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Store space is limited and one of the most costly resources of retailers. Retailers have to apportion avail- 

able store space among the individual product categories of a store and therefore assign a certain share 

of shelf space to each category. Assigning more shelf space to one category requires reducing the number 

of shelves for another category as total space is limited. Reducing available shelf space in turn decreases 

assortment size and lessens the presentation quantity of products and vice versa. Both affect the demand 

of products and ultimately the profitability of the entire category such that the profit contribution of a 

category depends on its shelf size. This interrelation between category sizes and store profits needs to 

be taken into account for the shelf space assignment to categories and the space allocation for individual 

products. 

We introduce a store-wide shelf space model that optimizes shelf space assignment for categories based 

on the profit contribution of the corresponding product allocations. We decompose the problem into two 

hierarchically interlinked subproblems and show that the solution approach suggested works efficiently 

and provides solutions that are applicable to large problems in retail practice. In a case study with a 

major European retailer, we show that profits at stores can be improved by 3.2% using our approach. 

Further, we use simulated data to generalize the findings and derive managerial insights. 
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. Introduction 

The sales area of retail stores is limited and one of retailers’ 

ost cost-intensive resources. Its efficient use is one of the main 

rivers for a store’s success. Retailers decide on space use with re- 

pect to different planning horizons and a hierarchical planning 

rocess. The planning process is illustrated in Fig. 1 and consists 

f store layout planning, category space assignment and product 

llocation. The starting point is the store layout planning that in- 

ludes defining the role of product divisions (e.g., as traffic driver), 

heir location within the store (e.g., dedicated locations for promo- 

ional items), and upper and lower bounds for the division sizes. 

he store layout planning and definition of divisions (also referred 

s departments) is mainly driven by the retailer’s general strategy 

nd marketing philosophy. It is usually set for multiple years. Mul- 

iple product categories (e.g., milk, yoghurt, cheese) form one di- 

ision (e.g., dairy products), and the sequence of categories within 

he division is also defined within store layout planning. Secondly, 

etailers determine the size for each product category within the 
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espective division. When adjusting the category space, planners 

edefine the number of shelf elements (i.e., the number of racks) 

f each category (see e.g., [1] ). This may lead to replacement or re- 

esign of individual shelf racks. These instore adjustments are usu- 

lly executed once per year. Lastly, retailers allocate products of a 

ategory to given shelves (see e.g., [2,3] ). This imposes changes in 

ssortment sizes, the position of products within the shelves and 

he number of facings of each product. This is usually executed fre- 

uently throughout the year. 

This paper addresses the assignment of store space to cate- 

ories that constitutes the central part of this hierarchical planning 

oncept by splitting up the total space into categories, while cer- 

ain guardrails are set by the retailers store layout planning (e.g., 

iven locations of categories), and the product allocation to shelves 

s anticipated. In this step, retailers need to assign the space to 

 category by deciding how many shelf elements they allocate to 

ach category. The assignment of category space implies different 

ffects. If a category size increases, it is more likely that customers 

ill decide to purchase within this category [4] . Furthermore, more 

ategory space gives the opportunity to expand the assortment and 

ncrease the presentation quantity of the products selected. How- 

ver, as total store space is limited this also implies that less shelf 

pace is left for the remaining categories. This therefore reduces 
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Fig. 1. Hierarchical planning concept for store-wide shelf space planning. 
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he demand of items in the corresponding categories. The chal- 

enge from a modelling and data view is to evaluate the poten- 

ial contribution of the various sizes of a category. For example, 

hat is the impact on overall profit if one additional shelf element 

s assigned to one category, while the number of shelf elements 

s reduced for another? This requires information on the optimal 

roduct allocations for each category and all potential shelf sizes 

f a category. As such, this would require the results of the subor- 

inated product allocation (e.g., detailed plans about shelf layout, 

ssortment sizes, product positioning and shelf quantities) as input 

o the superordinated assignment of category space. The superor- 

inated assignment of category space on the other hand provides 

he shelf size limits of each category for the subordinated product 

llocation. One option for solving this problem is the application 

f a monolithic product allocation model for the superordinated 

ssignment of category space. This is, however, computationally in- 

ractable as we have to deal with problem sizes of 10,0 0 0 or more

tems and the best-known models can usually only handle problem 

izes of several hundreds of items [5] . A comprehensive planning 

ramework as introduced above and applied in practice is therefore 

ndispensable. 

There are various publications related to the store layout plan- 

ing (see e.g., [6–8] ) and the product allocation problem (see the 

eviews of [5,9,10] ), but little research on the detailed assignment 

f space to categories. This implies that the store layout models 

ocus on different decisions (e.g., location within store, effect of 

mpulse buying), and that the product allocation literature in gen- 

ral assumes the available shelf space for each category as given. 

ur work fills this gap in research and presents a comprehensive 

odel formulation to assign space to categories dependent on the 

ategory-specific profit contributions. The resulting NP-hard opti- 

ization problem is solved via decomposition. In doing this, we 

alculate the value of each potential size of a category by solving 

he underlying product allocation problem. These results are then 

nput into the model that defines the sizes of each category. Within 

his hierarchical approach of dividing the problem into dependent 

ubproblems, we also anticipate the overarching and subsequent 

ecisions and demand effects. In this sense, our approach extends 
2 
he product allocation literature by optimizing shelf sizes for each 

ategory and bridges the gap to the store layout literature. 

