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Abstract. This paper discusses a multi-compartment vehicle routing problem (MCVRP)
that occurs in the context of grocery distribution. Different temperature-specific product
segments (e.g., frozen or ambient) are transported from a retail warehouse to outlets.
Different temperature-specific product segments can be transported together using multi-
compartment vehicles. These trucks are technically able to have different temperature
zones on the same truck by separating the capacity of a vehicle flexibly into a limited
number of compartments. On one hand, this leads to a cost saving as different product
segments ordered by one outlet can be delivered jointly using only one truck. This impacts
the routing and the number of stops—i.e., the transportation costs and unloading costs.
On the other hand, more than one shipping gate has to be approached at the warehouse
to collect and load different product segments. As a consequence, the number of segments
on each truck and therefore the number of compartments impact loading, transportation,
and unloading costs.

An extended MCVRP with flexible compartments is presented to account for these
loading and unloading costs. To solve the problem that arises, a large neighborhood
search (LNS) tailored to the extendedmodel is defined. The LNS includes problem-specific
extensions in terms of the removal and reinsert operators as well as the termination
criteria. It is tested using a case study with a retailer, benchmark data, and randomly
generated data. Results are also compared to existing approaches. In line with the analyses
performed for the model introduced, it is shown that the integration of loading and
unloading costs into the model impacts routing considerably, and ultimately results in
significant savings potential for retailers.
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1. Introduction
The transportation problem that will be discussed in
this paper is a variant of the classic capacitated vehi-
cle routing problem (CVRP) (for reviews, see Laporte
2009 and Toth and Vigo 2014) and occurs in the context
of food distribution. Distribution is a major cost com-
ponent of the grocery supply chain and amounts to
about 20% of total logistics costs (Kuhn and Sternbeck
2013; Hübner, Kuhn, and Sternbeck 2013a). Given the
narrow margins in grocery retailing, which are often
less than 2%, efficient transportation planning is essen-
tial (Hübner, Kuhn, and Sternbeck 2013b; Agrawal and
Smith 2015).

Groceries are stored in and transported from ware-
houses to the outlets in different temperature zones
(e.g., deep-frozen, cold, ambient). The specific tem-
perature requirements during transportation need to
adhere to legislative regulations. For instance, in

Europe, the mandated temperatures are −20◦C to
−18◦C for deep-frozen products, +2◦C to +7◦C for
cooled products (like meat and dairy products), and
+4◦C to +7◦C for fruits and vegetables. Only ambi-
ent products like dry goods and beverages have no
strict transportation temperature requirements. As a
consequence, there are at least four temperature zones
during transport, plus possibly stricter temperature
controls required by retailers. An example of this is
the transport of cooled and fresh products at even
colder temperatures and in separate zones to obtain
a longer shelf life (Akkerman, Farahani, and Grunow
2010; Amorim et al. 2013).
In the past, trucks have usually been customized

for exactly one product segment with the corre-
sponding temperature due to the specific tempera-
ture requirements. Recent truck models are equipped
with temperature-specific compartments that allow
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the transport of different product segments in the
associated chambers (compartments) of one truck.
When considering deep-frozen and ambient products
ordered by the same outlet, use of multi-compartment
vehicles (MCVs) makes it possible to deliver both prod-
uct segments on the same truck at the same time.

On the grounds of temperature requirements, re-
tailers store, pick, and prepare the deliveries in temp-
erature-specific warehouse sections. The use of MCVs
therefore implies the need to pick up deliveries at dif-
ferent temperature-specific gates. At the same time,
however, this enables the distribution of multiple seg-
ments within one truck. For example, Lekkerland
received the German Logistics Award in 2013 for the
introduction of multi-temperature logistics. For the
retailer, it no longer seemed customer friendly, cost-
efficient, or sustainable to supply customers with dif-
ferent single-compartment vehicles (SCVs) for each
separate segment. With the award, Lekkerland was
recognized as achieving bundling effects in opera-
tional processes, especially for customers (Grünrock-
Kern 2013). Further retailers are increasingly investing
in MCVs, especially for urban deliveries with small
outlets and outlets with restricted access. Here, the
combined delivery of different product groups is often
required.

This gives rise to questions about the associated op-
erations and logistics costs when using MCVs, and the
design of vehicle routing given the opportunity to com-
bine different product segment flows in one truck with
flexible compartment sizes. The problem that arises
can be classified as a multi-compartment vehicle rout-
ing problem (MCVRP). Supplementary to existing lit-
erature concerningMCVRP, the applied research intro-
duces the following characteristics:

• The assignment of product segments to compart-
ments determines the vehicle configuration for a spe-
cific tour—i.e., the number of different chambers on
each truck.

• The number and size of compartments are flex-
ible—i.e., compartment setup has to be determined for
eachMCV. The sizes of the activated compartments can
be adjusted exactly to suit the transportation units so
that there is no loss in capacity by using compartments.

• Cost factors are introduced to account for differ-
ent processes related to compartment setups—i.e., the
number of compartments determines operations and
logistics costs.

Besides the planning of delivery tours, the MCVRP
considers (i) demands for multiple inhomogeneous
product segments and (ii) vehicles consisting of mul-
tiple compartments. It has to be determined (iii) how
many compartments are set up on each vehicle on its
tour and (iv) which customer orders from different
product segments are combined on each tour.

The problem is NP-hard since it is a generaliza-
tion of the CVRP (see, for example, Toth and Vigo
2014). A heuristic, namely a large neighborhood search
(LNS), therefore was developed to fit the requirements
of the extended model. To our knowledge, this is the
first comprehensive model and solution approach that
has so far been proposed for this problem. We will fur-
ther analyze the economic impacts that stem from the
introduction of MCVs, taking an end-to-end perspec-
tive on logistics cost.
The outline of the paper is as follows. Section 2 de-

scribes the problem context and identifies the decision-
relevant costs. Section 3 discusses the related literature.
Next, the mathematical formulation and formal defi-
nition of the problem are introduced in Section 4. The
LNS developed is presented in Section 5. In Section 6,
our solution approach is applied to numerical exam-
ples, first using randomly generated instances to exam-
ine the performance of the implementation, and after-
wards with real-life data from a case study. Finally, the
findings and conclusions are summarized in Section 7.

2. Problem Description
This section will lay the foundations for the decision
model (Section 4) by defining the typical network struc-
tures and the impact of MCVs and by identifying the
decision-relevant costs as well as technical consider-
ations when using MCVs. This in turn enables us to
define the underlying decision problem. All informa-
tion has been gathered in close collaboration with a
retailer.
Characteristics of grocery network structures. Gro-
cery retailers channel the overwhelming majority
of product volumes to their stores via distribution
centers (DCs) (Fernie and Sparks 2009; Kuhn and
Sternbeck 2013). European discounters and most full-
line supermarkets operate their own distribution net-
works consisting of several regional DCs from which
the complete assortment is supplied. DCs are orga-
nized according to temperature-specific product seg-
ments. A retail DC usually serves between 50 and 400
outlets (Glatzel, Großpietsch, and Hübner 2012).
Impact of MCVs on distribution system and costs.
Using MCVs increases the flexibility for the delivery
of products but also poses some new challenges with
regard to planning. Figures 1 and 2 visualize the dif-
ferences between the use of SCVs and MCVs. Figure 1
shows a classical distribution systemwith SCVs, where
a tour starts with a stop at exactly one temperature-
specific shipping gate of the DC. Having loaded all
products of one segment (i.e., goods from an identical
temperature zone) for a tour, outlets are supplied with
one delivery each. If there are orders for another prod-
uct segment with different temperature requirements,
a second truck is needed. The additional truck only
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Figure 1. (Color online) Distribution System with
Single-Compartment Vehicles
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Figure 2. (Color online) Distribution System with
Multi-Compartment Vehicles
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serves customers who have ordered the second prod-
uct segment. Another delivery route therefore has to
be set up (see Tour A and B in Figure 1).
The distribution system with MCVs involves differ-

ent processes (see Figure 2). Here, theMCVapproaches
both shipping gates at the DC to collect goods with
differing temperature requirements. Having loaded all
product segments, the MCV is able to supply out-
lets with multiple product segments on the same tour.
The decision-relevant times and processes needed for
MCV-specific operations have been assessed in a time
andmotion studywith a retailer. Accordingly, there are
two major process and cost differences between these
two different distribution systems.
Type (1): MCVs require additional operational pro-

cessing time. The pick-up of different product seg-
ments at the DC results in additional stops at the DC.
This leads to additional travel and setup time for load-
ing. The setup time includes traveling to each gate,
rearranging and opening the lift gate, and the spe-
cific compartment walls. The loading costs therefore
are setup costs that depend on the number of com-
partments as this represents the number of setups at
different shipping gates.

