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Store space is limited and one of the most costly resources of retailers. Retailers have to apportion avail-
able store space among the individual product categories of a store and therefore assign a certain share
of shelf space to each category. Assigning more shelf space to one category requires reducing the number
of shelves for another category as total space is limited. Reducing available shelf space in turn decreases
assortment size and lessens the presentation quantity of products and vice versa. Both affect the demand
of products and ultimately the profitability of the entire category such that the profit contribution of a
category depends on its shelf size. This interrelation between category sizes and store profits needs to
be taken into account for the shelf space assignment to categories and the space allocation for individual
products.

We introduce a store-wide shelf space model that optimizes shelf space assignment for categories based
on the profit contribution of the corresponding product allocations. We decompose the problem into two
hierarchically interlinked subproblems and show that the solution approach suggested works efficiently
and provides solutions that are applicable to large problems in retail practice. In a case study with a
major European retailer, we show that profits at stores can be improved by 3.2% using our approach.

Further, we use simulated data to generalize the findings and derive managerial insights.

1. Introduction

The sales area of retail stores is limited and one of retailers’
most cost-intensive resources. Its efficient use is one of the main
drivers for a store’s success. Retailers decide on space use with re-
spect to different planning horizons and a hierarchical planning
process. The planning process is illustrated in Fig. 1 and consists
of store layout planning, category space assignment and product
allocation. The starting point is the store layout planning that in-
cludes defining the role of product divisions (e.g., as traffic driver),
their location within the store (e.g., dedicated locations for promo-
tional items), and upper and lower bounds for the division sizes.
The store layout planning and definition of divisions (also referred
as departments) is mainly driven by the retailer’s general strategy
and marketing philosophy. It is usually set for multiple years. Mul-
tiple product categories (e.g., milk, yoghurt, cheese) form one di-
vision (e.g., dairy products), and the sequence of categories within
the division is also defined within store layout planning. Secondly,
retailers determine the size for each product category within the
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respective division. When adjusting the category space, planners
redefine the number of shelf elements (i.e., the number of racks)
of each category (see e.g., [1]). This may lead to replacement or re-
design of individual shelf racks. These instore adjustments are usu-
ally executed once per year. Lastly, retailers allocate products of a
category to given shelves (see e.g., [2,3]). This imposes changes in
assortment sizes, the position of products within the shelves and
the number of facings of each product. This is usually executed fre-
quently throughout the year.

This paper addresses the assignment of store space to cate-
gories that constitutes the central part of this hierarchical planning
concept by splitting up the total space into categories, while cer-
tain guardrails are set by the retailers store layout planning (e.g.,
given locations of categories), and the product allocation to shelves
is anticipated. In this step, retailers need to assign the space to
a category by deciding how many shelf elements they allocate to
each category. The assignment of category space implies different
effects. If a category size increases, it is more likely that customers
will decide to purchase within this category [4]. Furthermore, more
category space gives the opportunity to expand the assortment and
increase the presentation quantity of the products selected. How-
ever, as total store space is limited this also implies that less shelf
space is left for the remaining categories. This therefore reduces
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Fig. 1. Hierarchical planning concept for store-wide shelf space planning.

the demand of items in the corresponding categories. The chal-
lenge from a modelling and data view is to evaluate the poten-
tial contribution of the various sizes of a category. For example,
what is the impact on overall profit if one additional shelf element
is assigned to one category, while the number of shelf elements
is reduced for another? This requires information on the optimal
product allocations for each category and all potential shelf sizes
of a category. As such, this would require the results of the subor-
dinated product allocation (e.g., detailed plans about shelf layout,
assortment sizes, product positioning and shelf quantities) as input
to the superordinated assignment of category space. The superor-
dinated assignment of category space on the other hand provides
the shelf size limits of each category for the subordinated product
allocation. One option for solving this problem is the application
of a monolithic product allocation model for the superordinated
assignment of category space. This is, however, computationally in-
tractable as we have to deal with problem sizes of 10,000 or more
items and the best-known models can usually only handle problem
sizes of several hundreds of items [5]. A comprehensive planning
framework as introduced above and applied in practice is therefore
indispensable.

There are various publications related to the store layout plan-
ning (see e.g., [6-8]) and the product allocation problem (see the
reviews of [5,9,10]), but little research on the detailed assignment
of space to categories. This implies that the store layout models
focus on different decisions (e.g., location within store, effect of
impulse buying), and that the product allocation literature in gen-
eral assumes the available shelf space for each category as given.
Our work fills this gap in research and presents a comprehensive
model formulation to assign space to categories dependent on the
category-specific profit contributions. The resulting NP-hard opti-
mization problem is solved via decomposition. In doing this, we
calculate the value of each potential size of a category by solving
the underlying product allocation problem. These results are then
input into the model that defines the sizes of each category. Within
this hierarchical approach of dividing the problem into dependent
subproblems, we also anticipate the overarching and subsequent
decisions and demand effects. In this sense, our approach extends

the product allocation literature by optimizing shelf sizes for each
category and bridges the gap to the store layout literature.

The remaining paper is structured as follows. Section 2 de-
tails the planning problem and relates it to the literature. The
mathematical model for the assignment of category space is pre-
sented in Section 3 together with the solution approach proposed.
We provide numerical tests in Section 4 and show that the ap-
proach is able to solve large instances efficiently. This includes a
case study with our cooperation partner from grocery retailing.
Section 5 summarizes our key findings and identifies areas for fu-
ture research.

2. Problem description

This section details the underlying problem and its main fea-
tures in terms of scope and demand impacts. It is based on a col-
laboration with a major European grocery retailer and a review of
related literature. This builds the foundation for identifying the ex-
isting gap in research and for specifying the contribution of this
work. Despite our focus on grocery retailing, our problem is also of
relevance for other retailers such as DIY (do-it-yourself), electronic
or department stores, where different categories compete for avail-
able shelf space within a store. Despite the fact that some manu-
facturers play a more important role in managing product alloca-
tion of single categories (see e.g., [11] and [12]), the total store-
wide shelf space management is usually fully under control of the
retailer himself. Retailer-manufacturer collaboration is done within
category management, such as minimum space requirements for a
category that can be incorporated as constraints in the store plan-
ning [13].

2.1. Definition of the store-wide shelf space allocation problem

Overview. Fig. 2 specifies the three different aggregation levels
for planning the total store space (divisions, categories and prod-
ucts) and their relationship. Our focus is on the assignment of store
space to categories. As such, we elaborate the specific requirements
for this aspect, but we also need to detail the interdependencies
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Fig. 2. Different aggregation levels for planning total store space - example.

with the overarching and subsequent aggregation levels. Total store
space in our context is measured in running shelf meters. The as-
signment of store space to divisions and categories is therefore
measured in a one-dimensional value, indicating the consumption
of store meters.

Based on customer preferences and long-term marketing plans,
retailers set up divisions for each store type (e.g., hypermarket vs.
supermarket). Divisions represent the most aggregated level and
divide the total store space into distinct areas. A division summa-
rizes all categories that belong to the same kind of product. In gro-
cery stores, typical examples of divisions are dry food, fresh foods,
refrigerated display cases, beverages, print media, household arti-
cles, frozen foods, bakery, etc. Within each division, a given num-
ber of categories are considered, which represent the second ag-
gregation level. A category groups products of the same type (e.g.,
frozen pizzas). All categories of a division compete for the store
space of the respective division. The sizing of categories therefore
depends on corresponding division sizes. The final and most granu-
lar level comprises products, which need to be allocated to shelves
of the category. It needs to be decided which products are actually
included in the assortment and how much space is allocated to
individual products. While product allocation is the most granular
level, it affects the ultimate demand and sales for the individual
products, and therefore determines the contribution of a category
and a division to overall store profit. All three levels are interde-
pendent. The store space allocated to a division influences the shelf
space allowance for all related categories. The total shelf space of a
category determines the available shelf space for individual prod-
ucts, which in turn determines the profit contribution of the cat-
egory and division. In the following, we analyze the related scope
and demand impact of each aggregation level separately.

From store space to division space. The partitioning of the store
space into divisions constitutes the first step. Stores are designed
using divisions to group categories of the same kind, define the
sequence of categories within the store (i.e., which kinds of prod-
uct are found at the entrance, which at the checkout), and to en-
sure a certain display size. The number and size of divisions de-
pends on the value proposition, store type, location and general
product variety. Furthermore, the location of the divisions within

the store follows long-term marketing plans (e.g., conveying the
message of being a retailer with high degree of fresh products by
putting the fresh division at the store entrance), insights on shop-
per paths (e.g., putting a high volume division at the end of the
store to increase the walking path), role of divisions (e.g., impulse-
buying products closer to checkout), or simply some constructional
or design guidelines (e.g., cooled shelves at the walls). At this stage,
retailers also select some divisions to serve as traffic drivers (see
e.g., [6]). Moreover, the sequence of divisions within a store follows
general rules for all stores, i.e., each store with the same arrange-
ment of divisions. Retailers want to create a familiar atmosphere
for customers, independent of which of the associated stores is vis-
ited.