The remaining paper is structured as follows. Section 2 de- 

ails the planning problem and relates it to the literature. The 

athematical model for the assignment of category space is pre- 

ented in Section 3 together with the solution approach proposed. 

e provide numerical tests in Section 4 and show that the ap- 

roach is able to solve large instances efficiently. This includes a 

ase study with our cooperation partner from grocery retailing. 

ection 5 summarizes our key findings and identifies areas for fu- 

ure research. 

. Problem description 

This section details the underlying problem and its main fea- 

ures in terms of scope and demand impacts. It is based on a col- 

aboration with a major European grocery retailer and a review of 

elated literature. This builds the foundation for identifying the ex- 

sting gap in research and for specifying the contribution of this 

ork. Despite our focus on grocery retailing, our problem is also of 

elevance for other retailers such as DIY (do-it-yourself), electronic 

r department stores, where different categories compete for avail- 

ble shelf space within a store. Despite the fact that some manu- 

acturers play a more important role in managing product alloca- 

ion of single categories (see e.g., [11] and [12] ), the total store- 

ide shelf space management is usually fully under control of the 

etailer himself. Retailer-manufacturer collaboration is done within 

ategory management, such as minimum space requirements for a 

ategory that can be incorporated as constraints in the store plan- 

ing [13] . 

.1. Definition of the store-wide shelf space allocation problem 

Overview. Fig. 2 specifies the three different aggregation levels 

or planning the total store space (divisions, categories and prod- 

cts) and their relationship. Our focus is on the assignment of store 

pace to categories. As such, we elaborate the specific requirements 

or this aspect, but we also need to detail the interdependencies 



                                                                

                 
                                    

Fig. 2. Different aggregation levels for planning total store space - example. 
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ith the overarching and subsequent aggregation levels. Total store 

pace in our context is measured in running shelf meters. The as- 

ignment of store space to divisions and categories is therefore 

easured in a one-dimensional value, indicating the consumption 

f store meters. 

Based on customer preferences and long-term marketing plans, 

etailers set up divisions for each store type (e.g., hypermarket vs. 

upermarket). Divisions represent the most aggregated level and 

ivide the total store space into distinct areas. A division summa- 

izes all categories that belong to the same kind of product. In gro- 

ery stores, typical examples of divisions are dry food, fresh foods, 

efrigerated display cases, beverages, print media, household arti- 

les, frozen foods, bakery, etc. Within each division, a given num- 

er of categories are considered, which represent the second ag- 

regation level. A category groups products of the same type (e.g., 

rozen pizzas). All categories of a division compete for the store 

pace of the respective division. The sizing of categories therefore 

epends on corresponding division sizes. The final and most granu- 

ar level comprises products , which need to be allocated to shelves 

f the category. It needs to be decided which products are actually 

ncluded in the assortment and how much space is allocated to 

ndividual products. While product allocation is the most granular 

evel, it affects the ultimate demand and sales for the individual 

roducts, and therefore determines the contribution of a category 

nd a division to overall store profit. All three levels are interde- 

endent. The store space allocated to a division influences the shelf 

pace allowance for all related categories. The total shelf space of a 

ategory determines the available shelf space for individual prod- 

cts, which in turn determines the profit contribution of the cat- 

gory and division. In the following, we analyze the related scope 

nd demand impact of each aggregation level separately. 

From store space to division space. The partitioning of the store 

pace into divisions constitutes the first step. Stores are designed 

sing divisions to group categories of the same kind, define the 

equence of categories within the store (i.e., which kinds of prod- 

ct are found at the entrance, which at the checkout), and to en- 

ure a certain display size. The number and size of divisions de- 

ends on the value proposition, store type, location and general 

roduct variety. Furthermore, the location of the divisions within 
3 
he store follows long-term marketing plans (e.g., conveying the 

essage of being a retailer with high degree of fresh products by 

utting the fresh division at the store entrance), insights on shop- 

er paths (e.g., putting a high volume division at the end of the 

tore to increase the walking path), role of divisions (e.g., impulse- 

uying products closer to checkout), or simply some constructional 

r design guidelines (e.g., cooled shelves at the walls). At this stage, 

etailers also select some divisions to serve as traffic drivers (see 

.g., [6] ). Moreover, the sequence of divisions within a store follows 

eneral rules for all stores, i.e., each store with the same arrange- 

ent of divisions. Retailers want to create a familiar atmosphere 

or customers, independent of which of the associated stores is vis- 

ted. 

Updates of the general store layout plan are usually made when 

ajor strategy plans are implemented, e.g., adding new divisions 

r changing the layout of all stores. Store layout planners define 

t this stage the scope of divisions (i.e., which categories are in- 

luded in a division) and the dimensions of divisions. To incor- 

orate some flexibility for further plan adjustments during annual 

ategory reviews, the division space is here defined within an up- 

er and lower limit. For example, the minimum size of a division 

ay reflect strategic goals of the retailer (e.g., minimum share of 

resh products), support to grow strategically important divisions 

r to enable a basic range of products across the categories in- 

olved. A further major decision at this point is defining the loca- 

ion of division within the store. This ultimately also includes the 

equencing of categories within a division. 