Type (2): MCVs reduce operational processing time.
Being able to transport multiple product segments
jointly offers the advantage of serving customers with
more than one product segment at one stop. This

means that the number of stops and setups for unload-
ing at the retail outlet can be reduced.
Going into more detail, unloading costs are setup

costs that occur for each stop of the vehicle at a retail
store and can be split into (a) general setup costs
and (b) compartment-specific setup costs. (a) Gen-
eral setup costs per stop (e.g., backward drive to
ramp, opening of truck) are independent of the actual
vehicle-compartment setting as they apply for pro-
cesses that are equal for both SCVs and MCVs. These
costs depend only on the number of stops (i.e., the
number of customers on a tour) and include the vast
majority of all decision-relevant unloading processes.
(b) Compartment-specific setup costs occur only for
the opening of compartment doors. These costs there-
fore depend on the actual number of compartments
used at each stop (i.e., the number of compartments
to be opened and closed at each stop). Compared to
costs (a), costs (b) are very minor costs as compartment
operations take only a few seconds (i.e., the closing
of the door). Moreover, they are almost the same if
multiple compartments are active. For these reasons,
it is only necessary for the unloading costs to differ-
entiate between the use of SCVs and MCVs, and not
the actual number of compartments. In other words,
costs (b) only differ significantly if one or at least two
compartments are used. As a consequence, one does
not need to differentiate unloading costs by customer
(e.g., if one customer receives products in two com-
partments and the other customer receives products in
three compartments). Also, the higher flexibility with
MCVs for building vehicle tours will reduce driving
distances compared to SCVs.

The different cost types (1) and (2) evoke a tradeoff
for the delivery of different product segments, which
needs to be considered in the VRP, particularly when
selecting the number of compartments per tour. On one
hand, adding further product segments to one vehicle
and thus activating additional compartments results
in higher loading costs. On the other hand, unloading
costs are reduced because of the joint delivery of differ-
ent segments with one tour. Note that the actual load-
ing and unloading—i.e., moving roll-cages in and out
of the truck—is required regardless of the number of
compartments and is not decision relevant in this case.
Of the total costs consisting of transportation, loading,
and unloading costs, the latter two often contribute up
to 20% of the total costs (see also Section 6).
Technical configuration of MCVs. Each MCV can be
customized showing different compartment settings.
This means that the number of compartments, their
size, and consequently, their capacity is not predefined
for each tour. Compartments can also not be used (i.e.,
deactivated) by removing the partitioning wall. The
smallest possible size of an active compartment is one
transportation unit (TU; e.g., one roll-cage or standard
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Figure 3. Illustrative Example of an MCVRP with a Flexible Number of Compartments and Flexible Compartment Sizes
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pallet) so that there is no loss in transportation capac-
ity due to the use of compartments. For instance, if the
vehicle capacity is 33 standard pallets, the compart-
ment sizes might be adjusted for each compartment to
the size of 0, 1, 2, . . . , 33 TUs, as long as the total vehi-
cle capacity is not exceeded. The latest generation of
MCV can be loaded from the back using a longitudinal
separation.
Decision problems to create tour plans with MCVs.
After having identified the impact on processes and
the distribution system, we would like to illustrate the
corresponding decision problem. Figure 3 displays the
decision problems in grocery retailing forMCVRP sup-
plying three customers with four product segments.
Customer locations L1 to L3 are depicted as circles and
the product segments A to D as squares. The number
within a square indicates the order quantity of this cus-
tomer for this particular product segment. In the exam-
ple, the order size for various product segments varies
between customers, so that, for example, customer 1
does not order segments B and C, and customer 3 has
no demand for segment D. Furthermore, each vehicle
has a capacity of five units, and the maximum num-
ber of compartments equals the maximum number of
product segments.
A possible tour plan for this particular problem is

shown on the right of Figure 3. Creating the tour
plan requires solutions for the product segment vehicle
assignment, the number of compartments per vehicle,
the order vehicle assignment, and the location sequenc-
ing. In this example, two vehicles are required to serve
the customers. If a certain product segment is assigned
to a vehicle, the associated square in the top left part
of the box is shown accordingly. Furthermore, if a cer-
tain order is assigned to a vehicle, the corresponding

product segment square with the order size is shown
below the corresponding location. Finally, the vehicle
routes are indicated at the edges. It also shows that
all compartment types can be combined in one vehicle
(e.g., compartment for product segments A and D in
tour 1, and compartment for product segments B and C
in tour 2), and that there is no predefined sequence
when activating compartments.

Summary. The VRP for grocery distribution with
MCVs with flexible compartments needs to include
further cost components to reflect the operational pro-
cesses. MCVs induce higher loading and stop costs at
the DC as multiple shipping gates may need to be
approached by one truck, lower unloading and stop
costs at the retail outlets, and potentially lower trans-
portation distances as customers may be supplied with
one truck that jointly transports different product seg-
ments. This tradeoff between time saving for combin-
ing orders and the expenses for additional loading
actions is another decision that needs to be evaluated
for MCVRP.

3. Related Literature
While there is a wide range of publications dealing
with the VRP and its various extensions (see Golden,
Raghavan, and Wasil 2008 and Toth and Vigo 2014),
there is only a small field of research for problems con-
cerning deliveries with MCVs (see Pollaris et al. 2015).

The literature on MCVRPs can be divided into two
streams with (1) fixed or (2) flexible compartments. As
we consider an MCVRP with flexible compartments,
we give a short overview of publications in (1) before
moving on to the relevant literature in (2).
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Table 1. Related Literature on MCVRP with Flexible Compartments

Authors Application Costs Solution Extension/comment

Chajakis and Guignard (2003) Food TC SH Including boxes and cooling costs
Derigs et al. (2011) Food and petrol TC SH Test of various algorithms
Pirkwieser, Raidl, and Gottlieb (2012) Food and petrol TC VNS Load building
Henke, Speranza, and Wäscher (2015) Waste TC VNS Discrete compartment sizes

Note. SH, Specialized heuristic; TC, transportation costs; VNS, variable neighborhood search.

(1) The first stream on fixed compartments deals
mainly with problems in the context of petrol distri-
bution. For instance, Brown and Graves (1981) develop
an automated real-time dispatch system for the dis-
tribution of petroleum products. Avella, Boccia, and
Sforza (2004) apply a branch-and-price algorithm for
the supply of fuel pumps. Other applications are, for
example, given by Lahyani et al. (2015), who published
a case study on the collection of olive oil of differing
qualities that is based on a branch-and-cut algorithm.
El Fallahi, Prins, and Wolfler Calvo (2008) study the
performance of a memetic algorithm as well as a tabu
search on classical VRP instances extended by the use
of compartments. Muyldermans and Pang (2010) com-
pare the use of MCVs in the area of waste collection.
Additionally, they analyze the improvement seenwhen
introducing MCVs compared to the use of SCVs. In
their approach, a guided local search procedure is used
to solve specific routing problems. A memetic algo-
rithm is also used by Mendoza et al. (2010) to solve
an MCVRP with stochastic demands. Mendoza et al.
(2011) further develop construction heuristics for their
approach. This involves one savings-based algorithm
and two new and more foresighted approaches that
focus first on routing and in a second step on cluster-
ing.Melechovský (2013) extends anMCVRP by consid-
ering timewindows and fleet size, solving the resulting
problems with a variable neighborhood search (VNS).
(2) Apart from the aforementioned publications on

fixed compartment sizes, there is only limited literature
available for MCVRPwith flexible compartments. Table 1
structures the related literature.
Chajakis and Guignard (2003) develop a model for

delivery of groceries and use a heuristic based on
Lagrangian relaxations. In addition to transportation
costs, they also consider cooling costs for the corre-
sponding compartments or boxes as decision relevant,
but no cost differentiation for the used vehicle configu-
ration is made. Moreover, they only focus on the order
vehicle assignment of the VRP and use an approxi-
mation of Fisher and Jaikumar (1981) for transporta-
tion costs. The maximum problem size examined is
restricted to seven vehicles and therefore only small
instances are being researched.
Derigs et al. (2011) are the first to present a com-

prehensive problem formulation for an MCVRP that

minimizes transportation distances. Their model is for-
mulated to address both the industry of food and
petrol distribution. Derigs et al. (2011) provide a solver
suite to tackle MCVRPs. Different algorithms success-
fully used on various VRP settings compound this
solver suite. It consists of construction heuristics (e.g.,
savings) and improvement heuristics such as LNS,
local search, and metaheuristics. The different solution
approaches are applied to a set of benchmark instances.
As a result, they identify a heuristic approach com-
bining multiple well-known algorithms for MCVRPs.
Based on Derigs et al. (2011), Pirkwieser, Raidl, and
Gottlieb (2012) introduced a VNS for theMCVRP espe-
cially focusing on the packaging aspect. This involves
a measure to distinguish packaging, leading to solu-
tions with a higher packing density. Additionally, a
new neighborhood structure is proposed to enhance
the search for improvements.