Updates of the general store layout plan are usually made when
major strategy plans are implemented, e.g., adding new divisions
or changing the layout of all stores. Store layout planners define
at this stage the scope of divisions (i.e., which categories are in-
cluded in a division) and the dimensions of divisions. To incor-
porate some flexibility for further plan adjustments during annual
category reviews, the division space is here defined within an up-
per and lower limit. For example, the minimum size of a division
may reflect strategic goals of the retailer (e.g., minimum share of
fresh products), support to grow strategically important divisions
or to enable a basic range of products across the categories in-
volved. A further major decision at this point is defining the loca-
tion of division within the store. This ultimately also includes the
sequencing of categories within a division.

The store layout planning has two demand implications. (1) In-
creasing size of divisions, categories and products together with a
growing visibility increases the demand (see e.g., [14,15]). Total de-
mand ultimately depends on the visibility of individual products
to customers. For this reason it is indispensable to understand the
detailed impact of space assignment of products. We will hence
detail this demand effect below when discussing the allocation of
products. (2) The location of a division within a store also impacts
visibility and traffic. The actual location of shelves (e.g., near the
entrance/check-out) as well as the types of products and categories
assigned to nearby shelves impact overall visibility to customers
and consequently profits of categories due to corresponding cus-



Fig. 3. Example of space assignment to categories with different shelf elements.

tomer traffic [16-19]. As locating divisions is not within the focus
for the category sizing, these demand effects need to be implicitly
respected when determining the basic demand of products.

From division space to category space. The allocation of division
space to categories is the second and subordinate step. Related cat-
egories are grouped together in divisions. A category comprises
products of the same type (e.g., frozen pizza and frozen vegeta-
bles are two categories belonging to the frozen division). Each cat-
egory is associated with a certain type of shelf rack, indicated in
the following as shelf element, depending on the related prod-
uct characteristics (e.g., dry, chilled, frozen or fresh goods). Indi-
vidual shelf elements may therefore differ across categories, i.e.,
category-specific shelf types and sizes are considered. Fig. 3 il-
lustrates different shelf elements for two categories, as examples.
While Category X requires standard shelf elements with a width
of 1.25 m, Category Y requires special shelf elements with a width
of 2.10m. The space consumption of one shelf element therefore
differs across categories and it needs to be decided how many
category-specific shelf elements are assigned to each category.

The category planning is done at regular intervals and takes
place when the performance of categories is reviewed and when
categories are added or removed [9]. Retail planners need to de-
cide how many (category-specific) shelf elements are selected for
each category, while the existing store layout (i.e., the number of
divisions and categories as well as their location within stores)
is not affected. To allow some flexibility, category sizes can usu-
ally be adjusted within certain boundaries. There are guidelines
on the number of shelf elements. Lower limits ensure a certain
minimum range of products within each category and reasonable
upper bounds are set in line with the maximum assortment. Fur-
thermore, only full shelf elements can be assigned as categories do
not share shelf elements. In our example, only multiples of 1.25 or
2.10 m can be taken into account. The demand is impacted by the
product allocation that will be detailed below.

From category space to product space. Product allocation com-
prises decisions on how to place a given set of products (i.e.,
the assortment of a category) on a limited area of shelf space
[5,9,10,20], and constitutes the third step. It is usually updated af-
ter major assortment changes (e.g., after regular negotiations with
suppliers, delisting of low performing items), and happens more
frequently than category planning. Product allocation defines as-

sortment size, shelf quantity of items, and the position on the
shelves of each product of a category. Offering broader assortments
with more products limits the space available per product and vice
versa. This makes it necessary to specify the products to be carried
on each shelf and determine the space and quantity to be assigned
to selected items. A facing is the first visible unit of an item in
the front row of a shelf. In this sense, retailers define the num-
ber of units per product in the front row of a shelf that are visible
to the customer. The option of lining up products one behind the
other (i.e., putting units of an item behind a facing) depends on the
shelf and item depth. Common retail practice is to line up as many
items as possible [21,22] to fully utilize the available space. The ex-
plicit decision is consequently the number of facings for each item,
while the units behind a facing are derived from item and shelf
sizes. This results in the total shelf inventory of an item. It is com-
mon retail practice to assign a product only to one shelf element,
not spreading it across multiple elements, to keep facings together.
The position of an item on the shelf is therefore described by its
vertical and horizontal position on a shelf element. Furthermore,
retailers apply minimum inventory limits that ensure a certain ser-
vice level (e.g., using safety stocks) to minimize out-of-stock situ-
ations [23]. Upper limits on the other hand are necessary to limit
maximum inventory reach. Similarly, a minimum number of fac-
ings can be applied to ensure a certain shelf representation (e.g.,
for newly listed products with low current demand) or to fulfill
supplier targets (e.g., contractual agreements for shelf shares; see
e.g.,, [11]). A maximum number of facings sets an upper bound to
limit, for example, the shelf share for certain products.

Customer demand depends on product allocation in four ways:
(1) space allocation to individual items, (2) space allocation across
items, (3) positioning of items on the shelves and (4) substitutions
when products are delisted. (1) Item demand depends on the vis-
ible quantity on the shelf. The higher the visibility of an item,
the higher its demand. The visibility of an item increases with
the number of facings assigned to it. This effect is called “space-
elasticity” and has been analyzed in various empirical studies (see
e.g., [14,15,24,25]). Chandon et al. [26] show that the number of
facings is the most important instore factor affecting customer de-
mand. (2) Product allocation may also affect the demand across
items. Cross-space elasticity describes the impact on the demand
of items when the space assigned to one item is changed. How-
ever, [27] show that the impact of this demand source on product



allocations and retail profit is limited. This also holds true if elas-
ticities are significantly higher than the empirical values obtained
so far. (3) Demand may depend on the position of the products
within the shelves as products may be put on different vertical lev-
els. Following [28,29], this means that some levels lie within a spe-
cific zone running approximately from eye- to knee-level, where
products are more likely to be seen by customers than outside
this zone. Further demand impacts may arise from how products
are arranged next to each other, how far a product is positioned
from the edge of a category (i.e., beginning of an aisle), and the
way product facings are arranged, e.g. in rectangular shapes or
as a family grouping. Generally these effects are attributed to a
lower demand impact (see e.g., [26,30]). Nevertheless, shelf layout
may be subject to some layout restrictions that may require keep-
ing certain products together (e.g., brand grouping), but without
changing demand [31-33]. (4) The shelf space is limited and hence
limits assortment sizes. When a desired product is not listed, cus-
tomers may decide to replace the product for an alternative. This is
called substitution demand (see e.g., [4,34]). Empirical studies indi-
cate substitution rates of 45% to 84% of the initial demand, where
the magnitude depends on attributes of the product, situation and
customer (e.g., [35,36]).

With respect to the demand affected by sizing categories, the
impact of space-elastic demand is unequivocal for our planning
problem whereas cross-space elasticity has a negligible impact due
to a lower magnitude. Cross-product demand is more relevant for
assortment decisions, e.g., when assortment sizes are reduced to
fit on the available shelves. The demand arising from product posi-
tioning on the shelf elements may impact demand when a detailed
product allocation decision is made for different shelf levels. In the
context of our aggregated problem of sizing categories, we neglect
this positioning effect as we do not consider detailed planograms
but the overall space assignment to products in relationship to cat-
egory sizes.

2.2. Related literature

Two literature streams are related to our setting. The first
stream deals with the store related issues, whereas the second is
based on the allocating of products to shelves.

Related literature on store planning problems. The contributions
in this stream mainly relate to the store layout planning. Campo
et al. [4] are the first to deal with the sizing of divisions. In a
fundamental empirical paper they determine division sizes and lo-
cations by considering specific attraction factors. Please note that
their unit of analysis is according to our definition above “divi-
sion”, but the term used in their paper is “category”. The attraction
factors depend on each division’s share of sales, size, and location
within the store. In sum, the approach is limited to division-based
data and does not consider individual product data in detail. Fur-
ther, an individual consideration of product-specific shelf elements
(e.g., fridges) is missing, and related assortment and substitution
effects cannot be considered due to the disregard of product data.
Botsali [37] analyze different store layout designs and their impact
on impulse buying (i.e., unplanned purchases), revenue, and cus-
tomer travel distance. Ghoniem et al. [38] present an approach that
aims at maximizing the impulse-buying profit by allocating “items”
to segments of a “knapsack” (i.e., shelf) with different attractive-
ness. The authors discuss a single-shelf problem (with up to 70
shelf segments) as well as a multi-shelf problem. Ghoniem et al.
[39] present a variable neighborhood search to solve this problem
for large problem instances, i.e., up to 210 categories on 42 shelves.
Flamand et al. [6] adjust the work of [38] to consider predefined
groups of categories. In detail, the authors allocate groups of cat-
egories to existing shelves, based on a given store layout to de-

termine the location of each category group (i.e., a specific aisle
and shelf) in relation to other categories, define the position of
each category within the corresponding group, and decide on the
shelf space of single categories. In a subsequent work, Flamand
et al. [7] extend their approach using an assortment decision that
decides on a category level whether to include a whole category
within the store or not. Dorismond [40] also study store layout
designs using data-driven models to increase impulse sales. Oz-
gormus and Smith [8] determine division sizes, but do not fur-
ther spilt these up into categories. They focus on the sequencing
of divisions while considering related layout rules. An adjacency
matrix is used where the coherence as well as the contrariness
among divisions is defined. Space elasticity and impulse buying
rates are considered on a category level. Product level data are
not included. The focus of these models is on the location and se-
quence of divisions and categories with respect to impulse buy-
ing effects, while detailed product allocation decisions (and corre-
sponding effects such as substitution or space elasticity) are not
included to determine the individual profit contributions of cat-
egories. The authors consider predetermined profits for the used
category groups, and the actual shelf space assigned to a group
does not impact category profits but impulse buying effects. Fur-
ther, this stream of literature does not consider category-specific
shelf elements and therefore different shelf types but assume that
all category groups can be assigned to the existing shelf structure
of a store. Given these differences, these papers can be seen as
contributions to the store layout problem as it determines divisions
and category locations and sequences (that are assumed as given
in our work) within stores, while we analyze a detailed shelf space
allocation to single categories with individual shelf elements and
profits.