The store layout planning has two demand implications. (1) In- 

reasing size of divisions, categories and products together with a 

rowing visibility increases the demand (see e.g., [14,15] ). Total de- 

and ultimately depends on the visibility of individual products 

o customers. For this reason it is indispensable to understand the 

etailed impact of space assignment of products. We will hence 

etail this demand effect below when discussing the allocation of 

roducts. (2) The location of a division within a store also impacts 

isibility and traffic. The actual location of shelves (e.g., near the 

ntrance/check-out) as well as the types of products and categories 

ssigned to nearby shelves impact overall visibility to customers 

nd consequently profits of categories due to corresponding cus- 



                                                                

                 
                                    

Fig. 3. Example of space assignment to categories with different shelf elements. 
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omer traffic [16–19] . As locating divisions is not within the focus 

or the category sizing, these demand effects need to be implicitly 

espected when determining the basic demand of products. 

From division space to category space. The allocation of division 

pace to categories is the second and subordinate step. Related cat- 

gories are grouped together in divisions. A category comprises 

roducts of the same type (e.g., frozen pizza and frozen vegeta- 

les are two categories belonging to the frozen division). Each cat- 

gory is associated with a certain type of shelf rack, indicated in 

he following as shelf element, depending on the related prod- 

ct characteristics (e.g., dry, chilled, frozen or fresh goods). Indi- 

idual shelf elements may therefore differ across categories, i.e., 

ategory-specific shelf types and sizes are considered. Fig. 3 il- 

ustrates different shelf elements for two categories, as examples. 

hile Category X requires standard shelf elements with a width 

f 1.25 m, Category Y requires special shelf elements with a width 

f 2.10m. The space consumption of one shelf element therefore 

iffers across categories and it needs to be decided how many 

ategory-specific shelf elements are assigned to each category. 

The category planning is done at regular intervals and takes 

lace when the performance of categories is reviewed and when 

ategories are added or removed [9] . Retail planners need to de- 

ide how many (category-specific) shelf elements are selected for 

ach category, while the existing store layout (i.e., the number of 

ivisions and categories as well as their location within stores) 

s not affected. To allow some flexibility, category sizes can usu- 

lly be adjusted within certain boundaries. There are guidelines 

n the number of shelf elements. Lower limits ensure a certain 

inimum range of products within each category and reasonable 

pper bounds are set in line with the maximum assortment. Fur- 

hermore, only full shelf elements can be assigned as categories do 

ot share shelf elements. In our example, only multiples of 1.25 or 

.10 m can be taken into account. The demand is impacted by the 

roduct allocation that will be detailed below. 

From category space to product space. Product allocation com- 

rises decisions on how to place a given set of products (i.e., 

he assortment of a category) on a limited area of shelf space 

5,9,10,20] , and constitutes the third step. It is usually updated af- 

er major assortment changes (e.g., after regular negotiations with 

uppliers, delisting of low performing items), and happens more 

requently than category planning. Product allocation defines as- 
4 
ortment size, shelf quantity of items, and the position on the 

helves of each product of a category. Offering broader assortments 

ith more products limits the space available per product and vice 

ersa. This makes it necessary to specify the products to be carried 

n each shelf and determine the space and quantity to be assigned 

o selected items. A facing is the first visible unit of an item in 

he front row of a shelf. In this sense, retailers define the num- 

er of units per product in the front row of a shelf that are visible

o the customer. The option of lining up products one behind the 

ther (i.e., putting units of an item behind a facing) depends on the 

helf and item depth. Common retail practice is to line up as many 

tems as possible [21,22] to fully utilize the available space. The ex- 

licit decision is consequently the number of facings for each item, 

hile the units behind a facing are derived from item and shelf 

izes. This results in the total shelf inventory of an item. It is com- 

on retail practice to assign a product only to one shelf element, 

ot spreading it across multiple elements, to keep facings together. 

he position of an item on the shelf is therefore described by its 

ertical and horizontal position on a shelf element. Furthermore, 

etailers apply minimum inventory limits that ensure a certain ser- 

ice level (e.g., using safety stocks) to minimize out-of-stock situ- 

tions [23] . Upper limits on the other hand are necessary to limit 

aximum inventory reach. Similarly, a minimum number of fac- 

ngs can be applied to ensure a certain shelf representation (e.g., 

or newly listed products with low current demand) or to fulfill 

upplier targets (e.g., contractual agreements for shelf shares; see 

.g., [11] ). A maximum number of facings sets an upper bound to 

imit, for example, the shelf share for certain products. 

Customer demand depends on product allocation in four ways: 

1) space allocation to individual items , (2) space allocation across 

tems , (3) positioning of items on the shelves and (4) substitutions 

hen products are delisted. (1) Item demand depends on the vis- 

ble quantity on the shelf. The higher the visibility of an item, 

he higher its demand. The visibility of an item increases with 

he number of facings assigned to it. This effect is called “space- 

lasticity” and has been analyzed in various empirical studies (see 

.g., [14,15,24,25] ). Chandon et al. [26] show that the number of 

acings is the most important instore factor affecting customer de- 

and. (2) Product allocation may also affect the demand across 

tems. Cross-space elasticity describes the impact on the demand 

f items when the space assigned to one item is changed. How- 

ver, [27] show that the impact of this demand source on product 
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llocations and retail profit is limited. This also holds true if elas- 

icities are significantly higher than the empirical values obtained 

o far. (3) Demand may depend on the position of the products 

ithin the shelves as products may be put on different vertical lev- 

ls. Following [28,29] , this means that some levels lie within a spe- 

ific zone running approximately from eye- to knee-level, where 

roducts are more likely to be seen by customers than outside 

his zone. Further demand impacts may arise from how products 

re arranged next to each other, how far a product is positioned 

rom the edge of a category (i.e., beginning of an aisle), and the 

ay product facings are arranged, e.g., in rectangular shapes or 

s a family grouping. Generally these effects are attributed to a 

ower demand impact (see e.g., [26,30] ). Nevertheless, shelf layout 

ay be subject to some layout restrictions that may require keep- 

ng certain products together (e.g., brand grouping), but without 

hanging demand [31–33] . (4) The shelf space is limited and hence 

imits assortment sizes. When a desired product is not listed, cus- 

omers may decide to replace the product for an alternative. This is 

alled substitution demand (see e.g., [4,34] ). Empirical studies indi- 

ate substitution rates of 45% to 84% of the initial demand, where 

he magnitude depends on attributes of the product, situation and 

ustomer (e.g., [35,36] ). 

