg and Fz and by the applied restoring forces in each direc-
tion, see also Fig. 5. The experimental forces Fy,exp and Fz,exp in (b) and (c)
were derived from the experimental positions of Fig. 7.
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considered in the numerical model, such as the nonlinear propaga-
tion of the sound wave and acoustic streaming. The trapping stiff-
ness ky ¼ 0:066Nm�1 and kz ¼ 0:023Nm�1 may also explain
why the oscillations of Fig. 6 have a maximum deflection in z
Δz ¼ 1mmð Þ in comparison with the y direction Δy ¼ 0:35mmð Þ.
Assuming that, in addition to gravity and radiation forces, the
sphere is also subjected to the same maximum drag forces (caused
by an unsteady streaming flow) along y and z, the ratio between the

FIG. 5. Phase portrait of the dynamic system related to the experiment in Fig. 2(g) for the XY (a), XZ (b), and YZ planes (c) for the equilibrium position
re ¼ [0 0 50]` mm. The presumed DoA ΩD and the DoA ΩE , ΩD that has been validated by simulation are shown in black and red, respectively.

FIG. 7. Curves of the position of the sphere in y (a) and z (b) with respect to
time t in the case of a small displacement of the acoustic trap from y ¼ 1 mm
to y ¼ 0mm (a) and from z ¼ 49 mm to z ¼ 50mm (b) at time t0 ¼ 0 s for
12 Vpp, referring to the position [x, y, z] ¼ [0, 0, 50] mm. Videos showing the
dynamic oscillation of the sphere over time using 8, 10, and 12 Vpp are avail-
able online (Multimedia view). Multimedia view: https://doi.org/10.1063/5.
0037344.3

FIG. 6. Sphere position over time captured by the high-speed camera recording
at 125 FPS when levitating the sphere in an acoustic trap at
[x, y, z] ¼ [0, 0, 50] mm. (a) Sphere position along the y direction. (b) FFT of y.
(c) Sphere position along the z direction. (d) FFT of z. A video showing the
sphere position over time is available online (Multimedia view). Multimedia view:
https://doi.org/10.1063/5.0037344.2
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maximum deflection in y and z would be ky=kz ¼ 2:87, which is
consistent with the experimental ratio of Δz=Δy � 2:86.

Finally, we have performed further simulative studies to investi-
gate the generalizability and the limitations of our presented
approach. Based on these results, we presume that our approach can
be used not only for Mie spheres but also feasible array configura-
tions can be determined for bigger spheres whose diameter is much
larger than the acoustic wavelength λ. Apart from a correspondingly
longer computation time to solve the optimization problem in
Eq. (26), the authors are not aware of any restrictions on the total
number of transducers nor on the complexity of the necessary calcu-
lations. In addition, the approach can potentially be applied to
spheres with other densities or in other media, such as water, possi-
bly using transducers with a higher frequency in the Megahertz
range. However, one limitation remains: since we use a spherical har-
monics expansion to calculate the acoustic radiation force, the object
to be levitated must be a sphere or at least have a sphere-like geomet-
rical shape. Therefore, for levitation of macroscopic objects with
arbitrary geometry, one still has to rely on approaches such as the
boundary hologram method of Inoue et al.34

VI. CONCLUSIONS

In the present work, we demonstrated the single-beam acous-
tic levitation of a Mie sphere using a 2D transducer array. In order
to achieve this, we employed the sound field model from
Andersson and Ahrens35 that is based on spherical harmonics
expansions to calculate the acoustic radiation force on the sphere.
Moreover, we formulated an optimization problem similar to Inoue
et al.34 that maximizes the stability of the sphere while keeping the
net force balanced at the equilibrium position.