Another, but different approach for store planning is provided
by Irion et al. [1]. They provide two models where solutions of a
product allocation model adopted from [41] are used to interpolate
values for the store space problem. Within their product allocation
model, they account for product level data and consider substitu-
tion and space elasticity. Within their store model, they use values
for a predefined number of options between the upper and lower
bound of shelf space for a category generated with the product al-
location model. They interpolate between these options in order
to determine a share of the total store space per category. Even
though they use an advanced product allocation model, their ap-
proach does not account for divisions and different shelf types. Fur-
ther, the numerical examples in this paper are very limited. They
show a numerical study containing nine categories, which is not in
line with practical needs (e.g., more than 50 categories with over
10,000 items are considered by retailers).

Related literature on product allocation. Following first studies on
the effect of product allocation on sales and profits (e.g., [14,15]),
Hansen and Heinsbroek [2] present the first product allocation
model with non-linear elements and a space-elastic demand func-
tion. Subsequently, Corstjens and Doyle [3] and Zufryden [42] ex-
tend the decision model by considering cross-elasticity and other
demand and cost effects. Borin et al. [43] present a product alloca-
tion model that integrates assortment decisions and lost sales. In
addition to the shelf space of a category, Urban [23] also consider
the backroom as additional inventory space. Irion et al. [41] in-
corporate a detailed cost function for the replenishment process.
An additional decision aspect is introduced by Hiibner and Schaal
[44]. Their work considers backroom space. Besides similar de-
mand functions, all these publications model shelf space as a one-
dimensional input parameter. Other approaches such as those of
[45-49] provide the possibility of considering several equal (one-
dimensional) shelf levels. These publications demonstrate the in-
creasing importance of considering different shelf space options. In



Table 1
Overview of related main literature.

Decision variables Shelf Shelf types Max. size of test class®

. - - — inventory® per cat.d
Literature Facings Assortment? Cat.size Div.size”
Campo et al. [4] — — v — — — (c) 17 (i) —
Irion et al. [41] v v) v - v - (c)9 (i) n
Ghoniem et al. [38] — — v — — equal (c) 140 (i) —
Ghoniem et al. [39] — — v — — equal (c) 210 (i) —
Flamand et al. [6] — - v v — equal (c) 210 (i) —
Flamand et al. [7] — — v — — equal (c) 800 (i) —
Ozgormus and Smith [8] — — v — — equal (c) 25 (i) —
Borin et al. [43] v v — — — — ()1 (i) 6
Urban [23] v v — v — ()1 (i) 6
Yang [45] v ) — — — — ()1 (i) 10
Hwang et al. [46] v — — — v — ()1 (i) 4
Hansen et al. [47] v — — — — — ()1 (i) 100
Irion et al. [1] v ) — — v — ()1 (i) 6
Geismar et al. [30] v - - - - - (o)1 (i) na
Bianchi-Aguiar et al. [32] v - — — — — ()1 (i) 240
Zhao et al. [48] v — — — v — ()1 (i) 100
Hiibner and Schaal [44] v — — — v - (o)1 (i) 2000
Hiibner and Schaal [49] v — — — v — ()1 (i) 200
Diisterhoft et al. [50] v — — — v — ()1 (i) 300
Hiibner et al. [51] v - - - v - ()1 (i) 200
This paper v v v v v individual (c) 60 (i) 16,000

— means not applicable / not considered in model

a Assortment decision on a product level: v'incl. substitution for listed products; (v) without substitution effects.

b Consideration of different aggregation levels of store space.

¢ Minimum/maximum inventory (e.g., representation quantity) or considering replenishment needs.
4 When more than one category is considered and store space allocation accounts for shelf elements; equal: all categories have the same

shelf type; individual: categories have individual shelf types.

¢ Maximum number of categories (c) and/or resulting number of items (i) in a single test instance.

line with this, Diisterhoft et al. [50] and Hiibner et al. [51] demon-
strate the impact of considering different approaches to model
shelf sizes and present models that consider three-dimensional
shelves and optimize shelf layout. We refer to [5,9,10] for more de-
tailed reviews.

2.3. Summary and scope of this paper

Table 1 summarizes related literature. Present literature ad-
dressing problems on a store level primarily focuses on finding
the most attractive location for each product group within a retail
store. To do so, aggregated values of category groups or divisions
are used and other demand effects such as impulse-buying are in
the focus of their work. Detailed data on a product level on the
other hand are neglected. As the sequence of divisions and cate-
gory groups within a store is usually a global decision that is valid
for all a retailer’s stores, these models are more applicable on an
abstracted strategic planning level (i.e., store layout planning). It
is important to consider exact product values and category-specific
shelf types for the concrete sizing of divisions and categories. None
of the existing approaches on store-wide problems provide a so-
lution that incorporates and combines category sizing with the
consideration of category-specific shelf types and profits driven by
product allocation decisions. The integration of these decisions is
important to obtain a detailed solution of category and division
sizes due to their interrelation.

The majority of papers addressing product allocation define the
number of facings for a given number of products for a specific
category. In all the papers, the available shelf space is considered
as an input parameter and cannot be modified within these mod-
els. This implies the problem that product allocation is based on
the predetermined category space and can only be as good as the
determination of the shelf size parameter itself. The majority of
product allocation models do not apply different shelf elements

among the items considered, which is a prerequisite for solving the
holistic store-area decision problem. Further, they do not account
for subsets on the product, category and division limits.

3. Model and solution approach

This section introduces the formal representation of the store-
wide shelf space allocation problem. After discussion of the formal
model we introduce our solution approach that uses a problem de-
composition to address the problem.

3.1. Decision problem, general model and model complexity

Notation. Table 2 summarizes the notation for the store-wide
shelf space allocation problem.

Sets, decision variables and parameters. Let I be the set of items
i,i eI, which comprises all available items across all categories C,
with ¢, c € C. The subset I. € I indicates the items i that belong to
category c. As items can be delisted, we divide the set of all items
of a category I. into listed items (I},I} < I.) and delisted items
(I.I; € I), such that IF UI; = and I} NnI; = @. Further, each cat-
egory c¢ belongs to exactly one division d,d € D, denoted by the
subset C; < C. The total store space R is divided into the space al-
lowance for all divisions d, where each division has minimum and
maximum space requirements UC?nin and U"®. Retailers use dif-
ferent shelf elements for each category (e.g., regular shelves, high
racks, chilled or freezing compartments). Each category ¢ has ex-
actly one type of such shelf element. The store space required by
one shelf element of each category is denoted by rc. The total store
space R and store space per shelf element r. is usually measured
as a one-dimensional value (e.g., in running meters). Retailers need
to define the number of shelf elements y. (y. > 0) for every cate-
gory ¢, ¢ € Cy, within each division d. The store space consumed by
all categories (across all divisions) may not exceed the given total



Table 2

Notation for the store-wide shelf space allocation model.

Indices

C Set of categories ¢ within the store, c € C

D Set of divisions d within the store, d € D

G Subset of categories ¢ belonging to division d,ceC,d € D

1 Set of available items (products) i within the store, i € I

I Subset of items i belonging to category c,iel,ceC

IF (7)) Subset of listed (delisted) items i belonging to category c,iel,ceC

Store- and shelf-space-related parameters

Emin (Emax)
c c

Minimum (maximum) number of shelf elements for category ¢

R Total store space for assigning shelf elements
Sc Available shelf space for product allocation per shelf element of category c
Te Store space required for one shelf element of category ¢

Uénin (U';nax )

Minimum (maximum) store space for division d

Product-related parameters

a; Space required for allocating one facing of item i
g Sales units behind one facing of item i

m; Net margin of one unit of item i

Timin (Tm) Minimum (maximum) shelf quantity of item i

; Basic demand of item i

Bi Space-elasticity of item i

Vji Substitution rate from delisted item j to listed item i
i Total demand of item i

Decision variables

Xi Number of facings of item i

Ve Number of shelf elements of category ¢

store space R, so it needs to be ensured that ) r.-y. <R. In doing
ceC
this, one implicitly decides on the store space allocated to each di-

vision with Y y¢ -1, Vd e D. There are also limits to the number
ceCy

of shelf elements y. for each category c, with EM" <y, < EMa and
EMn > 1, as at least one shelf element per category is necessary.
Besides the consumption of available store space per shelf element
and category 1., each shelf element is associated with an avail-
able shelf space, denoted as s.. This indicates the space available
to allocate facings of items i,i € I, to one shelf element of cate-
gory c. Using the number of shelf elements per category y., the
shelf space per category S is denoted by S; =s¢-y., Yc e C. With
respect to shelf space consumption of items it is sufficient to con-
sider the space consumption of one facing of an item i, denoted
by g;, and the number of facings allocated to an item, indicated
by the integer variable x;,x; € Ng. In the event that zero facings
have been assigned to an item (x; = 0), it is delisted (i.e,, i € I7).
The facing-related space consumed by all listed items i,i I}, of
a category c can then be calculated by Y g;-x;, and needs to be
ie];r

equal or smaller than the available shelf space per category, i.e.,
> a;-X; < Sc. Retailers fill up shelves to the maximum possible
ielc+

units. The number of facings x; is therefore decision relevant,
whereas the number of units behind one facing g; is derived by
shelf and item depth. The parameter g; is uniquely defined for each
item and depends on the item depth and the shelf depths of one
element of the item-related category c. The total shelf quantity of
each item i is determined accordingly by q; = x; - g;. The shelf quan-
tity needs to lie within a minimum representation quantity Timi“
and a maximum inventory reach Timax, ie., Timin <q; < Timax, Vie
If,ceC.