Similarly, Henke, Speranza, andWäscher (2015) con-
sider an MCVRP for the collection of glass waste
with flexible compartments that can only be discretely
varied—i.e., there are predefined possible sizes for
each compartment. For instance, if we assume a total
capacity of 100 TUs, the size of a single compartment
might be 50, 25, or 15 TUs. They apply a VNS to
solve the problem. In their work, they also consider the
assignment of product types to compartments, which
leads to different vehicle settings. The case where fewer
compartments than product types are available is espe-
cially considered. However, in contrast to the MCVRP
with loading and unloading costs, the compartment
setting is only influenced by the associated delivery
distances and not by the choice of compartments.
Summary. In all of the papers presented, the cost
of transportation is the only cost driver that has
been taken into account. No differentiation was made
between vehicles with one or more compartments and
hence the related costs for each additional compart-
ment used. Consequently, no operational processes
were considered that depend on the number of com-
partments. In most cases, only randomly generated
problem settings have been considered, and there is
a lack of applications with empirical data to date. We
consider Derigs et al. (2011) as a benchmark (for the
special case without loading/unloading costs) as they
regard a similar problem setting and especially as they
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formulate a model for the use of completely flexible
compartments.

4. Model for the MCVRP with Loading and
Unloading Costs

This section develops the model for minimizing load-
ing, transportation, and unloading costs related to
vehicle routing with MCVs—that is, finding the cost-
optimal tours by assigning orders of specific prod-
uct segments to vehicles and compartments, and
building optimal delivery tours. We formulate the
MCVRP_LU, which is distinguished by an objective
function accounting for Loading and Unloading costs
depending on the differing number of compartments
per vehicle.
The MCVRP_LU can be formulated as follows. Let

G � (L,E) be an undirected, weighted graph consisting
of a vertex set L � {0, 1, . . . , n}, representing the loca-
tion of the DC ({0}) and the locations of n customers
cust (Lcust� {1, . . . , n}), and a set of edges E� {(i , j): i , j ∈
L, i < j}, representing the connection between differ-
ent locations. A nonnegative distance cost costi j ∈ E is
assigned to each of these edges. It is assumed that all
distances satisfy the triangle inequality and each tour
starts and ends at the DC.

Orders are defined by customers, product segments,
and quantity. The set of orders is denoted by O and the
set of product segments by P. In our case, a product
segment consists of products that belong to one tem-
perature zone and hence products that can be trans-
ported jointly within one compartment. Each customer
j � 1, . . . , n may place one or several orders, each refer-
ring to a single product segment. For each order o ∈
O, customer(o) ∈ Lcust denotes the customer that placed
the order, product(o) ∈ P the product segment ordered,
and quantity(o) > 0 the quantity ordered, so that for
each order a positive demand exists. The orders have
to be collected from the DC and transported to the
customers. A customer may be visited several times
(i.e., during different tours) to deliver different product
segments. Each customer, j ∈ Lcust, places at least one
order, and there is at least one order for each product
segment, p ∈ P. This also means that not all customers
order from each segment. A split delivery of one prod-
uct segment of a single customer is not possible.
For the purposes of transportation, a set of vehi-

cles V is available, each equipped with the identical
total capacity (vehCapa > 0) and a set of compartments
denoted by C. The set of available vehicles is assumed
to be sufficiently high to meet customer demand. Total
vehicle capacity vehCapa can be divided into a limited
number c̄ of compartments, c̄ ≤ |C |, for each vehicle,
v ∈ V . In the simplest case, the entire vehicle capac-
ity is used for one compartment. If more than one
compartment is used, the size of each compartment is
determined by the order quantity assigned to it. This
means the assignment of orders to one compartment

influences the possibility to assign further product seg-
ments to other compartments as total capacity is lim-
ited by vehCapa. As a consequence, compartment sizes
are flexible between 0—i.e., the compartment is not
used on the vehicle—and the vehicle capacity. Any
loss in capacity is eliminated because of the flexible
adjustment and the use of different compartments. Fur-
thermore, the number of product segments and the
associated number of compartments on each vehicle
is decision relevant. It has to be taken into account
that different product segments cannot be mixed in the
same compartment.
Finally, all orders assigned to a compartment on a

vehicle have to be sequenced to determine the tour of
the corresponding vehicle. Thus, a solution with m ∈
tours is created, equivalent to the use of m vehicles. For
instance, a tour k has the form tk � (0, stop1 , . . . , stopl , 0),
with 0 as the DC and stop j ∈ Lcust, j ∈ {1, . . . , l}.
The model developedminimizes the sum of loading,

transportation, and unloading costs by selecting the
number of compartments per vehicle, assigning prod-
uct segment–specific orders to compartments, and cre-
ating tour plans such that vehicle capacities are met.
As a result, the following decisions have to be taken
simultaneously.

• Sequencing delivery tours expressed by binary vari-
able bi jv , indicatingwhether vehicle v travels from loca-
tion i to j, and integer variable uiv , determining the
position of customer i on the tour of vehicle v (uiv ∈
{0, . . . , |L |});

• Assigning orders to vehicles and compartments ex-
pressed by binary variable xovc , indicating whether
order o is delivered by vehicle v in compartment c. This
decision includes which customer orders will be com-
bined and therefore which locations have to be visited
jointly;

• Determining the number of compartments on each
vehicle denoted by the binary auxiliary variable avc ,
which is set equal to one, if compartment c ∈ C is used
for transportation. Note that this decision is already
included in xovc , as

∑
o∈O xovc ≤ |O | · avc ; the associated

number of active compartments dv of each vehicle v is
defined accordingly by dv �

∑
c∈C avc .

Note that the sequencing and order assignment deci-
sions are taken in each VRP, while the assignment to
compartments and selection of the number of com-
partments define the uniqueness of the MCVRP_LU.
As the evaluation of loading/unloading processes is
a central aspect of the MCVRP_LU, we further intro-
duce loading costs lcdv

and unloading costs ulcdv
, both

depending on the number of compartments dv used
on each vehicle, v ∈ V . More specifically, lc and ulc can
be regarded as cost vectors representing costs for each
vehicle, and their value is determined by the vehicle
setting—i.e., the number of active compartments.
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The objective function and constraints of the model
are formulated as follows.

min! Total Costs

�
∑
v∈V

lcdv
+

∑
i∈L

∑
j∈L

costi j · bi jv +ulcdv

∑
i∈L

∑
j∈Lcust

bi jv (1)

subject to∑
j∈Lcust

b0 jv ≤ 1 v ∈V, (2)∑
i∈L

bihv �
∑
j∈L

bh jv v ∈V, h ∈ L, (3)

uiv − u jv + |L | · bi jv ≤ |Lcust | v ∈V, i ∈ L, j ∈ Lcust , (4)
u0v �1 v ∈V, (5)∑
o∈O

∑
c∈C

quantity(o) · xovc ≤ vehCapa v ∈V, (6)∑
v∈V

∑
c∈C

xovc �1 o ∈O , (7)∑
o∈ordCust( j)

∑
c∈C

xovc ≤ |O | ·
∑
i∈L

bi jv v ∈V, j ∈ Lcust , (8)∑
o∈O

xovc ≤ |O | · avc c ∈C, v ∈V, (9)∑
o∈Op

xovc ≤ |O | · (1− xrvc) v ∈V, c ∈C,

p , q ∈P: p, q , r ∈Oq , (10)
avc ∈ {0,1} v ∈V, c ∈C, (11)
bi jv ∈ {0,1} i , j ∈ L, v ∈V, (12)
uiv ∈ {1, . . . , |L |} i ∈ L, v ∈V, (13)
xovc ∈ {0,1} o ∈O , v ∈V, c ∈C. (14)

The objective function (1) of the MCVRP_LU min-
imizes the total costs across all vehicles v. The first
term considers total loading costs, which depend on
the number of active compartments dv on each vehi-
cle and therefore on the number of segments delivered
within each tour. Note that the loading costs represent
setup costs for the approach of different shipping gates.
These costs occur for each vehicle when an additional
compartment and product segment is added to the tour
(see Section 2). In the second term, the total transporta-
tion costs are calculated. They are represented by the
distance costs costi j between locations i and j, and the
chosen travel sequence from location i to j of vehi-
cle v, indicated by the binary variable bi jv . Finally, the
third term represents the total costs for unloading at all
customers supplied. The total costs for unloading con-
sist of the vehicle-compartment-dependent costs ulcdv

multiplied by the number of stops on the correspond-
ing tour. Since the start and end of each tour are not
counted as stops, only set Lcust has to be considered for
the second sum. The unloading costs differ between
vehicles with one and more compartments (see Sec-
tion 2), also represented by the number of compart-
ments dv on each vehicle. It is therefore not necessary

to differentiate the unloading costs by the number of
compartments needed for each customer. It is impor-
tant to note that because of the subscript that involves
a decision variable and the last term of the objective
function, the objective function presented is nonlinear.
Constraints (2) and (3) ensure that every vehicle v

can only depart once from the DC (i�0) and that every
vehicle that arrives at a customer location j also departs
from there. Restrictions (4) and (5) are used to elimi-
nate subtours by indicating the position of customer i
on the tour of vehicle v and setting the DC as the start
and end point of each tour. This is imposed by the fact
that the position of customer j is higher than that of i, if
the vehicle v travels from i to j. Constraints (6) ensure
that the orders loaded into all compartments of vehi-
cle v do not exceed the vehicle capacity vehCapa. Each
order o can only be assigned to one compartment c
on a vehicle v, and therefore Equations (7) are needed.
With constraints (8) it is ensured that customer j has
to be visited if an order o of customer j is loaded on
vehicle v. Here, the orders of customer j are denoted
by ordCust( j): {o ∈ O | customer(o)� j}. Constraints (9)
ensure that compartment c on vehicle v is set to active if
an order o is assigned to it. The incompatibility restric-
tions (10) make sure that incompatible orders from dif-
ferent segments p and q, p , q ∈ P are not assigned to
the same compartment. This is done by ensuring that
an order o from the set of orders Op , which comprises
all orders of product segment p, is not combined in
one compartment with an order r from the set Oq ,
which comprises all orders from product segment q.
Last, the domains for the decision variables are defined
by (11)–(14).