By simulation, we have proven the local asymptotic stability
for the equilibrium with Lyapunov-based methods and determined
a sufficient, yet conservative DoA ΩE utilizing our dynamic model
of the sphere. In experiments, we demonstrated the asymptotic
stable levitation of the sphere inside the acoustic trap over long
periods of time. We presume that the low-frequency motion of the
sphere up to 2Hz with a maximum deflection of Δz ¼ 1mm and
Δy ¼ 0:35mm can be explained by acoustic streaming, which is
currently not considered in our dynamic model. The ratio between
the maximum deflection in z and y (Δz=Δy � 2:86) is consistent
with the ratio between the trapping stiffness along the y and z
directions (ky=kz ¼ 2:87), which supports the acoustic streaming
hypothesis.

A high-speed camera was also used for recording the sphere
oscillation after the trapping position was switched vertically and
horizontally. The natural frequencies obtained experimentally pre-
sented a reasonable agreement with the oscillation frequencies pre-
dicted by the simulation. The differences between simulated and
experimental results are attributed to the uncertainty of the micro-
phone response and by nonlinear effects that are not considered in
the model, such as the nonlinear propagation of the sound wave
and acoustic streaming.

The choice of both model and the L-BFGS-C54 solver contrib-
uted mainly to the fact that we were able to achieve wall times of
� 40ms for one optimization step. However, since usually at least
approximately 500 steps are necessary to determine a suitable array

output, a practical real-time manipulation via optimization-based
methods can currently only be achieved with cumbersome trajectory-
shaping via pre-calculation. A promising alternative to this approach
can be found in the observed visual shape of the twin tuning forks
trap (TTFT). We have shown that this trap according to Marzo et al.27

is composed of two twin trap signatures and a bottle trap signature.
Since only a static pattern of phase angles is necessary to stably levitate
the sphere, the approach is suitable for most of the transducer
arrays that are mentioned in the literature46 and places fewer
demands on the hardware than the method of acoustic virtual
vortices that was proposed by Marzo et al.33 Consequently, the
observed trap signature may facilitate the real-time manipulation
of macroscopic objects in mid-air since we presume that it might
be possible to levitate macroscopic objects by creating appropriate
holographic elements instead of using computationally expensive
optimization-based methods. Furthermore, it could also be possi-
ble to rapidly translate and rotate macroscopic objects by gradu-
ally shifting and rotating the holographic signature of the acoustic
trap toward the next desired position or orientation, similar to
what was done by Marzo et al.27 for Rayleigh particles. Finally, it
will be very interesting to see which other specific trap signatures
can be created by a superposition of basic holographic elements,
i.e., a vortex, a twin, and a bottle signature, that can keep macro-
scopic objects in stable suspension.

AUTHORS’ CONTRIBUTIONS

All the authors participated in designing the study and experi-
ments. S.Z. implemented the sound field model, developed the
optimization approach, and performed the stability analysis.
M.A.B.A. performed the levitation experiment as well as the oscilla-
tion analysis and created the supplementary videos. S.Z. and
M.A.B.A. carried out the data analysis and wrote this manuscript.
All the authors read and commented on the text.

ACKNOWLEDGMENTS

The graphics in this manuscript were created using the
packages export_fig59 and matlab2tikz60 with MATLAB R2019b.
We thank Asier Marzo (Universidad Pública de Navarra) for
designing the transducer array and for all the assistance in its fabri-
cation, programming, and transducer calibration.

DATA AVAILABILITY

The data that support the findings of this study are available
within the article and are available from the corresponding authors
upon reasonable request.

REFERENCES
1R. T. Beyer, J. Acoust. Soc. Am. 63, 1025 (1978).
2D. Zang, Acoustic Levitation: From Physics to Applications (Springer, Singapore,
2020).
3M. A. Andrade, N. Pérez, and J. C. Adamowski, Braz. J. Phys. 48, 190 (2018).
4E. Brandt, Science 243, 349 (1989).
5R. H. Morris, E. R. Dye, P. Docker, and M. I. Newton, Phys. Fluids 31, 101301
(2019).
6W. Xie and B. Wei, Phys. Rev. E. 70, 046611 (2004).
7A. Yarin, M. Pfaffenlehner, and C. Tropea, J. Fluid. Mech. 356, 65 (1998).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 129, 134901 (2021); doi: 10.1063/5.0037344 129, 134901-11