With respect to the demand affected by sizing categories, the 

mpact of space-elastic demand is unequivocal for our planning 

roblem whereas cross-space elasticity has a negligible impact due 

o a lower magnitude. Cross-product demand is more relevant for 

ssortment decisions, e.g., when assortment sizes are reduced to 

t on the available shelves. The demand arising from product posi- 

ioning on the shelf elements may impact demand when a detailed 

roduct allocation decision is made for different shelf levels. In the 

ontext of our aggregated problem of sizing categories, we neglect 

his positioning effect as we do not consider detailed planograms 

ut the overall space assignment to products in relationship to cat- 

gory sizes. 

.2. Related literature 

Two literature streams are related to our setting. The first 

tream deals with the store related issues, whereas the second is 

ased on the allocating of products to shelves. 

Related literature on store planning problems. The contributions 

n this stream mainly relate to the store layout planning. Campo 

t al. [4] are the first to deal with the sizing of divisions. In a

undamental empirical paper they determine division sizes and lo- 

ations by considering specific attraction factors. Please note that 

heir unit of analysis is according to our definition above “divi- 

ion”, but the term used in their paper is “category”. The attraction 

actors depend on each division’s share of sales, size, and location 

ithin the store. In sum, the approach is limited to division-based 

ata and does not consider individual product data in detail. Fur- 

her, an individual consideration of product-specific shelf elements 

e.g., fridges) is missing, and related assortment and substitution 

ffects cannot be considered due to the disregard of product data. 

otsali [37] analyze different store layout designs and their impact 

n impulse buying (i.e., unplanned purchases), revenue, and cus- 

omer travel distance. Ghoniem et al. [38] present an approach that 

ims at maximizing the impulse-buying profit by allocating “items”

o segments of a “knapsack” (i.e., shelf) with different attractive- 

ess. The authors discuss a single-shelf problem (with up to 70 

helf segments) as well as a multi-shelf problem. Ghoniem et al. 

39] present a variable neighborhood search to solve this problem 

or large problem instances, i.e., up to 210 categories on 42 shelves. 

lamand et al. [6] adjust the work of [38] to consider predefined 

roups of categories. In detail, the authors allocate groups of cat- 

gories to existing shelves, based on a given store layout to de- 
5 
ermine the location of each category group (i.e., a specific aisle 

nd shelf) in relation to other categories, define the position of 

ach category within the corresponding group, and decide on the 

helf space of single categories. In a subsequent work, Flamand 

t al. [7] extend their approach using an assortment decision that 

ecides on a category level whether to include a whole category 

ithin the store or not. Dorismond [40] also study store layout 

esigns using data-driven models to increase impulse sales. Oz- 

ormus and Smith [8] determine division sizes, but do not fur- 

her spilt these up into categories. They focus on the sequencing 

f divisions while considering related layout rules. An adjacency 

atrix is used where the coherence as well as the contrariness 

mong divisions is defined. Space elasticity and impulse buying 

ates are considered on a category level. Product level data are 

ot included. The focus of these models is on the location and se- 

uence of divisions and categories with respect to impulse buy- 

ng effects, while detailed product allocation decisions (and corre- 

ponding effects such as substitution or space elasticity) are not 

ncluded to determine the individual profit contributions of cat- 

gories. The authors consider predetermined profits for the used 

ategory groups, and the actual shelf space assigned to a group 

oes not impact category profits but impulse buying effects. Fur- 

her, this stream of literature does not consider category-specific 

helf elements and therefore different shelf types but assume that 

ll category groups can be assigned to the existing shelf structure 

f a store. Given these differences, these papers can be seen as 

ontributions to the store layout problem as it determines divisions 

nd category locations and sequences (that are assumed as given 

n our work) within stores, while we analyze a detailed shelf space 

llocation to single categories with individual shelf elements and 

rofits. 

Another, but different approach for store planning is provided 

y Irion et al. [1] . They provide two models where solutions of a 

roduct allocation model adopted from [41] are used to interpolate 

alues for the store space problem. Within their product allocation 

odel, they account for product level data and consider substitu- 

ion and space elasticity. Within their store model, they use values 

or a predefined number of options between the upper and lower 

ound of shelf space for a category generated with the product al- 

ocation model. They interpolate between these options in order 

o determine a share of the total store space per category. Even 

hough they use an advanced product allocation model, their ap- 

roach does not account for divisions and different shelf types. Fur- 

her, the numerical examples in this paper are very limited. They 

how a numerical study containing nine categories, which is not in 

ine with practical needs (e.g., more than 50 categories with over 

0,0 0 0 items are considered by retailers). 