Objective function. Retailers pursue the objective of maximizing
the total store profit Q by selecting the optimal number of shelf
elements y. across all categories ¢, and the corresponding optimal
number of facings x; across all items i, represented by the vectors
x and y, with x = {x;, %, ..., %} and y = {y1,¥2. ..., ¥||}. The ob-

jective function 2 can thus be formulated as follows.
max Q(X,y) =y _m;-8(x;) (1)

iel

The total profit of an item is calculated as the product of its
total demand §; and its net margin m; per sales unit. The total
demand §; of an item i is a composite function of the basic de-
mand ¢;, the demand dependent on space-elasticity 8;, and the
out-of-assortment substitution y;; from delisted items j, j € Iz to
listed items i,i € I}. The basic demand «; represents the retailer’s
demand forecast for an item that is independent of the number of
facings (cf. [2,5,9]). The forecast may be based on historical sales,
but may also incorporate further marketing effect. In our context,
the basic demand «; of an item i already incorporates the loca-
tion effect within the store as each item belongs to one category
and each category is assigned to one division. The location of the
division and of each category within a division is predetermined.
The same holds true for effects from shelf positioning. For exam-
ple, price segments or brand blocks define the location of products
on shelf levels (e.g., items that belong to the economy segment
are usually positioned on the bottom level). The higher the visibil-
ity of an item, the higher its demand [14,15,25,26]. The item visi-
bility increases with the number of facings x;. In accordance with
prior research (cf. e.g., [2,41]), the facing-dependent demand rate is
a polynomial function of the number of facings x; and the space-
elasticity 8; (with 0 < B; < 1).

The assortment size |If| of each category c¢ depends on the
available shelf space (i.e., number of shelf elements y.) and the
selected number of facings x; across items. If fewer shelf elements
are available, total shelf space decreases and it may not be possible
to list all items. It may also be more profitable to delist less prof-
itable items to increase the number of facings for more profitable
items. We assume that if item j is delisted, customers substitute
a certain share of the basic demand «; of item j with an alter-
native item i, to compensate for the lack of item j in the assort-
ment. The maximum quantity that can be substituted cannot be
higher than the basic demand as the space-elastic demand in the
case of x; =1 corresponds to the basic demand. Additionally, we



follow the usual assumption that substitution takes place across
one round only (cf. e.g., [34,52]). Assortment size reductions there-
fore result in a shift of demand (substitution) from delisted items
j, j €I7 to other listed items i,i € I, expressed as substitution rate
vji and in lost sales, expressed as 1 — _ yj; (see e.g., [34,53]). The
Jelg

substitution rate y;; can be estimated, for example, proportional to
the demand share of an item i of the total demand (see e.g., [9,10]).
Given our strategic planning problem and the decision variables x;
and y., the demand function §; of an item i can be formulated as
denoted in Eq. (2).

8i(x,-)=a,-~x§3"+2aj~yﬁ ViEI:—,CEC (2)
Jele

The item unit margin m; corresponds to sales price minus pur-
chase costs, replenishment costs and further related costs (e.g., for
listing). The replenishment costs depend on the ratio of demand
to shelf quantity. Whenever the shelf quantity g; of an item i is
not sufficient to cover the demand §;(x;) of an item i, additional
replenishment from the backroom has to be performed, which de-
creases the margin m;.

Model complexity. Product allocation problems belong to the
class of knapsack problems that are known to be NP-hard [54]. The
combinatorial complexity of such problems increases very rapidly
with the number of products considered and the shelf space al-
lotted. The possible combinations for allocating |I.| products to a
given shelf space S, can be calculated using Y (I, Sc) = (“CHSfC’]).
Assuming instances with |I;| = 50 items and space for 100 units
(Sc = 100), this results in 6.7 -10°° possible combinations of one
category. Each of these combinations results in different substitu-
tion settings and thus a different demand among the items that
would need to be factored in. Furthermore, in our case we con-
sider up to 80 categories with hundreds of items each. Defining
the shelf space S. for each category is part of the decision prob-
lem.

To summarize, our model combines the decisions on assort-
ment sizes and product allocation with store spacing while taking
into account the interdependency of these decisions. The model
presented is a non-linear integer problem (NLIP) due to the mu-
tual dependency of the decision variables. A special case and re-
duced problem (i.e., the product allocation) is already known to
be an NP-hard problem. A combination of product allocation with
the decisions on store-wide shelf space allocation additionally in-
creases the size of the combinatorial problem significantly. In this

Application frequency:
Once for entire store PAM table:
Objective values
fore each category
and shelf size
combination

Application frequency:

* Once for every
possible shelf size
of a category

* |terate PAM to
account for
substitutions

Determine assortment

each category and each
shelf size

Determine the optimal
store space for each
division and category

Product Allocation Model (PAM)

and product allocation for

case, only limited data sets of minor sizes can be solved, and hence
an efficient solution approach is required.

3.2. Solution approach

The central aspect of our problem is determining the size of
each category. This decision is based on a bottom-up profit cal-
culation of each possible category size with a product allocation
model. We present a tailored solution approach, Store-Wide Shelf
Space optimization (SWISS optimization), which determines the
optimal shelf space per category based on the profit contribution
of possible shelf sizes. Fig. 4 represents the strategy of our solution
approach. SWISS optimization uses a decomposition of the store-
wide shelf space allocation model into two subproblems: the Prod-
uct Allocation Model (PAM) and the Store Area Model (SAM). First,
the PAM is solved to determine an optimal assortment and product
allocation for each possible shelf space configuration. This means
that for each category a solution of PAM is obtained for each pos-
sible shelf size of this category. The individual profit contributions
of these shelf configurations obtained by the PAM are then used
as input parameters for the SAM, which determines optimal cat-
egory sizes. We implemented the SWISS optimization in a Java
framework. To do so, first a preprocessing step is required where
input data and model-specific values for the PAM and SAM are
calculated. Using the preprocessing, we are able to connect both
subproblems in our solution approach, while each model can be
solved using the CPLEX solver. In the following we detail the re-
spective subproblems PAM (Section 3.2.1) and SAM (Section 3.2.2)
as well as the complete SWISS solution algorithm (Section 3.2.3).

3.2.1. Solving the product allocation model for all category shelf size
combinations

We use the PAM to obtain a profit value for the different shelf
sizes of a category depending on the number of shelf elements
used. The number of possible shelf elements for category c can be
formulated as the set E. = {EMn EMin 41, EMax} where EMin
and E* represent the lower and upper limits for each category.
The shelf size Sc. of category c is then denoted by the number of
shelf elements e, e € E., and the corresponding shelf space s, i.e.,
Sce = e - Sc. We introduce Il as the profit contribution of category
¢ when e shelf elements are allocated to it. That means the profit
contribution has to be calculated |E.| times for each category, re-

sulting in Y |E;| combinations.
ceC

Store Area Model (SAM)

Input: Profits obtained from PAM for
each category and shelf space
combination

Solution: Optimal assignment of shelf
space to divisions and categories

Input: Product data and number of shelf
elements of a category

Solution: Product allocation for the
considered category-shelf space
combination and corresponding profits

Category Category Category
A B C

Input Data Processing

Fig. 4. Bottom-up strategy of SWISS optimization.



We leverage the fact that facings can only have integer values
and formulate the PAM as a binary integer program (BIP). Using
the maximum shelf quantity T™* for item i,i eI, we can calcu-
late the upper limit for the number of facings K™ of each item
i using KM = (?1. Similarly, K™ is calculated using T,™in. We
then apply this to define the set K; of possible facings for item i,
with K; = {0, Kl.mi“,l(l.mi“ +1,..., KMax}, where 0 is included to en-
able zero facings, which is equivalent to delisting item i. Further-
more, the number of facings k, k € K;, assigned to an item i,i € I,
is denoted by the binary decision variable x;. The demand values
8 for each item listed i (i € I7) and each possible facing k are cal-
culated by

Sie =i - kP Y "0y 3)
jelz

This is identical to Eq. (2), and can be found in related prob-
lems (see e.g., [44]). The profit contribution sy of each item i and
k facings is computed accordingly by m;, = m; - §;,. The central ben-
efit of this formulation is a priori determination of individual limits
K,.mirl and K™* for each item i,i € I, as well as the consideration of
the individual category-related boundaries within the sets E.. Both
significantly reduce computational efforts. The PAM can be formu-
lated as follows to determine the profit contribution IT. for each
category ¢ when e shelf elements are used:

max Tee(Xi) = Y > ik Xig (4)
iele kek;

subject to

dxx=1Viel (5)

keK;

sz'ai'xikfsce (6)

iele kek;

X €{0,1} Viel,kek; (7)

The objective function (4) determines the number of facings x;;
for each item i, € I such that the total profit I1c is maximized for
the given category ¢ and number of shelf elements e, e € E.. Con-
straints (5) ensure that the binary variable x;, is set active for only
one number of facings k for each item i,ie I.. With Constraints
(6) it is ensured that the available shelf space Sce is not exceeded
by the sum of all items allocated. Finally, the decision variable x;,
is defined as binary by Constraints (7).