© Author(s) 2021

https://doi.org/10.1121/1.381833
https://doi.org/10.1007/s13538-017-0552-6
https://doi.org/10.1126/science.243.4889.349
https://doi.org/10.1063/1.5117335
https://doi.org/10.1103/PhysRevE.70.046611
https://doi.org/10.1017/S0022112097007829
https://aip.scitation.org/journal/jap


8D. Zang, Y. Yu, Z. Chen, X. Li, H. Wu, and X. Geng, Adv. Colloid Interface Sci.
243, 77 (2017).
9M. A. Andrade and A. Marzo, Phys. Fluids 31, 117101 (2019).
10D. Zang, K. Lin, L. Li, Z. Chen, X. Li, and X. Geng, Appl. Phys. Lett. 110,
121602 (2017).
11W. Xie, C. Cao, Y. Lü, Z. Hong, and B. Wei, Appl. Phys. Lett. 89, 214102
(2006).
12M. Sundvik, H. J. Nieminen, A. Salmi, P. Panula, and E. Hæggström, Sci. Rep.
5, 1 (2015).
13S. R. Byrn, Eur. Biophys. J. 41, 397 (2012).
14T. Vasileiou, D. Foresti, A. Bayram, D. Poulikakos, and A. Ferrari, Sci. Rep. 6,
20023 (2016).
15S. Tsujino and T. Tomizaki, Sci. Rep. 6, 25558 (2016).
16S. Santesson and S. Nilsson, Anal. Bioanal. Chem. 378, 1704 (2004).
17C. Benmore and J. Weber, Phys. Rev. X 1, 011004 (2011).
18C. J. Benmore, J. Weber, A. N. Tailor, B. R. Cherry, J. L. Yarger, Q. Mou,
W. Weber, J. Neuefeind, and S. R. Byrn, J. Pharm. Sci. 102, 1290 (2013).
19V. Vandaele, P. Lambert, and A. Delchambre, Precision Eng. 29, 491 (2005).
20M. A. Andrade, T. S. Ramos, J. C. Adamowski, and A. Marzo, Appl. Phys.
Lett. 116, 054104 (2020).
21E. Trinh, Rev. Sci. Instrum. 56, 2059 (1985).
22W. Xie and B. Wei, Appl. Phys. Lett. 79, 881 (2001).
23M. A. Andrade, F. Buiochi, and J. C. Adamowski, IEEE. Trans. Ultrason.
Ferroelectr. Freq. Control 57, 469 (2010).
24J. Weber, C. Rey, J. Neuefeind, and C. Benmore, Rev. Sci. Instrum. 80, 083904
(2009).
25T. Hoshi, Y. Ochiai, and J. Rekimoto, Jpn. J. Appl. Phys. 53, 07KE07 (2014).
26A. Marzo, A. Barnes, and B. W. Drinkwater, Rev. Sci. Instrum. 88, 085105
(2017).
27A. Marzo, S. A. Seah, B. W. Drinkwater, D. R. Sahoo, B. Long, and
S. Subramanian, Nat. Commun. 6, 8661 (2015).
28Y. Hashimoto, Y. Koike, and S. Ueha, J. Acoust. Soc. Am. 100, 2057
(1996).
29S. Ueha, Y. Hashimoto, and Y. Koike, Ultrasonics 38, 26 (2000).
30S. Zhao and J. Wallaschek, Arch. Appl. Mech. 81, 123 (2011).
31M. A. Andrade, A. L. Bernassau, and J. C. Adamowski, Appl. Phys. Lett. 109,
044101 (2016).
32M. A. Andrade, F. T. Okina, A. L. Bernassau, and J. C. Adamowski, J. Acoust.
Soc. Am. 141, 4148 (2017).
33A. Marzo, M. Caleap, and B. W. Drinkwater, Phys. Rev. Lett. 120, 044301
(2018).
34S. Inoue, S. Mogami, T. Ichiyama, A. Noda, Y. Makino, and H. Shinoda,
J. Acoust. Soc. Am. 145, 328 (2019).
35C. Andersson and J. Ahrens, in 2019 IEEE International Ultrasonics
Symposium (IUS) (IEEE, 2019), pp. 920–923.
36O. A. Sapozhnikov and M. R. Bailey, J. Acoust. Soc. Am. 133, 661 (2013).