Related literature on product allocation. Following first studies on 

he effect of product allocation on sales and profits (e.g., [14,15] ), 

ansen and Heinsbroek [2] present the first product allocation 

odel with non-linear elements and a space-elastic demand func- 

ion. Subsequently, Corstjens and Doyle [3] and Zufryden [42] ex- 

end the decision model by considering cross-elasticity and other 

emand and cost effects. Borin et al. [43] present a product alloca- 

ion model that integrates assortment decisions and lost sales. In 

ddition to the shelf space of a category, Urban [23] also consider 

he backroom as additional inventory space. Irion et al. [41] in- 

orporate a detailed cost function for the replenishment process. 

n additional decision aspect is introduced by Hübner and Schaal 

44] . Their work considers backroom space. Besides similar de- 

and functions, all these publications model shelf space as a one- 

imensional input parameter. Other approaches such as those of 

45–49] provide the possibility of considering several equal (one- 

imensional) shelf levels. These publications demonstrate the in- 

reasing importance of considering different shelf space options. In 



                                                                

                 
                                    

Table 1 

Overview of related main literature. 

Decision variables Shelf 

inventory c 
Shelf types 

per cat. d 
Max. size of test class e 

Literature Facings Assortment a Cat.size Div.size b 

Campo et al. [4] — — � — — — (c) 17 (i) —

Irion et al. [41] � ( � ) � — � — (c) 9 (i) n.a. 

Ghoniem et al. [38] — — � — — equal (c) 140 (i) —

Ghoniem et al. [39] — — � — — equal (c) 210 (i) —

Flamand et al. [6] — — � � — equal (c) 210 (i) —

Flamand et al. [7] — — � — — equal (c) 800 (i) —

Ozgormus and Smith [8] — — � — — equal (c) 25 (i) —

Borin et al. [43] � � — — — — (c) 1 (i) 6 

Urban [23] � � — — � — (c) 1 (i) 6 

Yang [45] � ( � ) — — — — (c) 1 (i) 10 

Hwang et al. [46] � — — — � — (c) 1 (i) 4 

Hansen et al. [47] � — — — — — (c) 1 (i) 100 

Irion et al. [1] � ( � ) — — � — (c) 1 (i) 6 

Geismar et al. [30] � — — — — — (c) 1 (i) n.a. 

Bianchi-Aguiar et al. [32] � — — — — — (c) 1 (i) 240 

Zhao et al. [48] � — — — � — (c) 1 (i) 100 

Hübner and Schaal [44] � — — — � — (c) 1 (i) 2000 

Hübner and Schaal [49] � — — — � — (c) 1 (i) 200 

Düsterhöft et al. [50] � — — — � — (c) 1 (i) 300 

Hübner et al. [51] � — — — � — (c) 1 (i) 200 

This paper � � � � � individual (c) 60 (i) 16,000 

— means not applicable / not considered in model 
a Assortment decision on a product level: � incl. substitution for listed products; ( � ) without substitution effects. 
b Consideration of different aggregation levels of store space. 
c Minimum/maximum inventory (e.g., representation quantity) or considering replenishment needs. 
d When more than one category is considered and store space allocation accounts for shelf elements; equal: all categories have the same 

shelf type; individual: categories have individual shelf types. 
e Maximum number of categories (c) and/or resulting number of items (i) in a single test instance. 
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ine with this, Düsterhöft et al. [50] and Hübner et al. [51] demon- 

trate the impact of considering different approaches to model 

helf sizes and present models that consider three-dimensional 

helves and optimize shelf layout. We refer to [5,9,10] for more de- 

ailed reviews. 

.3. Summary and scope of this paper 

Table 1 summarizes related literature. Present literature ad- 

ressing problems on a store level primarily focuses on finding 

he most attractive location for each product group within a retail 

tore. To do so, aggregated values of category groups or divisions 

re used and other demand effects such as impulse-buying are in 

he focus of their work. Detailed data on a product level on the 

ther hand are neglected. As the sequence of divisions and cate- 

ory groups within a store is usually a global decision that is valid 

or all a retailer’s stores, these models are more applicable on an 

bstracted strategic planning level (i.e., store layout planning). It 

s important to consider exact product values and category-specific 

helf types for the concrete sizing of divisions and categories. None 

f the existing approaches on store-wide problems provide a so- 

ution that incorporates and combines category sizing with the 

onsideration of category-specific shelf types and profits driven by 

roduct allocation decisions. The integration of these decisions is 

mportant to obtain a detailed solution of category and division 

izes due to their interrelation. 

The majority of papers addressing product allocation define the 

umber of facings for a given number of products for a specific 

ategory. In all the papers, the available shelf space is considered 

s an input parameter and cannot be modified within these mod- 

ls. This implies the problem that product allocation is based on 

he predetermined category space and can only be as good as the 

etermination of the shelf size parameter itself. The majority of 

roduct allocation models do not apply different shelf elements 
6 
mong the items considered, which is a prerequisite for solving the 

olistic store-area decision problem. Further, they do not account 

or subsets on the product, category and division limits. 

. Model and solution approach 

This section introduces the formal representation of the store- 

ide shelf space allocation problem. After discussion of the formal 

odel we introduce our solution approach that uses a problem de- 

omposition to address the problem. 

.1. Decision problem, general model and model complexity 

Notation. Table 2 summarizes the notation for the store-wide 

helf space allocation problem. 