3.2.2. Store area model

The second part of our decomposition is the SAM, which ad-
dresses the central aspect of our work, i.e., the store space allo-
cation to divisions and categories. It is therefore the superordi-
nate problem within the SWISS optimization. SAM uses the prof-
its calculated with PAM. In detail, SAM uses the profits 1. gener-
ated across all categories ¢, c € C, and all corresponding options of
shelf elements e, e € E;, and determines the optimal composition
of shelf space across categories that generates the highest overall
store profit 2. As the total store space R is indicated in shelf me-
ters, the linear intake of the shelf elements of a category on the
floor is sufficient (i.e., the consumed shelf meters per shelf). We
therefore define r. for the shelf meters consumed by category c
when e shelf elements are used. We introduce the binary variable
Yee, indicating the number of shelf elements e allocated to category
c¢. The SAM can then be formulated as follows.

max 2(Yce) =Zznce'.)’ce (8)
ceC eeE.
subject to
Y Ye=1VceC (9)

eckE.

Algorithm 1 Pseudo code of SWISS optimization.

1: Input: Sets of divisions D, categories C, items I, and facings
K (iel)

2: Precalculation of parameters A

3: Set individual limits K™ and K™" for each item i

4: for each category ¢ € C do

5: Set Ec = {e € N|EMM < ¢ < EMax}

6. Set¢=0and I} =0 and calculate 8 assuming I = I

and I7® = ¢

7 for each number of shelf elements e € E. do

8: Set ¢ =¢+1,set 8\ =5, solve PAM(® to obtain x!’,
and determine ;') and I-

9: Update demand 8;,? =q;- kb + ‘Zr ;- y; for each item

jelg

iel7® and set 8 = 0 for each item i e I-

10: If Y -1 V| <€ holds true, stop and return Ice,
else go to line 8

11: end for

12: end for

13: Input ITe from PAM and respective store space of shelves r¢,
and solve SAM

14: return Assigned store space to each division d € D and category
¢ € C and resulting store profit 2

erce'ycefR (10)

ceC eeE.

U™ <> e Yee <UP™ VdeD (11)
ceCy ek

ycee{o,l}VCGC,eeEc (12)

Within the objective function (8) the total profit of the store <2
is maximized by summing up the chosen shelf elements times the
respective profits across all categories. Constraints (9) ensure that
exactly one number of shelf elements is assigned to each category.
The total store space is respected using Constraints (10). Moreover,
the upper and lower bounds for divisions are set in Constraints
(11). Finally, the decision variable yc. is defined as binary in Con-
straint (12).

3.2.3. SWISS optimization

Algorithm 1 summarizes the solution approach for SWISS opti-
mization that combines PAM and SAM.

PAM determines the profits for all possible shelf sizes of each
category Ile (c €C, e < E.) (see lines 3 to 12 in Algorithm 1). The
Demand Function (3) results in a non-linear model due to the sub-
stitutions. We therefore apply an iterative approach to solve a lin-
earized PAM for each possible allocation of shelf elements e, e € E,
and the corresponding shelf size Sce. This means that we precal-
culate the substitution demand (see second term of (3)) - using
the assortment decisions of the previous PAM iteration — and then
update the complete demand (incl. substitution effects) after each
iteration with the newly obtained assignment (see details below).
In this way it possible to solve the BIP with CPLEX, but it has the
tradeoff that the actual demand is always lagging one iteration be-
hind. We repeat the iterations until the objective value no longer
changes. Hiibner and Schaal [55] demonstrate that this is an effi-
cient approach to include substitutions. We detail the iterative ap-
proach of PAM that comprises an initialization and three further
steps in the following:

e Step 0 - Initialization: We introduce the index ¢ to count the
number of iterations. For the initialization of PAM, the demand



for all items of a category i,i € I, is calculated assuming that all
items are included in the assortment (I} = I.). This means that
there is no substitution effect (as all items are listed, I = ¢)
and the demand function reduces to 8,.(,?) = a; - kPi. In this way
the demand can be precalculated for all items i and possible
facings k, k € K;.

e Step 1 - Solving PAM: In each iteration ¢ we set the demand
for each item equal to the demand obtained in the previous
(initial) iteration, i.e., Si(,f) = Sl.(lf’l). With this demand, we then
precalculate the item profit 7r;, for every item and every pos-
sible facing and solve the PAM(®) as denoted by Formulas (4)-
(7). The solution of PAM provides the number of facings xlf’f) for
each item, and with that a solution for the current assortment,
i.e., it determines the sets I7“ and I7“) for listed and delisted
items.

e Step 2 - Demand update: The solution of PAM(® (Step 1) is now

used to update the demand values. In detail, using the current

assortment solution, i.e., the sets I;’(“ and I{“), we can now
update the demand (Si(,f) using Eq. (3). This means in particular
that the substitution demand is updated using the information
of delisted items in the current iteration. We therefore add the
substitution demand ex post to the current solution by updat-
ing the demand for all items listed i,i € I}. The updated de-

mand Si(lf) is then used for the next iteration (see Step 1).

Step 3 - Stop criteria: In the final step of each iteration ¢, we

compare the solution obtained to that of the previous iteration.

If the change in profits between iterations lies below the limit

€ (ie., [TTY - TIED| <€), the algorithm stops and returns the

profit I for this category shelf element combination. Other-
wise, Steps 1 and 2 are repeated.

Once the profit values Il are available for all categories c
C and related shelf elements e € E. the SAM can be solved with
Formulas (8)-(12). The SAM provides the optimal segmentation of
store space, i.e., the division and category sizes are determined.

4. Numerical analysis

This section analyzes the efficiency and effectiveness of SWISS
optimization. First we present a case study that shows the im-
provement potential for retailers using real-world data. To gener-
alize these findings, we further apply tests on a large set of sim-
ulated data. Here we show the effectiveness of the planning ap-
proach chosen and demonstrate the performance of the two-step
approach suggested. Furthermore, we examine the runtime depen-
dent on varying problem sizes and parameters to derive additional
managerial insights.

SWISS optimization is implemented within a Java applet that
calls the IBM ILOG CPLEX Optimization Studio 12.6.2.0 in order to
solve the models PAM and SAM. The experiments have been com-
puted on a Windows 8 64 bit computer with 16 GB RAM and an
Intel(R) Core(TM) i5-6440HQ CPU with 2.6 GHz. The runtime pre-
sented in this section refers to the complete processing times of
SWISS optimization, from data input to solution output. This in-
cludes the preprocessing and precalculation steps as well as the
application of PAM and SAM. We set the stop criteria of PAM at
€ = 0.2%. This means the PAM iterations stop if the profit delta be-
tween two iterations is below this value.

4.1. SWISS optimization applied in practice

The SWISS optimization was tested in a case study with one of
Europe’s biggest hypermarket chains. We had access to a test su-
permarket located in Eastern Europe and the corresponding data
of each category. In our application we consider modern trade for-
mats such as supermarkets and hypermarkets. These markets fol-
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low comparable settings across Europe and as such no differences
between markets in Western or Eastern Europe apply. The test set
included the food categories. The retailer had excluded non-food
divisions and service counters from the scope. In total, the data
set comprises three divisions with 53 categories and between 20
and 1445 items per category. The divisions are regular dry food
(A), dairy products (B) and self-service shelves for fresh meat (C).
Division A contains 44 categories, B six categories and C three cat-
egories, see Appendix B for a detailed list of the single categories
and the corresponding number of products. A total of 11,628 items
are considered. An individual minimum shelf quantity Timi“ of 6
days of supply and a maximum shelf reach T/"** of 70 days is
considered for each item listed. Product margins and demand fig-
ures are subject to a non-disclosure agreement. The data set fur-
ther includes item dimensions to determine the space consump-
tion of a facing a; as well as the possible number units behind
each facing g; for each product i. Space elasticity is set at §; = 0.17
(see [25]). In the case study, substitution is assumed to be zero
(yji=0,Vjel:) due to the retailer’s request to compute a lower
bound of the profit potential and low substitution rates assumed
by the retailer. On a category level, for each category a minimum
and maximum number of shelf elements E™M and E™ is provided
that is part of the retailer's master data and usually defined taking
into consideration several impacts (e.g., marketing strategy, layout
guidelines, purchasing contracts, and logistics planning). The cate-
gories are assigned to either a regular shelf or a chilled shelf. All
shelves across categories in division A are regular shelves. Within
division B some categories are displayed in regular shelves while
others need to be placed within chilled shelves. Finally, all cate-
gories of division C are assigned to chilled shelves. The dimensions
of a regular shelf are 133 x 180 x 57 cm and for a chilled shelf
125 x 200 x 80 cm. The available store space R for these three di-
visions, measured in running meters, is 886 meters. Further, we
received data on the current number of shelf elements. The data
provided did not contain the information about the actual product
allocation in the store. To obtain a benchmark we therefore applied
our PAM for each category using the current number of shelf ele-
ments. This means that the benchmark is based on the assumption
that the product allocation of the status quo within each category
is already optimal (in terms of PAM) for the current number of
shelf elements. The results of this analysis provide a lower bound
of the actual improvement potential using SWISS. More specifically,
it represents the minimal profit improvement for the retailer when
applying SAM, while the positive effect of PAM on product alloca-
tion cannot be singled out.