5. Solution Approach
As an extension of the CVRP, theMCVRP_LU is anNP-
hard optimization problem, and one has to resort to
heuristicmethods to solve practical problem sizes of up
to 400 store deliveries. For this, we choose the Savings
algorithm by Clarke andWright (1964) as the construc-
tion heuristic and an LNS as an improvement heuristic
to solve the MCVRP_LU. At this point, we would like
to note that in our case, the search within the LNS is
based on themovement of orders between vehicles and
not—as in classical VRP formulations—on the move-
ment of customers. In the following, we outline the
reasons for our choice of LNS to solve our problem and
give a detailed description of the approach.

5.1. Heuristic Selection and Motivation
We build our solution approach on the investigations
of Derigs et al. (2011). They tested combinations of dif-
ferent heuristics and found that the LNS shows the
best performance for MCVRP. They combine several
remove and insertion operators for their LNS approach
and demonstrate that this can obtain good solutions
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Figure 4. Algorithmic Structure

Stage 1: Construction heuristics

Savings Algorithm

Stage 2: Improvement heuristic

Large Neighborhood Search

Stage 2.1 Remove
Operator: Shaw

Stage 2.2 Insert
Operator: Regret-k

Stage 3: Evaluation

Record-To-
Record Travel

Control
Mechanism

for theMCVRP (without loading and unloading costs).
Looking at the operators implemented within the LNS,
the Shaw Removal (Shaw 1997) has been identified
as the most promising removal process. Among the
insertion operators, a regret insertion showed to be
essential. Inspired by these results, we chose to imple-
ment an LNS based on Shaw (1997) for the removal of
orders and Ropke and Pisinger (2006) as a regret inser-
tion. These operators have been adjusted to exactly fit
the requirements of the MCVRP_LU. Figure 4 illus-
trates the algorithmic structure of our approach. Sec-
tion 5.2 presents the procedures used within the solu-
tion approach.

5.2. Solution Steps
The individual steps of the selected heuristic approach
are presented below. The operators within the LNS
as well as the governing process constructed are
explained in greater detail. Finally, the algorithm used
is presented.
Stage 1: Construction Heuristic. The parallel Savings
algorithm by Clarke and Wright (1964) is used to cre-
ate an initial solution. It is a widely applied construc-
tion heuristic also forMCVRPs (e.g.,Muyldermans and
Pang 2010), and it is able to produce a fast feasible solu-
tion. First, one location route is built for each order.
Second, the savings effect of combining any two routes
is calculated by evaluating the change in distance. For
that, the savings value saving, with savingi j � disti ,0 +

dist0, j−disti , j , is calculated for every order, where 0 rep-
resents the DC and disti , j denotes the distance between
two customer locations i and j. A savings list is created
after evaluating the reduction in distance for all pairs.
Then, tours that adhere to the constraints are combined

Figure 5. Pseudocode for Stage 2.1 Shaw Removal
Input: Number of orders for removal r

Randomly choose one order o for removal from all orders O
while Number of removed orders o < Number of orders for

removal r do
Step 1: Randomly select one order o among the already

removed orders O−

Step 2: Rank all remaining orders s ∈O+ in descending order
based on Ros that is calculated with Equation (15)

Step 3: Draw a random number z ∈ [0,1) and remove the order s
which lies zα down the ranking

end while

by connecting last and first orders starting with the
highest saving and working down the ordered savings
list. The parallel version has been chosen as it tends to
provide better solutions applied to a CVRP than the
sequential approach (Laporte 2009).

Stage 2: Large Neighborhood Search. The LNS is used
to ruin and recreate large parts of the results already
obtained to achieve a solution improvement. Our LNS
is based on the model formulation given in Section 4,
so we evaluate our results using Equation (1).

Stage2.1:ShawRemoval. We chose the ShawRemoval
presented by Shaw (1997) as the remove operator as
it fits the requirements of the MCVRP_LU well since
it enables us to consider orders with a similar struc-
ture. This is an essential characteristic of the search
procedure as the combination of different product seg-
ments leads to an increase in total costs. Beyond that,
the Shaw Removal showed the best performance of all
removal procedures within the solver suite applied by
Derigs et al. (2011).
The removal approach is based on a defined sim-

ilarity measure Ros between any two orders o and s
(either from the same customer or different customers)
with o , s ∈ O and a randomized selection. In total, a
defined number of r orders has to be removed from
all orders O. In the following, we divide the set of
all orders O into removed orders (O−) and assigned
orders (O+), such that O+ ,O− ⊆ O, O+ ∪O− � O, and
O+ ∩O− � �. Note that all orders have already been
assigned to a tour after the completion of the construc-
tion heuristic (Stage 1). The first order o removed is
chosen randomly from all orders O. Further orders are
gradually removed according to a defined procedure
based on the calculated similarity measure Ros . The
pseudocode of the removal process is displayed in Fig-
ure 5 and detailed in the following.
After one order o has been selected randomly in

Step 1, the similarity of orders is calculated in Step 2.
The similarity index for all orders is calculated using
the measure Ros that is defined in Equation (15). It
expresses the similarity of two orders o and s, with
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o ∈O− and s ∈O+. The higher the calculated value of
Ros , the less similar the orders compared

1
Ros

:�φ · costos

costmax
+ω ·prodos

+ψ ·
|quantity(o)−quantity(s)|

quantitymax
. (15)

The measure Ros involves three metrics for the sim-
ilarity of two orders in terms of distance cost, prod-
uct segment, and order size. Weights φ, ω, and ψ are
applied to represent the importance of each of the three
components.

The first metric is the distance cost between customer
locations, which represents the costs related to trans-
portation and unloading. A high similarity among
orders means that in this case orders are from the same
customer (and have a positive impact on the unloading
and transportation costs) or from customers who are
located in close proximity (and have a positive impact
on transportation costs). The similarity of two orders
in this dimension is expressed by the ratio of costos and
costmax. The first represents the distance costs between
the location of the customer who placed order o and
the location of the customer who placed order s. The
latter represents the maximum distance cost between
any two customer locations.
The product segment is the second metric in which

prodos indicates whether the orders belong to the same
product segment. This implies that the orders can be
assigned to the same compartment. It is defined as

prodos :�

{
1 if segment(o), segment(s),
0 otherwise.

(16)

A combination of two orders (o , s), o , s ∈O that are
compatible (i.e., that belong to the same segment) and
can thus be assigned to the same compartment have a
higher similarity (i.e., a lower value for Ros). The load-
ing of more product segments results in higher load-
ing efforts, so the loading costs incurred by inserting
orders from different product segments are implicitly
evaluated in the similarity measure Ros .
Finally, the order size represents the fact that swap-

ping orders of the same size tends to provide feasible
solutions more quickly. This is expressed by the order
quantity difference between orders o and s, where
quantity(o) and quantity(s) are the quantity ordered
and quantity(max) is the highest order quantity over all
orders.
In Step 2, the orders are ranked according to simi-

larity in descending order—i.e., the most similar order
at the top and the least similar order at the bottom.
Then, the next order for removal needs to be selected
in Step 3. This selection process is based on the random
number z ∈ [0,1) and a parameter α. Thus, for the selec-
tion of a new order, it is not the order with the highest

Figure 6. Pseudocode for Stage 2.2 Regret-k Insertion
Input: Degree of regret k

while Not all removed orders o, o ∈O−, are reinserted to O+ do
Step 1: Calculate regretk for each removed order o
Step 2: Insert order o with highest value of regretk

end while

similarity that is chosen but one that can be found zα%
down the similarity ranking. If the resulting position
is not integer, the result is rounded to the next integer
value.
The parameter α can be seen as a parameter for

diversification. If α is chosen to be 1, the similarity
is not taken into account and the choice of orders is
completely random. The higher the value of α is set,
the more decisive is the calculated similarity. In other
words, the choice of a high value for α corresponds to
an intensification, while a low value provides a more
diversified removal. After r orders are removed, the
algorithm continues with Stage 2.2 and the reinsertion.