37E. G. Williams, Fourier Acoustics: Sound Radiation and Nearfield Acoustical
Holography (Elsevier, 1999).
38J. Rudnick and M. Barmatz, J. Acoust. Soc. Am. 87, 81 (1990).
39M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics (Academic press,
San Diego, 1998), p. 195.
40N. A. Gumerov and R. Duraiswami, Fast Multipole Methods for the Helmholtz
Equation in Three Dimensions (Elsevier, 2004).
41J. Xu, Y. Gui, and J. Ma, J. Appl. Phys. 125, 134905 (2019).
42T. Fushimi, T. Hill, A. Marzo, and B. Drinkwater, Appl. Phys. Lett. 113,
034102 (2018).
43P. Helander, T. Puranen, A. Meriläinen, G. Maconi, A. Penttilä, M. Gritsevich,
I. Kassamakov, A. Salmi, K. Muinonen, and E. Hæggström, Appl. Phys. Lett.
116, 194101 (2020).
44C. Andersson and J. Ahrens, “A method for simultaneous creation of an
acoustic trap and a quiet zone,” in 2018 IEEE 10th Sensor Array and
Multichannel Signal Processing Workshop (SAM) (IEEE, 2018), pp. 622–626.
45T. Puranen, P. Helander, A. Meriläinen, G. Maconi, A. Penttilä, M. Gritsevich,
I. Kassamakov, A. Salmi, K. Muinonen, and E. Hæggström, “Multifrequency
acoustic levitation,” in 2019 IEEE International Ultrasonics Symposium (IUS)
(IEEE, 2019), pp. 916–919.
46S. Zehnter and C. Ament, “A modular FPGA-based phased array system for
ultrasonic levitation with MATLAB,” in 2019 IEEE International Ultrasonics
Symposium (IUS) (IEEE, 2019), pp. 654–658.
47J. Zemánek, T. Michálek, and Z. Hurák, Lab Chip 18, 1793 (2018).
48J. Matouš, A. Kollarčík, M. Gurtner, T. Michálek, and Z. Hurák,
IFAC-PapersOnLine 52, 483 (2019).
49H. K. Khalil and J. W. Grizzle, Nonlinear Systems (Prentice Hall, Upper Saddle
River, NJ, 2002), Vol. 3.
50C. J. da Silva, Á. M. Bueno, and J. M. Balthazar, Braz. J. Phys. 50, 794 (2020).
51E. Najafi, R. Babuška, and G. A. Lopes, Nonlinear Dyn. 86, 823 (2016).
52N. Kant, D. Chowdhury, R. Mukherjee, and H. K. Khalil, “An algorithm for
enlarging the region of attraction using trajectory reversing,” in 2017 American
Control Conference (ACC) (IEEE, 2017), pp. 4171–4176.
53A. Marzo, T. Corkett, and B. W. Drinkwater, IEEE. Trans. Ultrason.
Ferroelectr. Freq. Control 65, 102 (2017).
54S. Becker, See https://github.com/stephenbeckr/L-BFGS-B-C for “LBFGSB
(L-BFGS-B) Mex Wrapper” (retrieved October 7, 2020).
55M. Barmatz and P. Collas, J. Acoust. Soc. Am. 77, 928 (1985).
56N. Pérez, M. A. Andrade, R. Canetti, and J. C. Adamowski, J. Appl. Phys. 116,
184903 (2014).
57K. Hasegawa and K. Kono, AIP Adv. 9, 035313 (2019).
58S. L. Vieira and M. A. Andrade, J. Appl. Phys. 127, 224901 (2020).
59Y. Altman, See https://github.com/altmany/export_fig for “exportfig” (2020)
(retrieved October 7, 2020).
60N. Schlömer, See https://github.com/matlab2tikz/matlab2tikz for “matlab2tikz”
(retrieved October 7, 2020).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 129, 134901 (2021); doi: 10.1063/5.0037344 129, 134901-12