We identify the impact of optimizing the category sizes across
all divisions of the store in Table 3. The minimum profit improve-
ment is 3.2%. The runtime of SWISS optimization amounts to 830 s.

For division A, a profit increase of 1.9% is achieved, which re-
sults exclusively from the reallocation of shelf elements across cat-
egories, while the total space assigned to division A decreases. For
example, the number of shelf elements increases by three shelf el-
ements for Category 4 and the profit contribution increases by 11.9
currency units (CU), whereas the number of shelves is reduced by
four elements for Category 5 and the profit contribution decreases
by 5.6 CU. As a result, total profit increases by 6.3 CU, while the to-
tal number of shelf elements decreases by one for division A. We
see significant improvements of 8.6% and 6.6% for divisions B and
C. On the one hand, the total number of shelf elements assigned to
these divisions increases up to UM which has a straightforward
positive effect on each division’s profit. On the other hand the allo-
cation of shelf elements to categories is optimized across divisions
B and C as explained for division A.

Table 4 presents further details on a category level. There have
been changes in the number of shelf elements and profits in 41
out of 54 categories. The reduction of space of a certain category



Table 3
Impact of SWISS optimization on a division level.

Ud“““ up Current no. shelf elements  SWISS
No. shelf elements  Profit impact by SAM *

Division A 342 707 607 573 1.9%

Division B 44 75 44 75 8.6%

Division C 10 23 18 23 6.6%

Total 396 805 669 671 3.2%

Regular shelves 617 585

Chilled shelves 52 86

2 Profit improvement by SAM with SWISS optimization representing the lower bound on profit potential.

Table 4
Case study: Impact of SAM on category level.

Categories Category values  Change in %

Unchanged  Changed Min.  Avg. Max.

13 41 Profit 13.0 +3.2 +25.2
Shelf elements 60.0 +18.1 +200.0

and the related demand losses are outperformed by increasing the
profits of categories receiving more space. The positive average in-
crease of shelf elements of +18.1% highlights a tendency to increase
smaller categories, which results in high percentage increases. The
absolute number of shelf elements within the store is only in-
creased by 0.3% (see Table 3).

4.2. Performance tests and generalization of results with simulated
data

The analysis of performance considers computations times, ob-
jective values and solution structures. Randomly generated data in-
stances are employed that are informed by the case study data. We
therefore leverage the case study to generate additional instances
to generalize our findings.

Data generation. We use instances ranging from 20 to 80 cat-
egories and 50 to 200 items per category. The minimum number
of shelf elements assigned to a category is randomly chosen (fol-
lowing a uniform distribution) between one and five for categories
with 50 items and between two and eight for categories with 200
items. The range for the required space is then chosen using the
same limits, resulting in the total range, i.e., the lower and upper
bound for shelf elements. For instance, if the minimum number of
shelf elements has been set at two for a test set with 50 items,
the range of space requirement for the category is again chosen
randomly between one and five elements. Assuming that the range
was set at 3, the total range of possible shelf elements is given by
the lower bound two and the upper bound five (E; = [2, 3, 4, 5]).
We consider three different shelf types to map different shelf lay-
outs within the stores (e.g., regular shelf, chilled shelf and freezer).
The corresponding dimensions (width x height x depth) observed
in practice for the different types are as follows (in cm): type 1:
133 x 180 x 40, type 2: 125 x 160 x 50 and type 3: 140 x 60 x 70.
The shelf types are randomly assigned to each category such that
an average of 70% of the categories are defined by shelf type 1,
20% by type 2 and 10% by type 3. Exactly one shelf type is se-
lected for each category. The lower and upper limits for the shelf
quantity of an item are defined in accordance with the case study
and ensure at least 6 days and at most 70 days of supply. We
further assume that case packs are allocated to the shelves, i.e.
each facing contains several sales units next to each other. The di-
mensions of case packs are randomly distributed at 7-30 cm for
the width, at 10-40 cm for the height, and at 5-40 cm for the
depth. The number of sales units within one case pack ranges be-
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tween 4 and 24 pieces. The margin for each item follows a trian-
gle distribution and ranges between 0.4 and 1.1 of the purchasing
price of a product, with a mode of 0.8. Finally, the base demand
of items is generated using a gamma distribution with the pa-
rameters p =8 and b =3 (i.e., using the probability density func-
tion f(x) = ﬁbﬁ’xl’—le—b"). These distributions resemble the data
structure that we have found in our case data. The space elasticity
parameter is again set at 8; = 0.17 for each product (cf. [25]). If not
stated otherwise, we use an aggregated substitution rate for items
i,iel; with y = Zje,; ¥ij = 0.50. That means 50% of the demand
of a delisted item is substituted and 50% is lost. Thereby the sub-
stitution demand is equally split across all listed items. The corre-
sponding store size for each instance is calculated by considering
the shelf spaces of all corresponding categories with their mini-
mum and maximum number of shelf elements. All categories are
assigned to five divisions according to the following proportion:
25% of categories are assigned to divisions 1, 2 and 3 each, while
15% are assigned to division 4 and the remaining 10% of categories
belong to division 5. The lower and upper limits for the shelf space
of each division are 20% and 30% of the total store space for divi-
sions 1, 2 and 3, 10% and 20% for division 4, and finally 5% and 15%
for division 5.

Computational times of SWISS for varying problem sizes. The com-
putational effort of SWISS optimization is assessed by examin-
ing eight instance classes of increasing size, from 1000 to 16,000
items. We analyze 10 instances with the given specifications for
each class. Table 5 summarizes the average computation times
across the instances for each test class. Even for the largest class
of instances with 16,000 items (80 categories, 200 items per cat-
egory), SWISS requires only 599 s on average. The maximum run-
time amounts to 665 s, which is still a reasonable time consid-
ering that we are dealing with a tactical decision problem and in
particular as the PAM is solved iteratively and called upon multi-
ple times to incorporate substitution effects. An average of 99.9%
of the entire computation time is consumed by the PAM. As we
show, the runtime decreases significantly when substitution effects
are not considered.

Impact of decomposition. In this experiment we analyze the ef-
ficiency of our two-step approach. To do this, we compare our ap-
proach to two alternative approaches that solve the problem in
a single step. The alternative approaches represent a product al-
location model, where the shelf space refers to the total store
space and the items considered refer to the whole assortment
of the store. In other words, the PAM is executed for the com-
plete store, i.e., across all categories. The alternatives are denoted
as PAMnon and PAMSULIImits The Jatter includes category limit
constraints by taking into account the space consumption of all
items of a category, while the first neglects these limits. We fur-
ther applied some simplifications to these one-step approaches.
In detail, as it is common for product allocation models we de-
cide on the shelf space assigned to individual items, not on the
number of shelf elements of a category, nor do we consider dif-



Table 5
Runtime analysis of SWISS optimization for varying problem sizes.

Runtime [s]

with substitution without substitution®

Number of categories |C| Number of items per category |I.| Total number of items |I| Store space R [m] Min. Avg. Max. Min. Avg. Max
20 50 1000 130 14 16 18 9 10 11
20 200 4000 240 122 154 192 63 82 106
40 50 2000 260 29 34 39 15 18 24
40 200 8000 450 278 311 350 144 160 181
60 50 3000 390 47 52 55 23 31 71
60 200 12,000 700 399 484 534 201 239 272
80 50 4000 520 80 87 91 33 37 42
80 200 16,000 900 550 599 665 287 338 398
2 Runtime without substitution and only one PAM iteration.
Table 6 o ) possible profits. The implications of these results are even more
S?:)l;tclt?gs of SWISS optimization compared to alternative ap- impressive when considering that differing shelf dimensions per
P ) category have not been considered, and that it was only possible
SWISS  PAMSIImIS — PAM g0, to solve limited data sets of up to 3000 items.
Avg. runtime [s] 69 73 44 Impact of detailed product allocation. A core aspect of SWISS op-
Min. profit delta? - + 0.11% + 1.05% c e . . .
N c, . timization is the product allocation. The allocation of products has
Avg. profit delta - + 0.14% + 1.07% . X . .
Max. profit delta®  — 1 0.17% 4 1.14% to be applied for varying category sizes to approximate the corre-

2 Delta in objective value compared to SWISS solution.

ferent shelf types. We further do not include substitution effects.
These simplifications are necessary due to the increased complex-
ity of a one-step approach. The runtime increases exponentially
and causes memory issues for larger instances. For the result com-
parison, the number of shelf elements per category are calculated
ex-post based on the obtained space allocation decisions for cor-
responding items of a category. We use 10 data sets containing 15
categories and 200 products per category, which results in 3000
items. Further, we define two different shelf types with different
widths: type 1 (90 cm width) and type 2 (133 cm width). The
height and depth of the shelf types are set at 180cm and 40cm
in both cases due to the computational limitations of PAMj;inone-

Table 6 shows the average performance across all instances.
Table 7 presents details of the results of a sample instance for each
category and assigned shelf space. It shows that the integer re-
quirement for the shelf elements is not kept in both benchmarks,
and that PAMyjj,0ne Vviolates the minimum and maximum number
of shelf elements in 6 out of 15 categories. Even though runtime
seems to be very low for both variants, our tests resulted in mem-
ory issues whenever the PAMyjmone had to compute larger data
sets or to include substitution.