Sets, decision variables and parameters. Let I be the set of items 

, i ∈ I, which comprises all available items across all categories C, 

ith c, c ∈ C. The subset I c ⊆ I indicates the items i that belong to

ategory c. As items can be delisted, we divide the set of all items 

f a category I c into listed items ( I + c , I 
+ 
c ⊆ I c ) and delisted items

 I −c , I 
−
c ⊆ I c ), such that I + c ∪ I −c = I c and I + c ∩ I −c = ∅ . Further, each cat-

gory c belongs to exactly one division d, d ∈ D, denoted by the 

ubset C d ⊆ C. The total store space R is divided into the space al- 

owance for all divisions d, where each division has minimum and 

aximum space requirements U 

min 
d 

and U 

max 
d 

. Retailers use dif- 

erent shelf elements for each category (e.g., regular shelves, high 

acks, chilled or freezing compartments). Each category c has ex- 

ctly one type of such shelf element. The store space required by 

ne shelf element of each category is denoted by r c . The total store 

pace R and store space per shelf element r c is usually measured 

s a one-dimensional value (e.g., in running meters). Retailers need 

o define the number of shelf elements y c (y c > 0) for every cate- 

ory c, c ∈ C d , within each division d. The store space consumed by

ll categories (across all divisions) may not exceed the given total 



                                                                

                 
                                    

Table 2 

Notation for the store-wide shelf space allocation model. 

Indices 

C Set of categories c within the store, c ∈ C
D Set of divisions d within the store, d ∈ D 
C d Subset of categories c belonging to division d, c ∈ C, d ∈ D 
I Set of available items (products) i within the store, i ∈ I
I c Subset of items i belonging to category c, i ∈ I, c ∈ C
I + c ( I −c ) Subset of listed (delisted) items i belonging to category c, i ∈ I, c ∈ C
Store- and shelf-space-related parameters 

E min 
c ( E max 

c ) Minimum (maximum) number of shelf elements for category c

R Total store space for assigning shelf elements 

s c Available shelf space for product allocation per shelf element of category c

r c Store space required for one shelf element of category c

U min 
d 

( U max 
d 

) Minimum (maximum) store space for division d

Product-related parameters 

a i Space required for allocating one facing of item i 

g i Sales units behind one facing of item i 

m i Net margin of one unit of item i 

T min 
i 

( T max 
i 

) Minimum (maximum) shelf quantity of item i 

αi Basic demand of item i 

βi Space-elasticity of item i 

γ ji Substitution rate from delisted item j to listed item i 

δi Total demand of item i 

Decision variables 

x i Number of facings of item i 

y c Number of shelf elements of category c
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tore space R, so it needs to be ensured that 
∑
c∈ C

r c · y c ≤ R . In doing

his, one implicitly decides on the store space allocated to each di- 

ision with 

∑
c∈ C d 

y c · r c , ∀ d ∈ D . There are also limits to the number

f shelf elements y c for each category c, with E min 
c ≤ y c ≤ E max 

c and 

 

min 
c ≥ 1 , as at least one shelf element per category is necessary. 

esides the consumption of available store space per shelf element 

nd category r c , each shelf element is associated with an avail- 

ble shelf space, denoted as s c . This indicates the space available 

o allocate facings of items i, i ∈ I c , to one shelf element of cate-

ory c. Using the number of shelf elements per category y c , the 

helf space per category S c is denoted by S c = s c · y c , ∀ c ∈ C. With

espect to shelf space consumption of items it is sufficient to con- 

ider the space consumption of one facing of an item i, denoted 

y a i , and the number of facings allocated to an item, indicated 

y the integer variable x i , x i ∈ N 0 . In the event that zero facings

ave been assigned to an item ( x i = 0 ), it is delisted (i.e., i ∈ I −c ).
he facing-related space consumed by all listed items i, i ∈ I + c , of

 category c can then be calculated by 
∑

i ∈ I +c 
a i · x i , and needs to be

qual or smaller than the available shelf space per category, i.e., ∑

 ∈ I +c 
a i · x i ≤ S c . Retailers fill up shelves to the maximum possible 

nits. The number of facings x i is therefore decision relevant, 

hereas the number of units behind one facing g i is derived by 

helf and item depth. The parameter g i is uniquely defined for each 

tem and depends on the item depth and the shelf depths of one 

lement of the item-related category c. The total shelf quantity of 

ach item i is determined accordingly by q i = x i · g i . The shelf quan-

ity needs to lie within a minimum representation quantity T min 
i 

nd a maximum inventory reach T max 
i 

, i.e., T min 
i 

≤ q i ≤ T max 
i 

, ∀ i ∈
 

+ 
c , c ∈ C. 

Objective function. Retailers pursue the objective of maximizing 

he total store profit � by selecting the optimal number of shelf 

lements y c across all categories c, and the corresponding optimal 

umber of facings x i across all items i, represented by the vectors 

¯ and ȳ , with x̄ = { x 1 , x 2 , . . . , x | I| } and ȳ = { y 1 , y 2 , . . . , y | C| } . The ob-
7 
ective function � can thus be formulated as follows. 

ax �( ̄x , ȳ ) = 

∑

i ∈ I 
m i · δi (x i ) (1) 

The total profit of an item is calculated as the product of its 

otal demand δi and its net margin m i per sales unit. The total 

emand δi of an item i is a composite function of the basic de- 

and αi , the demand dependent on space-elasticity βi , and the 

ut-of-assortment substitution γ ji from delisted items j, j ∈ I −c to 

isted items i, i ∈ I + c . The basic demand αi represents the retailer’s 

emand forecast for an item that is independent of the number of 

acings (cf. [2,5,9] ). The forecast may be based on historical sales, 

ut may also incorporate further marketing effect. In our context, 

he basic demand αi of an item i already incorporates the loca- 

ion effect within the store as each item belongs to one category 

nd each category is assigned to one division. The location of the 

ivision and of each category within a division is predetermined. 

he same holds true for effects from shelf positioning. For exam- 

le, price segments or brand blocks define the location of products 

n shelf levels (e.g., items that belong to the economy segment 

re usually positioned on the bottom level). The higher the visibil- 

ty of an item, the higher its demand [14,15,25,26] . The item visi- 

ility increases with the number of facings x i . In accordance with 

rior research (cf. e.g., [2,41] ), the facing-dependent demand rate is 

 polynomial function of the number of facings x i and the space- 

lasticity βi (with 0 ≤ βi ≤ 1 ). 