© Author(s) 2021

https://doi.org/10.1016/j.cis.2017.03.003
https://doi.org/10.1063/1.5121728
https://doi.org/10.1063/1.4979087
https://doi.org/10.1063/1.2396893
https://doi.org/10.1038/srep13596
https://doi.org/10.1007/s00249-011-0767-3
https://doi.org/10.1038/srep20023
https://doi.org/10.1038/srep25558
https://doi.org/10.1007/s00216-003-2403-2
https://doi.org/10.1103/PhysRevX.1.011004
https://doi.org/10.1002/jps.23464
https://doi.org/10.1016/j.precisioneng.2005.03.003
https://doi.org/10.1063/1.5138598
https://doi.org/10.1063/1.5138598
https://doi.org/10.1063/1.1138419
https://doi.org/10.1063/1.1391398
https://doi.org/10.1109/TUFFC.2010.1427
https://doi.org/10.1109/TUFFC.2010.1427
https://doi.org/10.1063/1.3196177
https://doi.org/10.7567/JJAP.53.07KE07
https://doi.org/10.1063/1.4989995
https://doi.org/10.1038/ncomms9661
https://doi.org/10.1121/1.417915
https://doi.org/10.1016/S0041-624X(99)00052-9
https://doi.org/10.1007/s00419-009-0401-3
https://doi.org/10.1063/1.4959862
https://doi.org/10.1121/1.4984286
https://doi.org/10.1121/1.4984286
https://doi.org/10.1103/PhysRevLett.120.044301
https://doi.org/10.1121/1.5087130
https://doi.org/10.1121/1.4773924
https://doi.org/10.1121/1.398916
https://doi.org/10.1063/1.5055362
https://doi.org/10.1063/1.5034116
https://doi.org/10.1063/5.0002602
https://doi.org/10.1039/C8LC00113H
https://doi.org/10.1016/j.ifacol.2019.11.722
https://doi.org/10.1016/j.ifacol.2019.11.722
https://doi.org/10.1007/s13538-020-00786-3
https://doi.org/10.1007/s11071-016-2926-7
https://doi.org/10.1109/TUFFC.2017.2769399
https://doi.org/10.1109/TUFFC.2017.2769399
https://github.com/stephenbeckr/L-BFGS-B-C
https://github.com/stephenbeckr/L-BFGS-B-C
https://github.com/stephenbeckr/L-BFGS-B-C
https://github.com/stephenbeckr/L-BFGS-B-C
https://github.com/stephenbeckr/L-BFGS-B-C
https://doi.org/10.1121/1.392061
https://doi.org/10.1063/1.4901579
https://doi.org/10.1063/1.5092163
https://doi.org/10.1063/5.0007149
https://github.com/altmany/export_fig
https://github.com/altmany/export_fig
https://github.com/matlab2tikz/matlab2tikz
https://github.com/matlab2tikz/matlab2tikz
https://aip.scitation.org/journal/jap

	Acoustic levitation of a Mie sphere using a 2D transducer array
	I. INTRODUCTION
	II. ACOUSTIC RADIATION FORCE ON A SPHERE GENERATED BY A TWO-DIMENSIONAL ARRAY
	A. Sound field generated by the phased array
	B. Acoustic radiation force on a sphere

	III. DYNAMIC MODEL, OPTIMIZATION APPROACH, AND STABILITY ANALYSIS
	A. Dynamic model
	B. Optimization approach
	C. Stability analysis

	IV. EXPERIMENTAL SETUP
	V. RESULTS
	VI. CONCLUSIONS
	AUTHORS’ CONTRIBUTIONS
	DATA AVAILABILITY
	References