As there are no category size limits, PAMjn0ne PTovides a 1.1%
higher total profit on average. It can be seen as an upper bound
for the profits and indicates the profit impact of category size lim-
itations when identical shelves across categories are applied. How-
ever, in PAMyjjj,one Solutions, all items are treated as items of one
big category, and shelf space is thus spread arbitrarily across items.
That also means that items of different categories share the same
shelves, which is unwanted and non-feasible in retail practice. In
contrast, SWISS optimization and PAMULIIMits respect the given
category limits. This results in a 0.1% marginally higher profit than
SWISS. Yet only SWISS optimization provides feasible and optimal
results by determining integer values for the number of shelf el-
ements. The implementation of minimum / maximum restrictions
within PAMSZImIES results in a number of shelf elements that lies
between these bounds. This means that fractional parts of shelf el-
ements are assigned to categories, which also leads to non-feasible
solutions. In conclusion, the results of SWISS optimization are close
to the solutions of a model without limits (PAMgjone) and frac-

tional solutions (PAMSlimits) which provide an upper bound for
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sponding profit contributions of each category setting. It is conse-
quently essential that the product allocation can be solved time-
efficiently to ensure short processing times of SWISS optimization.
We use PAM as a streamlined product allocation model in our ap-
proach. It focuses on the essential parts of product allocation and
approximates profits for each category without using sophisticated
extensions to mirror exact shelf dimensions and characteristics. In
this section we analyze if a more sophisticated product allocation
model can improve the results of SWISS optimization.

We introduce an extended SWISS optimization approach, de-
noted as SWISS®*. SWISS®! follows the same algorithmic struc-
ture as SWISS, but relies on an extended product allocation model.
In detail, the extended allocation model incorporates the determi-
nation of the number and position of shelf elements, exact stack-
ing restrictions within the shelf level dimensions and a detailed
allocation of products to shelf levels. It is therefore in line with
state of the art product allocation models that consider multiple
shelf dimensions (see e.g., [50]) and enable a detailed planning
of planograms for retailers. The mathematical formulation of the
extended allocation model is provided in Appendix A. Please note
that SWISS® causes memory issues for any larger data sets with
more than 5 categories and 50 products per category due to the
extended product allocation model. The analysis is therefore lim-
ited to this scope.

Table 8 presents the results of a comparison between SWISS
and SWISS® !, The runtime analysis demonstrates a significant in-
crease when SWISS® is used. On average, the runtime increases
by a factor of 150, with a maximum increase by a factor of 570.
This resembles tremendous growth in runtime, especially consid-
ering the very limited data size.

We further analyze whether the high computational effort of
the more sophisticated model is justified with better solution qual-
ity. The objective of our approach is to determine the optimal shelf
space for categories and divisions. We therefore need to evaluate
whether the store space solutions generated within the SWISS are
a good basis for the actual product allocation in stores, which takes
place after the strategic planning of store space and its assignment
to categories. For this purpose we first solve the store space allo-
cation problem with SWISS and SWISS®* and apply the advanced
product allocation model PAMiSD of [51] afterwards. The right part
of Table 8 shows that the SWISS optimization reaches an average
of 99.8% of the solution quality using SWISS® when both are post-
optimized with the detailed shelf optimization model PAMiSD. Tak-



Table 7
Example: number of shelf elements for different solution approaches.

Category data

Optimization with

Category Minimum Maximum SWISS PAM 5jj1n0ne PAM gL limits
(shelf type) shelf elements shelf elements shelf elements shelf elements shelf elements
C1 (type 1) 2 7 7 9.59 6.99

C2 (type 1) 5 11 11 10.84 10.49

C3 (type 1) 3 12 12 10.99 10.53

C4 (type 1) 10 18 10 8.54 10.00

C5 (type 1) 7 12 11 9.81 9.07

C6 (type 1) 10 14 12 10.27 10.00

C7 (type 1) 3 10 10 9.94 9.55

C8 (type 1) 2 5 5 10.16 4.99

C9 (type 1) 8 13 13 10.77 9.91

C10 (type 1) 6 12 12 10.39 9.92

C11 (type 2) 8 15 9 7.29 8.01

C12 (type 2) 3 8 8 6.85 6.60

C13 (type 2) 10 14 10 6.58 10.00

C14 (type 2) 9 16 9 6.51 9.00

C15 (type 2) 6 9 7 5.73 6.00

Table 8
Comparison of SWISS with PAM and PAMP, with |C|=5 and |Ic|=50.

Instance  Runtime [s] Obj. value of SWISS in
% of SWISSext @
SWISS ~ SWISS®™  Ain%

1 2 240 + 14,010 99.7

2 2 1285 + 57,613 99.4

3 2 263 + 11,005 98.9

4 2 187 + 9518 99.8

5 2 255 + 13,077 99.9

6 2 86 + 5401 100.0

7 2 156 + 9314 99.9

8 2 188 + 10,320 100.0

9 3 481 + 16,156 100.0

10 2 163 + 8406 99.8

Average 2 330 + 15,481 99.8

2 Both with ex-post optimization using PAMiSD of [51].

Table 9
Impact of substitution rates on solution structure.

Aggregated substitution rate y

0.00 0.25 base =050 075 1.00
Change in total profit, in % 2.5 1.3 - +14 +3.0
Avg. assortment size?, in % 78 77 77 75 73
Avg. min. assortment size?, in % 42 40 38 31 27
Avg. max. assortment size?, in % 89 89 89 90 92
Avg. share of categories changed”, 41.8 275 - 312 580
in %
Max. increase®, abs. 5 5 - 4 6
Max. decrease®, abs. 2 2 - 5 7

2 Average (minimum, maximum) ratio of listed items to total assortment per cat-
egory.

b Categories with changed shelf space compared to base case.

¢ Maximum increase (decrease) of shelf elements compared to base case.

ing into account the runtimes of SWISS®* and the need to process
larger data sets, we can state that PAM provides a sufficient ap-
proximation of profits for product allocation within the SWISS op-
timization for store space allocation decisions.

Impact of substitution. Product substitution has an impact on
demand and thus on the facing assignment for each item. We
therefore analyze the impact of substitution with different mag-
nitudes as shown in Table 9. We use test instances with |C| = 60
and |Ic| = 200 for this analysis. A change in substitution rates af-
fects total store profits. If the substitution rate is doubled from 50%
to 100%, the profit increases by 3.0% in our setting. The other way
around, if no substitution is assumed, profits decrease by 2.5%. In
our base setting an average of only 77% of the total assortment of
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a category is listed, as space is very limited. This means a large
proportion of products are delisted and gives substitution greater
importance. To this end, this analysis provides a rough indication
and upper bound of the total profit impact for such a strong as-
sortment reduction. In the case of increased store space, broader
assortment sizes can be expected and the impact of substitutions
may be lower.

Substitution also has a significant impact on solution structure.
This can be seen by assortment and category changes. Assortments
are reduced by 4 percentage points on average when the substitu-
tion rate is doubled. This equals a delisting of 480 items of the
store. The impact decreases for lower substitution rates. With re-
spect to categories, an average of 42% receive a different number
of shelf elements when no substitution is considered. The category
size is very sensitive to the substitution rate, leading to the conclu-
sion that substitution has a major impact on the solution quality
and accuracy in the context of store space allocation.

Impact of store size. Store size is a central aspect of our prob-
lem as it sets the limits for the optimization. We therefore analyze
the impact of the store size R on store space allocation decisions.
Again, the test class with |C| = 60 and |I-| =200, Vc <C, is used.
With less space available, the competition between categories and
items within categories becomes more intense. On the other hand,
more available store space offers more options that have to be
considered, i.e., more possible combinations of space allocated for
each category. As a consequence, the possible store profit depends
on R, and by analyzing different store sizes we provide insights on
the impact of potential store dimensioning decisions. We use our
base case with 700 shelf meters and show the effect of possible
extension and reductions. The number of items and categories re-
mains unchanged. Please note that store space can be reduced by
no more than -30% to ensure minimum quantities 7™,

Table 10 summarizes the results. The runtime of SWISS is ro-
bust against changes of R. The results show that the possibility of
extending the store space to achieve increasing profits is limited.
It may be uneconomical to extend the store space by +30% when
at the same time profits only increase by +3.5%. The average as-
sortment size increases with increasing store size and vice versa.
Again, the changes are limited and the entire assortment is not
listed even in very large stores. In the -30% setting, a dispropor-
tionate reduction of the average assortment can be observed. The
average minimum assortment size undergoes an even higher re-
duction in this setting. This is induced by a total store space that
becomes so small that each category is forced to its minimum size
and thus - as minimum shelf quantities need to be considered for
listed items - only a very small assortment can be chosen.



Table 10
Impact of varying store space R.

Average change compared to base setting, in %

Assortment®

Store space R Runtime  Profit Avg. Min. Max
30% 2.5 10.2 16.9 39.5 1.1
20% 2.5 5.4 7.8 11.6 0.0
15% 4.2 3.7 5.2 4.7 0.0
10% 4.2 2.3 2.6 23 0.0
5% 2.5 1.1 0.0 2.3 0.0
base = 700 m 239 40,729 154/200 86/200  188/200
+5% 0.8 +0.9 +2.6 0.0 +1.1
+10% 2.1 +1.8 +3.9 0.0 +2.2
+15% 2.1 +2.5 +3.9 0.0 +3.4
+20% 13 +3.1 +5.2 0.0 +5.6
+30% 2.5 +3.5 +6.5 0.0 +7.9

@ Delta in average (min/max) ratio of listed products to total assortment
per category.