The assortment size | I + c | of each category c depends on the 

vailable shelf space (i.e., number of shelf elements y c ) and the 

elected number of facings x i across items. If fewer shelf elements 

re available, total shelf space decreases and it may not be possible 

o list all items. It may also be more profitable to delist less prof- 

table items to increase the number of facings for more profitable 

tems. We assume that if item j is delisted, customers substitute 

 certain share of the basic demand α j of item j with an alter- 

ative item i, to compensate for the lack of item j in the assort- 

ent. The maximum quantity that can be substituted cannot be 

igher than the basic demand as the space-elastic demand in the 

ase of x = 1 corresponds to the basic demand. Additionally, we 
i 
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ollow the usual assumption that substitution takes place across 

ne round only (cf. e.g., [34,52] ). Assortment size reductions there- 

ore result in a shift of demand (substitution) from delisted items 

j, j ∈ I −c to other listed items i, i ∈ I + c , expressed as substitution rate 

ji , and in lost sales, expressed as 1 − ∑

j∈ I −c 
γ ji (see e.g., [34,53] ). The 

ubstitution rate γ ji can be estimated, for example, proportional to 

he demand share of an item i of the total demand (see e.g., [9,10] ).

iven our strategic planning problem and the decision variables x i 
nd y c , the demand function δi of an item i can be formulated as

enoted in Eq. (2) . 

i (x i ) = αi · x 
βi 

i 
+ 

∑

j∈ I −c 
α j · γ ji ∀ i ∈ I + c , c ∈ C (2)

The item unit margin m i corresponds to sales price minus pur- 

hase costs, replenishment costs and further related costs (e.g., for 

isting). The replenishment costs depend on the ratio of demand 

o shelf quantity. Whenever the shelf quantity q i of an item i is 

ot sufficient to cover the demand δi (x i ) of an item i, additional 

eplenishment from the backroom has to be performed, which de- 

reases the margin m i . 

Model complexity. Product allocation problems belong to the 

lass of knapsack problems that are known to be NP-hard [54] . The 

ombinatorial complexity of such problems increases very rapidly 

ith the number of products considered and the shelf space al- 

otted. The possible combinations for allocating | I c | products to a 

iven shelf space S c can be calculated using Y (I c , S c ) = 

(| I c | + S c −1 
S c 

)
.

ssuming instances with | I c | = 50 items and space for 100 units

 S c = 100 ), this results in 6 . 7 · 10 39 possible combinations of one

ategory. Each of these combinations results in different substitu- 

ion settings and thus a different demand among the items that 

ould need to be factored in. Furthermore, in our case we con- 

ider up to 80 categories with hundreds of items each. Defining 

he shelf space S c for each category is part of the decision prob- 

em. 

To summarize, our model combines the decisions on assort- 

ent sizes and product allocation with store spacing while taking 

nto account the interdependency of these decisions. The model 

resented is a non-linear integer problem (NLIP) due to the mu- 

ual dependency of the decision variables. A special case and re- 

uced problem (i.e., the product allocation) is already known to 

e an NP-hard problem. A combination of product allocation with 

he decisions on store-wide shelf space allocation additionally in- 

reases the size of the combinatorial problem significantly. In this 
Fig. 4. Bottom-up strategy o

8 
ase, only limited data sets of minor sizes can be solved, and hence 

n efficient solution approach is required. 

.2. Solution approach 

The central aspect of our problem is determining the size of 

ach category. This decision is based on a bottom-up profit cal- 

ulation of each possible category size with a product allocation 

odel. We present a tailored solution approach, Store-Wide Shelf 

pace optimization (SWISS optimization), which determines the 

ptimal shelf space per category based on the profit contribution 

f possible shelf sizes. Fig. 4 represents the strategy of our solution 

pproach. SWISS optimization uses a decomposition of the store- 

ide shelf space allocation model into two subproblems: the Prod- 

ct Allocation Model (PAM) and the Store Area Model (SAM) . First, 

he PAM is solved to determine an optimal assortment and product 

llocation for each possible shelf space configuration. This means 

hat for each category a solution of PAM is obtained for each pos- 

ible shelf size of this category. The individual profit contributions 

f these shelf configurations obtained by the PAM are then used 

s input parameters for the SAM, which determines optimal cat- 

gory sizes. We implemented the SWISS optimization in a Java 

ramework. To do so, first a preprocessing step is required where 

nput data and model-specific values for the PAM and SAM are 

alculated. Using the preprocessing, we are able to connect both 

ubproblems in our solution approach, while each model can be 

olved using the CPLEX solver. In the following we detail the re- 

pective subproblems PAM ( Section 3.2.1 ) and SAM ( Section 3.2.2 ) 

s well as the complete SWISS solution algorithm ( Section 3.2.3 ). 