Stage 2.2: Regret-k Insertion. Following the approach
by Ropke and Pisinger (2006), we reinsert removed
orders o, o ∈O− with a regret-k operator to the set O+.
The pseudocode is displayed in Figure 6 and detailed
in the following.
We modified the regret insertion of Ropke and

Pisinger (2006) by accounting for all costs considered in
the MCVRP_LU. Apart from the transportation costs,
this also includes the influence on loading and unload-
ing costs if an order is assigned to a tour. In Step 1, the
regret value regretk is calculated for each removed order
o ∈ O− using Equation (17), with k ≥ 2. It is the sum
of differences between the best option (represented by
the lowest total tour costs totalcostv1

) and k-best options
(represented by totalcostvu

). Here, totalcostvu
are the total

tour costs of the uth best tour v if order s is inserted
there and totalcostvu

≤ totalcostvt
, ∀u < t

regretk :�
k∑

u�2
(totalcostvu

− totalcostv1
). (17)

In Step 2, the order o with the highest regret value is
chosen to be inserted into the tour that is best suited to
it. This means the insertion does not just consider the
actual state but also uses the regret criterion to evaluate
possible future costs.
After the order s with the highest regret is inserted

into O+, the regret value is recalculated for each order o
on the removal list O−, as the insertion options might
have changed. The insertion procedure is thus iterated
until all removed orders o ∈O− are allocated to a new
position in the tour planning, and hence O− � � and
O+�O.
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Stage 3.1: Record-To-Record Travel. To govern the
process of finding a solution improvement using the
LNS, the Record-To-Record Travel (RRT) metaheuristic
is used. It was shown that the RRT delivers good solu-
tions for the MCVRP. The RRT is defined according to
Dueck (1993) and controls the improvement steps by
setting a limit for the acceptance of declining solution
values. This means that a solution is only accepted if it
lies within a defined deviation D from the best result
found so far. Even though the RRT approach is quite
simple, it does not seem to be inferior to other methods
used (Derigs et al. 2011). The scheme of the algorithm
is as follows.
1. Check if new solution S′ ≤ best solution (record)

Sbest+allowed deviation D
2. If true: accept new solution S′

3. Else: keep old solution Sbest
4. Additionally: If new solution S′ < best solution

Sbest, then Sbest :�S′

Stage 3.2: Control Mechanism. For the regulation of
the application runtime, additional parameters are in-
tegrated compared to the approach applied by Derigs
et al. (2011). If the number of unsuccessful iterations
reaches a reset border, the next iteration of LNS is run
with a high value (e.g., one half of the order list) for
the number of orders removed (r) to create a com-
pletely different neighborhood, thus aiming to avoid
local minima. A limit is set for the maximum num-
ber of succeeding fruitless iterations to terminate the
algorithm.

Overview. The procedure of Stages 1–3 denoted above
has been incorporated into the LNS, and the algorith-
mic structure can be seen within the complete LNS
description in Algorithm 1. The solution representa-
tion includes all critical information for the built tours.
This involves tour number, sequence of customers vis-
ited together with the corresponding orders, number
of compartments, and capacity used.

Algorithm 1 (Large neighborhood search)

Input: (Initialize solution S, set remove parameter r,
set regret parameter k)

Sbest :�S
Shaw Removal SR(r) according to Stage 2.1
Regret Insertion RI(k) according to Stage 2.2
Set allowed deviation according Record-To-Record
Travel RRT( )

while improving = true do
S′ :�S
Remove r orders from S′ using SR(r)
Reinsert removed orders into S′ using RI(k)
if ObjectFunction(S′)<ObjectFunction(Sbest) then

Sbest�S′

S�S′

Reset number of unsuccessful runs to zero

else if ObjectFunction(S′) ≤ObjectFunction(Sbest)
plus accepted deviation D then

S :�S′
Increase number of unsuccessful runs

else
Increase number of unsuccessful runs
Continue with original solution S

end if
if Number of unsuccessful runs� limit then
Set improvement false

else if Number of unsuccessful runs� reset
border then

Remove high number of orders from S using
SR(r)

Reinsert removed orders into S using RI(k)
end if

end while
return Sbest

Summary. As the solution of practically relevant prob-
lem sizes is a central point of our research, we solve
the MCVRP_LU with an LNS as it has shown good
results in otherMCVRP instances and as we solve large
problem sizes with up to 400 customers. To express
the particularities of the MCVRP_LU with different
product segments that can be transported jointly, our
search within the LNS is based on the movement of
customer- and segment-specific orders between vehi-
cles. We decided to use the operators Shaw Removal
and regret insertion. In contrast to Derigs et al. (2011),
these are detached from other operators to formulate
a leaner LNS version for the MCVRP that is also able
to provide a good solution quality, as we will show
in Section 6. We decided to use this leaner LNS ver-
sion as we found that other remove operators could
not provide a significant contribution to the search
procedure. This is because of the particular problem
structure with multiple orders from the same customer
and also the direct relation of orders to product seg-
ments. The removal operator of Shaw (1997) has been
adjusted to fit the requirements of the MCVRP_LU
well by measuring similarities for transportation and
loading/unloading costs, and specifically by introduc-
ing a product segment similarity. The regret insertion
of Ropke and Pisinger (2006) is extended to take into
account total tour costs, including loading, unloading,
and transportation costs. Furthermore, we tailored the
RRT and termination criteria to the solution approach.

The use of these termination approaches together
with different parameter settings for intensification/
diversification allows a very flexible approach to either
focus on runtime or solution quality. Greater diver-
sification can be achieved in the removal process by
removing a large number of orders r and high random-
ization with large α, in the insert process with a high k
value, and in the RRT with a high limit of unsuccess-
ful runs and a high accepted deviation D from the best
current solutions.
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Table 2. Overview of Numerical Tests

Solution
Section Model approaches Data applied

6.1 MCVRP LNS (Derigs et al. 2011) Benchmark data
6.2 MCVRP_LU LNS Randomly

generated data
6.3.1 MCVRP_LU, LNS Case study

MCVRP∗,
SCVRP_LU

6.3.2 MCVRP_LU, LNS Randomly
MCVRP∗ generated data

6. Numerical Applications
This section presents numerical experiments to evalu-
ate our solution approach and the benefits of the
extended model. We compare our modeling approach
(MCVRP_LU) with alternative models where load-
ing/unloading costs are disregarded (denoted as
MCVRP) or added ex post (denoted as MCVRP∗). Fur-
thermore, we analyze the different solution approaches
(our LNS, approach proposed by Derigs et al. 2011)
and apply these to different data settings (benchmark
data, randomly generated data, and case study). Fur-
thermore, to assess the effects of using MCVs instead
of SCVs, we compare the MCVRP_LU to a SCVRP_LU,
where only one compartment is allowed. Table 2 sum-
marizes the different tests.
In Section 6.1, we apply our solution approach to the

benchmark data available in the literature (see Derigs
et al. 2011), but without loading/unloading costs. This
allows us to demonstrate that our algorithm gener-
ates reasonable results and is therefore suitable. In Sec-
tion 6.2, the performance of our approach is exam-
ined for randomly generated problem instances. Here,
we study the results of our LNS algorithm for larger
problem sizes to obtain further insights into runtime
and the influence of different data settings. Finally,
Section 6.3 analyzes the effect of introducing load-
ing/unloading costs by comparing the MCVRP_LU
results with the MCVRP that only minimizes trans-
portation costs. This has been carried out in two steps.
First, we used data obtained from a case study to
research the effect of the additional cost factors in prac-
tice. Second, we compare the two models for randomly
generated data to gain deeper insights into the main
drivers for potential savings and derive managerial
rules.
Each analysis performed is based on 100 applica-

tions of the LNS for the specified problem instance.
The computational results were obtained on a 1.8 GHz
PC with 8 GB RAM running on Windows 8.1. The
implementation was realized in Java. The algorithm-
specific parameters are chosen in the following way.
For the Shaw Removal, the weights for the calculation
of the similaritymeasure Ros were set to φ�ω�0.4 and

ψ�0.2. This choice of weights is based on the higher
influence of distance costs and product segments com-
pared to order size. The value for the selection in the
ranking is set to α�4. Good results have been obtained
using this setting. The number of removed items r is
chosen randomly using a uniform distribution with
limits dependent on the respective problem size. The
degree for the regret-k operator has been set at k �2 as
a standard value. Furthermore, the termination limit is
2,000 and the limit for a solution reset is 500. The max-
imum deviation D allowed for the RRT equals 0.9% for
runtime tests. The impact of these algorithm-specific
parameters is justified and further elaborated using
sensitivity analyses.

6.1. Performance Analyses Using Benchmark Data
To verify the effectiveness of our implementation and
the eligibility of the chosen operators, we applied our
approach to instances provided by Derigs et al. (2011).
They extensively evaluated different heuristics for the
MCVRP and can be seen as a performance bench-
mark.We compare the solution of our model—without
loading and unloading costs—with the best solutions
found by Derigs et al. (2011). The available benchmark
set concerning food distribution comprises 75 instances
with 10, 25, 50, 100, and 200 customers and two or three
product types. As indicated in Derigs et al. (2011), all
data can be found at http://www.ccdss.org/vrp/. The
main characteristics of the instances are summarized
in Table 3.
We compared our results to the best overall solu-

tions generated by the heuristic solver suite used by
Derigs et al. (2011). To compare the results for identi-
cal applications, it is necessary to characterize the data
instances. For our comparison, we separate the simu-
lated instances into three different groups to set the
focus on the relevant settings.