Table 11

Impact of division limits with evenly distributed categories.
Scenario Fixed limit  Range limit =~ Without limit
Avg. division shares
- Division 1 25.0% 21.4% 19.9%
- Division 2 25.0% 21.2% 20.1%
- Division 3 25.0% 22.6% 21.3%
- Division 4 15.0% 19.8% 19.7%
- Division 5 10.0% 15.0% 18.9%
Avg. delta in obj. value? 1.51% — +0.28%
Avg. runtime [s] 264 280 245

2 Delta in objective value compared to base scenario with range limits.

Impact of division limits. Our concluding test analyses the im-
pact of different settings for division limits. Retailers apply divi-
sions to define locations and roles for categories. Certain space lim-
its therefore apply for marketing or image reasons. We consider
three different settings for the division limits. The standard setting
(as given above with min./max. values for each range, denoted as
range limit) is extended by a scenario with fixed limits, i.e., the
size of each division is fixed in advance, and by a scenario without
any predefined limits. Within the fixed limit scenario, the division
shares are fixed at 25% for divisions 1, 2 and 3, 15% for division
4, and 10% for division 5 of total store space R. In the scenario
without limits, the choice of the division sizes is unrestricted. We
further need to relax category affiliation, as otherwise the number
of categories is too restrictive for the decision on division sizes.
To do so, we alternate the data setting to one where the share of
categories per division is evenly distributed (i.e., 20% of total cate-
gories per division). We use the same data set as for the store anal-
ysis above. Table 11 summarizes our findings. Imposing fixed lim-
its decreases the profit by 1.51%, whereas without division limits
the profit can only be increased by 0.28%. Furthermore, the share
of store space for single divisions changes significantly when there
are no limits, or a limit range is specified. For instance, the share
of division 5 increases from 10% (fixed limits) to 15% (range limits)
and 18.9% (no limits). This shows that the store space allocation
decisions are sensitive to the given division limits. The determi-
nation of division limits should therefore be part of the optimiza-
tion problem by providing limits for the actual minimum and max-
imum sizes required.

5. Conclusion

Our work presents a hierarchical approach for the space allo-
cation to categories. We consider the total store space and find a
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partition of available space across categories and divisions to maxi-
mize the overall store profit. Our approach links store layout plan-
ning with product allocations. It provides a basis for product al-
location decisions which is only successful if the shelf space al-
located for each category is reasonable. At our case company the
assignment of shelf space to categories had up to the start of our
study mostly been driven by “gut feeling” decisions without tak-
ing into account the actual profit potential of each category and
the superordinate division. In literature, the majority of publica-
tions focus on the product allocation problem. This means that the
available shelf space for each category is assumed to be an ex-
ogenous input parameter that has been defined in advance. Con-
sequently, publications are lacking that consider the definition of
available space per category. Prevailing publications with a store-
wide focus determine category sizes but neglect product alloca-
tion decisions and corresponding category profit changes. There
is consequently no work in our problem context that provides a
model for a detailed category sizing together with numerical ex-
periments to analyze the impact of these decisions within a prac-
tical application. We solve the store-wide shelf space allocation
problem using SWISS optimization, which consists of two solu-
tion steps to determine store space allocation: (1) the PAM ap-
proximates the profit contribution of each category for all possi-
ble shelf space allocation options; (2) the SAM selects the opti-
mal combination of category sizes while respecting the restrictions
of the corresponding divisions. Using preprocessing and iterations,
both models can be implemented as BIP and solved using CPLEX.
This fact increases the attractiveness of our approach in practice,
where understandable and efficient solution methods are required.
The efficiency of our approach is shown in various experiments for
practical relevant problem sizes. Further, we show that our PAM
approach is a sufficient approximation tool for profits per cate-
gory, and thus provides a solid basis for additional instore planning
steps. Finally, we demonstrate the practical use of our approach
in a case study with a major European retailer. We show that our
approach is able to improve the given planning situation by more
than 3%.

This paper closes an existing gap in literature and provides an
efficient planning approach for practitioners. However, there are
still numerous possibilities for future research projects. As men-
tioned above, we use an approximation for the detailed product
allocation to obtain profits per category. In our setting, we show
that a more sophisticated product allocation model does not im-
prove overall performance, and that only small instances are solv-
able when more complex models are used. Nevertheless, one has
to bear in mind that the PAM serves as approximation of prof-
its per category for a chosen shelf size. The results obtain from
SWISS build the basis for the subsequent shelf space allocation.
The SWISS solutions can be used as input for more detailed and
granular shelf space allocation models for each category where
shelf space is an input parameter (see e.g., [5,45,51]). The itera-
tive application of the super- and subordinate planning approaches
would be worth investigating. In line with this, the models could
be enriched by stochastic demand, seasonal demand, and demand
effects caused by promotions or item pricing, as these are valu-
able avenues for further research in this area (see [6]). Our ap-
proach aims at a space allocation that maximizes category profit
and with this the corresponding store profit. We therefore opti-
mize the problem form a retailer perspective. A different point of
view would be to consider the perspective of a manufacturer in
the context of “category captainship” (cf e.g., [11,56]). A study that
addresses all the relevant subjects of negotiation between manu-
facturers and retailers (such as assortment, prices and shelf space)
would be a valuable contribution. Lastly, our approach determines
the share of shelf space for each category and division, while we
assume the number and location of both categories and divisions



as given. Our problem could be further extended to decide on the
sequence of categories within a division, or the overall arrange-
ment of categories and divisions within stores.
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Appendix A. Extended product allocation model

The objective function of the PAMP!“S in (A.1) contains a param-
eter my,, that provides the precalculated value for item i with k
facings on shelf level I with a stacking height of h. The binary deci-
sion variable x;;;, corresponds to 1 if item i is assigned with k fac-
ings on shelf level | which has a stacking height h. Within the ex-
tended demand function Dy, = o; - kPi - nf,; - €, additionally ny, pro-
vides the number of items stacked one above the other combined
with a vertical space-elasticity §; and a shelf level dependent de-
mand factor ¢;. Further replenishment costs are considered within
RCygn, = max[0; (Diygp — Qi) - RV1, where, in the event that the to-
tal shelf quantity gy, of an item i with k facings and a height de-
pendent number of items stacked n;, is smaller than the demand
Din- replenishments have to be executed with a cost factor RV per
item. The profit contribution of an item i with k facings on level
I and height h is then denoted by 7, = Djyp - Mj — RCygp. Restric-
tion (A.2) links the decision variable x;,;, with an auxiliary variable
yi for the determination of shelf levels and heights using a suf-
ficiently large number (BigM). Restrictions (A.3) and (A.4) define
that only one solution is permitted for each item i, and that each
shelf level | has to be defined precisely with one stacking height h.
The height of a specific shelf rack P: of a category c is considered in
restriction (A.5), where GP corresponds to the granularity of possi-
ble height adjustments and H™" is the minimum stacking height a
shelf level must take into account. All shelf levels determined on a
shelf rack with their individual stacking heights h must not exceed
the total height P. of the shelf rack. The shelf space Sc. of category
¢ with e shelf elements for each level I is considered in (A.6) with
the number of facings k of all items i and their individual product
dimensions g;. In line with PAM, upper and lower bounds for the
number of facings Kirl?i“ and K{#* are given in Restrictions (A.7). Fi-
nally restrictions (A.8) and (A.8) define the decision variables x;,
and y, as binary.

max QXign) = > > > > Xiwn - Tikin (A1)
ielc keK. leL heH
subject to

Z inklh - BlgM “Vin = OVleLheH (AZ)

iele keK:
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Appendix B. Case study categories

Divison A Regular dry food
Categories Number of items
Backery products, desserts 242
Bags, foils 70
Beer 159
Bread 173
Sandwich spread 164
Lemonade 84
Oil, vinegar 165
Ready meals 52
Fish tinned food 112
Ready sauces and spice mixtures 65
Meat tinned food 73
Tinned vegetables 247
Face and body care 1,445
Spices 277
Hair care 825
Medicine cabinet 77
Dog food 149
Toiletries 220
International food 47
Coffee 264
Cat food 168
Baby food 440
Cosmetics 72
Cake 321
Cereals 162
Snacks organic 35
Tinned fruits 30
Cleaning agents 610
Rice and potatoes 165
Juice 191
Salty snacks 254
Sparkling wine 44
Chocolate 379
Ice tea 146
Liquor 326
Sweet snacks 338
Tea 130
Pasta 184
Washing agents 293
Water 47
Wine 459
Dips 251
Sugar, Salt, Flour 151
Candy 183

(A3)

(A4)

(A7)

(A.8)

(A9)



Divison B Dairy products
Categories Number of items
Convenience chilled 29

Eggs 20

Delicacies chilled 87

Cheese self service chilled 361

Diary products white line chilled 385

Diary products cheese unchilled 108

Divison C Self service chilled
Categories Number of items
Meat self service chilled 46

Chicken self service chilled 44

Sausages self service chilled 269

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.0mega.2021.102425.
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