• Group A: Comprises 27 instances that have a com-
parable structure to our problem application in terms
of order sizes, number of orders per customer, and
number of orders ultimately assigned to a vehicle.
In practice, usually not more than six customers and
14 orders are on one delivery tour. This is also the case
in these data instances.

• Group B: Comprises 38 instances with multiple
orders of the same segment of one customer in the
same order cycle (e.g., four orders for frozen, two
orders for fresh). In retail practice, suchmultiple orders
of one product segment would be summarized in one
order. The practical relevance of such instances is more
restricted as a result.

• Group C: Comprises 10 instances with very small
order sizes compared to the vehicle capacity so that up
to 30 orders may be assigned to the vehicle. These data
instances do not relate to our problem setting.

http://www.ccdss.org/vrp/
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Table 3. Instance Characteristics from Derigs et al. (2011)

Characteristic Values Comment

Number of customers 10, 25, 50, 100, 200 —
Number of orders 45–796 Depending on capacity and compartments
Number of compartments/segments 2, 3 —
Vehicle capacity 600, 800, 1,000, 3,000, 9,000 —
Total demand 1,000 Demand split over compartments:

(0.53, 0.47) and (0.68, 0.24, 0.08)

Figure 7 summarizes the comparison. For related
problem settings as in Group A, we were able to show
that the average deviation from the best solutions is
only 0.14%. Additionally, taking out the two instances
with the highest deviation (around 1.0%), the average
deviation of the remaining instances equals 0.05%. For
Group B, an average deviation of 0.21% was achieved,
and Group C shows a deviation of 1.1%. Regarding the
whole range of instances tested, for 16 instances a bet-
ter solution and for another 18 the same solution was
found, as provided by Derigs et al. (2011). Contemplat-
ing the numerous additional operators used by Derigs
et al. (2011), it was thus shown that our leaner solution
algorithm within the governing process constructed is
able to produce fairly good results.
Assessing the overall structure of the benchmark

data, we would like to highlight several points. First,
the data is based on identical order sizes and product
segments across all customers. Second, the set is lim-
ited to 200 customers andup to three product segments,
yet retailers may serve 400 or more customers with up
to four or five different temperature-specific segments.
Third, thedatadonot include loading/unloading costs,
as this was not part of the decision problem.

6.2. Performance Analyses with Randomly
Generated Instances

6.2.1. Data Simulation and Parameter Setting. We lev-
eraged data from a case study with a large German
retailer to inform the data-generation process. To fully
assess the computational efficiency of our approach,
we randomly generated new problem instances with
the intention of mapping actual requirements given
in practice. This involves more customers and product
segments, as well as an individual order structure for
each customer. This means that all customers neither
order the same total volume nor submit orders for the
same segments. Moreover, standardized truck capaci-
ties for our field of application have been chosen. For
all tests, vehicles with a capacity of 33 TUs were used.

Test instances of differing sizes have been generated
for each analysis with regard to the number of cus-
tomer locations and/or orders. Every order comprises
one product segment, and every customer places at
least one order. The minimum order size is one TU.
The number of customer locations n, number of orders |O |,

and number of product segments |P | have been taken
as controllable parameters, and their respective values
are denoted in Sections 6.2.2–6.2.4. The order quantity
was randomly chosen and is indicated in each section
using average order size. The actual orders of all prod-
uct segments at all locations were generated by means
of the following procedure. According to the number
of total orders and customers, a list of all orders was
created where each order had a randomly assigned
number within aminimum andmaximum order quan-
tity. For example, for an average of seven TUs, orders
between one and 14 TUs were chosen. Product seg-
ments were randomly allocated to orders following
a predefined share of each segment and allowing at
most one order of each product for each customer. The
distance between customer locations is also randomly
generated, and the ranges are indicated in each sec-
tion. The specific parameters for distance, loading, and
unloading costs are calculated as follows. The distance
costs include all relevant costs such as depreciation,
insurance, truck driver, maintenance, diesel, etc. Fixed
costs were allocated based on lifetime mileage of a
truck to obtain costs per distance unit. Time parame-
ters for the loading and unloading costswere obtained by
empirical data collection. These values originate from
the process analysis realized in cooperation with the
retailer. In this analysis, representative tours have been
accompanied and the times for the different processes
have been measured by a time and motion study. We
refer to our description in Section 2 for the processes
and additional handling involved. All measurements
of our case study for loading/unloading costs have
been translated into monetary terms by evaluating
the times obtained with the corresponding personnel
costs. The exact parameters are subject to nondisclo-
sure agreements with the retailer. We therefore report
the relative cost parameters in relation to the distance
costs costi j per distance unit. The loading costs of one
compartment are amultiple of 2.60 of the distance costs
of one distance unit (e.g., if a transport of 1 km costs e1,
the costs of loading one compartment are e2.60). The
unloading costs of an SCV are a multiple of 2.05. The
further cost ratios are given in Table 4. Note that these
values may be retailer- and DC-specific and may only
serve as a guideline for the cost parameters in a general
setting. For other DCs these may vary significantly—
e.g., if the temperature-specific warehouses are not at
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Figure 7. (Color online) LNS Algorithm vs. Best Solution of Derigs et al. (2011)

Group A

Deviation in % 

Group B

Deviation in % 

Group C

Deviation in % 

−0.5 0 0.5 1.0 −1.0 0 0.75 1.75 0 0.75 1.75 2.75

Table 4. Applied Cost Factors for MCVs (in % of SCVs)

Loading Unloading
Number of costs per costs per
compartments c compartment c customer j

2 206 112
3 306 112
4 406 112

Table 5. Average Runtime for Increasing Problem Sizes
(in Seconds)

Customer n 10 50 100 200 400
Order o 20 100 200 400 800
Segments |P | 2 4 2 4 2 4 2 4 2 4
rmin 2 5 5 5 5
rmax 5 15 30 50 100
Savings runtimea <1 <1 <1 <1 <1
LNS runtime <1 <1 14 4 25 26 144 144 197 285
Total runtime <1 <1 14 4 26 27 145 145 198 286

aEqual for two and four segments/compartments as savings does
not consider the number of compartments.

the same location and there is a longer travel time
between gates.

All of the instances used and the corresponding solu-
tions for our tests with randomly generated data can be
found at http://www1.ku.de/wwf/pw/forschung/.

6.2.2. Runtime Development for Large, Randomly
Generated Instances. Table 5 summarizes the results
and further information on the instances for the second
set of experiments, where a set of large instances with
up to 400 customers was generated. Since the number
of removed orders r within the LNS has a great influ-
ence on computational times, the runtime is analyzed
in relation to r. For all runtime analyses, the distances
between any two customers and/or the DC are set at
between 11 and 80 km and the average order size has
been fixed at seven TUs.
The Savings algorithm performs very well for all

instances and therefore provides fast initial solutions
as desired. The runtime development of the LNS shows

a moderate increase. The first increase can be observed
for the set of 200 customers. However, with a runtime
of around 2.4 minutes, this is still an acceptable result.
It also holds true for the instances with 400 customers.
Thus, it can be confirmed that the algorithm provides
results for practically relevant problem sizes within
reasonable time boundaries.

6.2.3. Sensitivity Analysis with Algorithm-Specific Pa-
rameters. As further studies have shown, the increase
in runtime for the LNS is mainly driven by the param-
eter setting and not by the problem size. Therefore,
a sensitivity analysis on the number of removals, the
degree of regret, and the solution deviation allowed
was performed to examine the corresponding runtime
and solution performance. For the parameter analyses,
the set of 200 customers, 400 orders, and two product
segments introduced for the runtime analysis in Sec-
tion 6.2.2 was chosen as the standard set. All further
instance information is therefore as given above. The
results are displayed in the enumeration below and
summarized in Table 6.
(1) Shaw Removal: number of removals r. As the

main driver for the operations to be performed within
the LNS, r has a significant influence on the runtime as
well as the solution quality of the LNS. The variation
of runtime values grows rapidly for a higher r. Best
results can be observed using a random choice of r.
This can be attributed to the combination of intensifi-
cation, using a small number of removals and diversi-
fication by using a higher value for r.
(2) Regret-k Insertion: degree of regret k. The aver-

age runtime decreases as the degree of regret increases.
As the total costs are also shown to be the most exces-
sive for the highest regret value, this can be justified
by a decreasing number of iterations performed by the
LNS. With a higher value for k, the algorithm ceases
to find solution improvements earlier and therefore the
termination limit is reached faster. It clearly shows that
the degree of regret should not be set too high as this
leads to a significant decline in solution quality.

http://www1.ku.de/wwf/pw/forschung/
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Table 6. Sensitivity Analysis

Runtime (seconds) Change in total costsa

Number of removals r Ø LNS Min. LNS Max. LNS Overall min (%) Ø Min. (%)

5 6 2 14 +2.5 +3.6
25 94 28 202 — —
50 371 145 808 −0.1 +0.1
Random 144 66 280 −0.3 +0.2
Degree of regret k

2 94 28 202 — —
4 77 19 211 +0.9 +3.4
8 18 11 236 +5.9 +7.5

Allowed deviation D
0.4% 113 45 200 −4.0 −4.0
0.6% 111 50 238 −2.7 −2.6
0.9% 94 28 202 — —
1.2% 68 20 127 +1.9 +2.4
1.4% 52 18 99 +3.1 +3.5
aReference values are r �25, k �2, and D �0.9%.

(3) Record-To-Record Travel: allowed solution devi-
ation D. Runtime decreases with an increasing value
for the deviation allowed. The savings in minimal costs
is remarkable when comparing the different deviation
values. It lies between −4.0% and +3.1% compared to
the reference setting of the RRT. Additional tests with a
smaller instance of 100 customers have shown that the
influence of D is highly sensitive to problem size and
cost. More specifically, a higher value for D showed
better results for smaller instances.
Summary. In general, the LNS algorithm reveals lower
costs for iterations with longer computation times.
However, the positive correlation of runtime and min-
imum costs cannot be regarded as a rule. Only runs
with a significantly lower runtime showed inferior
results. The remove operator r has a significant impact
on runtime and minimum costs. Overall minimum
costs could be obtained by a random choice of r. The
degree of regret k has a limited impact on runtime but
a significant impact onminimum costs. The acceptance
level of the RRT has a moderate impact on runtime but
no general impact on minimum costs can be observed.
6.2.4. Sensitivity Analysis to Assess Impact of Order
Structure. In addition to the parameter analysis, the
last runtime test focuses on a change in order struc-
ture for the test instance used. Three product segments
were used for this, and the average order size has been
modified. Except for the order sizes, the same data set
as in Section 6.2.3 is applied.
A change in order size has shown a significant

impact. As displayed in Table 7, a decrease in order
quantity leads to an increase in runtime for the LNS.
For an average of nine TUs, the algorithm requires the
shortest average runtime at only 1.9 minutes, whereas
an average size of three TUs at five minutes consumes
more than twice as much computational time. This

is due to the greater number of insertion options for
lower order quantities. With a lower average size, more
orders can be loaded on a single truck and therefore
more order permutations are possible. Also, it is more
likely that an improved solution can be achieved with
a higher number of possible insertions, even though
improvements may be small.

6.3. Experiments on the Effects of Loading and
Unloading Costs

Sections 6.3.1 and 6.3.2 analyze the effect of our model
extension by integrating loading and unloading costs.
The first test is based on a case study, while the second
is based on randomly generated data to generalize the
findings.

6.3.1. Experiments with Instances from Practice. We
completed a case study with a large German retailer
that provided the data set and used the learning from
our models to create tour plans. The data set covers
a representative week of orders placed with a DC.
Six different instances have been examined, one for
each weekday. In total, this involves orders of 406 cus-
tomers for four different product segments and an
order volume of over 4,500 orders. Themaximumnum-
ber of orders per day amounts to over 900 orders by
nearly 400 customers. The capacity of all vehicles is

Table 7. Runtime Analysis of Varying Order Sizes on 100
Applications

Runtime (seconds)

Ø order size Ø LNS Min. LNS Max. LNS

3 168 72 329
7 41 18 129
9 24 16 61
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33 TUs, and the availability of enough trucks to cover
the entire customer demand was assumed. The aver-
age order size across all product segments and week-
days amounts to around six TUs. Furthermore, dis-
tances from the DC to customers range between 1 and
346 km. Cost factors are used according to the descrip-
tion above. The algorithm-specific parameter setting
for the LNS equals the setting for the examples with
randomly generated data, and the average LNS run-
time across all days is 249 seconds.
The use of MCVs yields significantly better solutions

than SCVs (see Table 8, Column 2), with a total cost
savings of 6.3%. This represents an annual savings due
to the use of MCVs versus SCVs of more than e0.5 mil-
lion for deliveries from this DC. With an average of
around six TUs, out of a total of 140 vehicles, only
16 trucks with a single compartment setting are used
in the best solution found using MCVs. This shows
that it is worth integrating the loading/unloading costs
into the decision model. Not integrating them results
in 0.9% higher costs (see Table 8, Column 3). Addi-
tionally, Table 9 displays the share of each cost factor
taking into account the total costs of the example week.
As SCVs only approach one shipping gate, it is natural
that the share of loading costs is very small compared
to MCV deliveries. Beyond that, our approach reduces
the share of loading and unloading costs to reach a
better overall solution compared to the MCVRP∗.
6.3.2. Intensified Experiments with Randomly Gener-
ated Instances. Following the implications of our case
study, we embark on examining and generalizing the
impact of loading/unloading costs. We use different
data settings to analyze the magnitude and derive
managerial insights based on these configurations. To
test the influence of varying loading/unloading cost
factors, we used the data obtained from the case study
(this is denoted as “standard”) and a rise in these costs
by 50% and 100%. As the test instances were gener-
ated with respect to orders per customer, the number
of customers does not add up to exactly 200 or 100.
Also, as we generated the data with respect to the
share of segments and order sizes comparable to the

Table 8. Results of the Case Study

MCVRP_LU vs. MCVRP_LU vs.
SCVRP_LU MCVRP∗ MCVRP_LU

Change in Change in
total costs of total costs of Ø number

Weekday SCVRP_LU (%) MCVRP∗ (%) of compartments

1 −5.5 −1.0 2.17
2 −13.2 −0.9 2.36
3 −7.2 −0.8 2.32
4 −4.2 −1.5 2.17
5 −3.4 −0.6 2.03
6 −4.6 −0.4 1.73
Total −6.3 −0.9 2.15

Table 9. Share of Loading, Unloading, and Transportation
Costs Across the Complete Example Week

SCVRP_LU MCVRP∗ MCVRP_LU

Cost details lc tc ulc lc tc ulc lc tc ulc

Total week (%) 1.6 92.4 6.0 4.0 90.3 5.7 3.6 91.1 5.3

case study, Tests C.1 and C.2 are not rounded to hun-
dreds. We apply settings with more than two com-
partments to highlight the differences. The settings of
the tests performed are summarized in Table 10. The
results of MCVRP_LU versus MCVRP∗ are compared
in Table 11, where negative entries represent lower val-
ues for MCVRP_LU in comparison to the MCVRP∗.
Test A.1: Reference case. In the starting problem set,
three product segments are used, meaning that cus-
tomers can place up to three different orders. The direct
integration of loading/unloading costs results in up
to 1.1% lower total costs and up to 4.0% longer travel
distances for MCVRP_LU versus MCVRP∗. Note that
the transportation costs for the MCVRP∗ stay constant.
The cost share of loading/unloading for the MCVRP∗
amounts to 10% of the total costs for each process. For
the MCVRP_LU this share is reduced to loading costs
of 7% and unloading costs of 8% of total costs. A more
detailed discussion of this effect is presented below.
Test A.2: Effect of varying order sizes. Next, a change
in order quantity for the same customer setting as in
Test A.1 is analyzed. For the tests of altering order
quantities, order sizes with an average quantity of
around nine, five, and three TUs instead of seven TUs
are considered (see Table 12).
There are two effects on the savings potential of

MCVRP_LU versus MCVRP∗ concerning the varia-
tion of order sizes and the corresponding loading/
unloading costs. First, a decrease in order sizes leads
to an increase in savings potential for the standard
costs. Second, rising loading/unloading costs lead to
inverted results so that the savings potential decreases
for lower order sizes but increases for higher volumes.
This can be accounted for as follows. On one hand,
lower order quantities lead to the use of more com-
partments as more customers are on one truck. Since
the orders of more customers are on a truck, it is more
likely that different segments will be required. If, for
instance, the average order quantity is assumed to be
three TUs together with standard cost factors, the best
overall solution foundby theMCVRP_LU ismadeupof
a fleet consisting of around 95% of vehicles with three
compartments.Having afleetwith virtually onlyMCVs
with the maximum number of compartments, loading
costs for MCVRP_LU and MCVRP∗ are almost equally
high. In this case, the savings can only be realized for
unloading. With increasing loading/unloading costs,
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Table 10. Overview of Test Settings

Test Orders |O | Orders per customer Customers n Segments |P | Ø order size q Distances di j

A.1 400 1–3 199 3 7 11–80
A.2 400 1–3 199 3 3, 5, 7, and 9 11–80
B 400 1–3 199 3 7 20–45a and 9–40b
C.1 198 1–3 106 3 7 20–45a and 9–40b
C.2 106 1 106 3 7 20–45a and 9–40b

aDistances from the DC to customers.
bDistances between customers.

Table 11. Summary of All Tests for MCVRP_LU vs. MCVRP∗, 100 Applications for Each Test

Min. total costs (%) Min. loading/unloading costs (%) Min. travel distance (%)

Test Standard +50% +100% Standard +50% +100% Standard +50% +100%

A.1 −0.4 −0.4 −1.1 −8/−3 −14/−5 −29/−13 +0.2 +1.4 +4.0
A.2a −0.5 −0.6 −1.0 −5/−4 −11/−7 −21/−13 — — —
B −0.5 −0.8 −2.3 −9/−3 −22/−8 −49/−22 +0.4 +2.7 +8.3
C.1 −0.3 −0.6 −1.8 −7/−2 −16/−6 −37/−16 +0.3 +1.8 +6.1
C.2 −0.6 −5.3 −10.3 −22/−2 −63/−32 −64/−44 +1.1 +3.3 +4.5

aAverage of different order sizes for each model (see Table 12 for details).

Table 12. Test A.2: MCVRP_LU vs. MCVRP∗ for Varying Order Settings, 100 Applications

Min. total costs (%) Min. loading/unloading costs (%)
Ø order
quantity (in TUs) Standard +50% +100% Standard +50% +100%

9 −0.3 −0.8 −2.1 −8.3/−2.7 −22.3/−9.6 −41.9/−22.5
7 −0.4 −0.4 −1.1 −7.5/−2.6 −14.3/−4.9 −28.7/−13.3
5 −0.5 −0.6 −0.7 −3.0/−4.8 −5.0/−6.0 −11.1/−8.3
3 −0.6 −0.5 −0.3 −0.3/−6.3 −0.3/−7.2 −1.1/−7.6

the MCVRP_LU tours will have an even larger share of
MCVs with the maximum number of compartments to
realize savings with fewer stops.
However, this leads to higher transportation costs

compared to the MCVRP∗, which cannot be completely
compensated by the saving for unloading. As a conse-
quence, theMCVRP_LUyields fewer cost reductions in
direct comparison to the MCVRP∗ for small order sizes
and higher loading/unloading costs (see Table 13). On
the other hand, loading cost savings can be realized
for larger order sizes. Paying respect to higher costs,
the extended model provides tours with fewer com-
partments and a more elaborate compartment mix.
Therefore, the cost savings between MCVRP_LU and
MCVRP∗ increase as order quantities grow and load-
ing/unloading costs rise.
TestB:Effect of shorter travel distances. Test B applies
shorter traveling distances (e.g., for urban deliveries).
Total cost savings of up to 2.3% are possible, even with
up to 8.3% longer travel distances. As mentioned pre-
viously, the proportion of loading/unloading costs is
the main driver for differing results (see Table 14).
To conclude Test B, the solution structures of

MCVRP_LU and MCVRP∗ are considered in detail. As

Table 13. Test A.2: MCVRP_LU vs. MCVRP∗ by Cost Type,
Example with an Average Order Size of 3 TUs

Cost type Standard (%) +50% (%) +100% (%)

Loading costs −0.3 −0.3 −1.1
Transportation costs −0.1 +0.4 +1.2
Unloading costs −6.3 −7.2 −7.6
Total costs −0.6 −0.5 −0.3

Table 15 shows, the structure for the tours changes
noticeably for the MCVRP_LU as costs rise. Higher
loading/unloading costs imply the use of fewer vehi-
cles with multiple compartments; thus, the number of
stops increases, whereas the average number of com-
partments used declines. This change in tour structure
within the MCVRP_LU points to the active alignment
to modified conditions offered by the extended model.
Test C.1: Effect of shorter travel distances for smaller
instances. Similar to Test B, another test with an equal
setting but fewer customers was performed. Test C.1
confirms the findings above and cost savings also for
smaller problem instances. As fewer customers and
orders are considered, the possible cost savings using
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Table 14. Test B: MCVRP_LU vs. MCVRP∗ (in %)

MCVRP_LU vs. MCVRP∗, costs for Shares of MCVRP_LU costs for

Loading Transportation Unloading Total Loading Transportation Unloading

Standard −9.1 +0.4 −3.0 −0.5 6.1 87.6 6.3
+50% −22.0 +2.5 −7.5 −0.8 7.4 84.2 8.4
+100% −48.5 +7.7 −21.7 −2.3 6.2 84.7 9.1

Table 15. Test B: Analysis of Change in Solution Structure
for MCVRP_LU

MCVRP_LU

Tour information Standard +50% +100% MCVRP∗

Total tours 91 91 91 91
Total stops 256 276 327 268
Ø stops 2.8 3.0 3.6 2.9
Ø compartments 2.5 2.2 1.6 2.7

theMCVRP_LU also decrease. In this case, amaximum
total cost decrease of 1.8% can be achieved.
TestC.2:Effect ofmodified order structure. Afinal test
for a modified order structure has been analyzed. It
was assumed that each of the 106 customers only sub-
mits one order, leading to a total of 106 orders. This
involved each customer choosing between three differ-
ent product segments, as in the previous test. The vari-
ation in order structure leads to a significant increase
in potential cost savings. The savings rise significantly
especially for larger cost parameters. This progress can
be explained by the segment mix of the MCVRP∗. As
only the distance is considered, there are many trucks
using different compartments for a single order of
another segment. The MCVRP_LU takes this condition
into account. With regard to the solution structure for
both models, the best solution for the MCVRP∗ and
highest cost setting only involves three vehicles with a
single compartment out of a total of 23 tours, whereas
the MCVRP_LU uses a completely different structure
with 20 vehicles with a single-compartment setting.
Summary. The tests performed have shown that con-
sideration of the cost factors introduced yields signif-
icant saving potentials in many applications. Depend-
ing on the average order sizes, distances, and the order
structure, a significant total cost saving of between
0.3% and 10.3% can be achieved. The cost factors ap-
plied have a very significant influence on the results.
To summarize all findings in line with the model com-
parison, an overview of the savings potential via the
use of the MCVRP_LU is displayed in Table 16.

7. Conclusion and Further
Areas of Research

The objective of this paper was to develop a model and
solution approach to analyze the effectiveness of MCV

food distribution. We analyzed the basis for VRP with
multiple compartments and decision-relevant costs.
An enhanced model, the MCVRP_LU, was introduced
to account for loading costs that increase with each
additional compartment used, and unloading costs
that decrease when product segments of a customer
are delivered jointly. For solving the MCVRP_LU, an
LNS with well-selected operators and control mecha-
nisms was chosen that provided good solutions. The
MCVRP_LU has been tested in terms of computational
times and shown to be efficient with regard to its run-
time. The average time needed for the LNS is less than
five minutes for problem sizes relevant in practice—
i.e., 400 customers and four compartments. Further-
more, the number of removals and average order sizes
have been identified as the main drivers for runtime.
Integrating loading/unloading costs in the deci-

sion model yields significant savings potential. This
was first shown by a case study and additionally
with experiments using randomly generated data. Sub-
ject to the number of compartments, customer dis-
tances, applied cost factors, and the order structure, the
MCVRP_LU shows a savings potential of between 0.3%
and 10.3% compared to the MCVRP∗. Beyond this, a
comparison with the classic CVRP but including load-
ing/unloading costs stresses the superiority of a distri-
bution system involving MCVs. Here, a cost saving of
6.3% could be achieved for the data considered in line
with the case study.

To summarize, the MCVRP_LU model developed
has shown significant savings potential in various
problem settings. A more accurate evaluation of the
VRP is achieved with the introduction of divergent
costs for MCV applications. Furthermore, the appli-
cation made it clear that the use of MCVs is highly
advisable, regardless of the given setting.
Future areas of research. There are numerous oppor-
tunities for further research in the field of MCVs
and the use of the model presented. First, heuristics
can always be further developed and tested in differ-
ent settings. The development of additional solution
approaches might be a starting point for further com-
putational research, for the construction heuristics as
well as the improvement heuristics. Several extensions
of the MCVRP_LUmay be considered to enhance com-
patibility with practical requirements. For this pur-
pose, extensions to account for stochastic demand,



                                                       
                                                              299

Table 16. Findings for the Development of Saving Potential

Savings potential of MCVRP_LU Correlation with increasing Corresponding
Characteristic vs. MCVRP∗ increases with loading and unloading costs test

Product segments More product segments Positive A.1
Ø order size Lower average order size Positive for order sizes≥ 5; A.2

negative for order sizes< 5
Distance Shorter distances Positive B and C.1
Number of orders More heterogeneous order Positive C.2

per customer structures across customers

time windows, a heterogeneous distribution fleet, and
multiple periods are possible next steps. Addition-
ally, the MCVRP_LU can be extended to carry out a
vehicle selection, choosing between multi- and single-
compartment vehicles. This can also be used to deter-
mine the optimal fleet when taking vehicle purchas-
ing costs into account. Furthermore,we assume enough
capacity for all orders. Retailers may be faced with
warehouse, transportation or in-store capacity short-
ages, where not all orders can be delivered. Introduc-
ing nondelivery costs into the objective function could
model thesekindsof applications.Wehaveonlyposited
tours where each order is entirely assigned to one com-
partment. In some applications, splitting an order and
distributing it among different vehicles may be feasi-
ble. Finally, the model could be extended to analyze
the impact of multi-temperature deliveries on in-store
logistics and inventory, aswell aswarehouse operations
(e.g., because of a higher delivery frequency), due to
more flexible delivery patterns (Holzapfel et al. 2016).
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