.2.1. Solving the product allocation model for all category shelf size 

ombinations 

We use the PAM to obtain a profit value for the different shelf 

izes of a category depending on the number of shelf elements 

sed. The number of possible shelf elements for category c can be 

ormulated as the set E c = { E min 
c , E min 

c + 1 , . . . , E max 
c } , where E min 

c 

nd E max 
c represent the lower and upper limits for each category. 

he shelf size S ce of category c is then denoted by the number of 

helf elements e, e ∈ E c , and the corresponding shelf space s c , i.e.,

 ce = e · s c . We introduce �ce as the profit contribution of category 

when e shelf elements are allocated to it. That means the profit 

ontribution has to be calculated | E c | times for each category, re- 

ulting in 

∑ 

c∈ C
| E c | combinations. 
f SWISS optimization. 
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Algorithm 1 Pseudo code of SWISS optimization. 

1: Input: Sets of divisions D , categories C, items I, and facings 

K i (i ∈ I) 

2: Precalculation of parameters 

3: Set individual limits K 

max 
i 

and K 

min 
i 

for each item i 

4: for each category c ∈ C do 

5: Set E c = { e ∈ N | E min 
c ≤ e ≤ E max 

c } 
6: Set 	 = 0 and �(	 ) 

ce = 0 and calculate δ(	 ) 
ik 

assuming I +(	 ) 
c = I c 

and I −(	 ) 
c = ∅ 

7: for each number of shelf elements e ∈ E c do 

8: Set 	 = 	 + 1 , set δ(	 ) 
ik 

= δ(	 −1) 
ik 

, solve PAM 

(	 ) to obtain x (	 ) 
ik 

, 

and determine I +(	 ) 
c and I −(	 ) 

c 

9: Update demand δ(	 ) 
ik 

= αi · k βi + 

∑ 

j∈ I −c 
αi · γ ji for each item 

i ∈ I +(	 ) 
c and set δ(	 ) 

ik 
= 0 for each item i ∈ I −(	 ) 

c 

10: If | �(	 ) 
ce − �(	 −1) 

ce | ≤ ε holds true, stop and return �ce , 

else go to line 8 

11: end for 

12: end for 

13: Input �ce from PAM and respective store space of shelves r ce 

and solve SAM 

14: return Assigned store space to each division d ∈ D and category 

c ∈ C and resulting store profit �

∑
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We leverage the fact that facings can only have integer values 

nd formulate the PAM as a binary integer program (BIP). Using 

he maximum shelf quantity T max 
i 

for item i, i ∈ I, we can calcu-

ate the upper limit for the number of facings K 

max 
i 

of each item 

 using K 

max 
i 

= � T max 
i 
g i 

� . Similarly, K 

min 
i 

is calculated using T min 
i 

. We

hen apply this to define the set K i of possible facings for item i,

ith K i = { 0 , K 

min 
i 

, K 

min 
i 

+ 1 , . . . , K 

max 
i 

} , where 0 is included to en-

ble zero facings, which is equivalent to delisting item i . Further- 

ore, the number of facings k, k ∈ K i , assigned to an item i, i ∈ I c ,

s denoted by the binary decision variable x ik . The demand values 

ik for each item listed i (i ∈ I + c ) and each possible facing k are cal-

ulated by 

ik = αi · k βi + 

∑

j∈ I −c 
αi · γ ji . (3) 

This is identical to Eq. (2) , and can be found in related prob-

ems (see e.g., [44] ). The profit contribution πik of each item i and 

 facings is computed accordingly by πik = m i · δik . The central ben- 

fit of this formulation is a priori determination of individual limits 

 

min 
i 

and K 

max 
i 

for each item i, i ∈ I c , as well as the consideration of

he individual category-related boundaries within the sets E c . Both 

ignificantly reduce computational efforts. The PAM can be formu- 

ated as follows to determine the profit contribution �ce for each 

ategory c when e shelf elements are used: 

ax �ce (x ik ) = 

∑

i ∈ I c 

∑

k ∈ K i 
πik · x ik (4) 

ubject to 

 ∈ K i 
x ik = 1 ∀ i ∈ I c (5) 

i ∈ I c 

∑

k ∈ K i 
k · a i · x ik ≤ S ce (6) 

 ik ∈ { 0 , 1 } ∀ i ∈ I c , k ∈ K i (7)

The objective function (4) determines the number of facings x ik 
or each item i, i ∈ I c such that the total profit �ce is maximized for

he given category c and number of shelf elements e, e ∈ E c . Con-

traints (5) ensure that the binary variable x ik is set active for only 

ne number of facings k for each item i, i ∈ I c . With Constraints

6) it is ensured that the available shelf space S ce is not exceeded 

y the sum of all items allocated. Finally, the decision variable x ik 
s defined as binary by Constraints (7) . 

.2.2. Store area model 

The second part of our decomposition is the SAM, which ad- 

resses the central aspect of our work, i.e., the store space allo- 

ation to divisions and categories. It is therefore the superordi- 

ate problem within the SWISS optimization. SAM uses the prof- 

ts calculated with PAM. In detail, SAM uses the profits �ce gener- 

ted across all categories c, c ∈ C, and all corresponding options of 

helf elements e, e ∈ E c , and determines the optimal composition 

f shelf space across categories that generates the highest overall 

tore profit �. As the total store space R is indicated in shelf me- 

ers, the linear intake of the shelf elements of a category on the 

oor is sufficient (i.e., the consumed shelf meters per shelf). We 

herefore define r ce for the shelf meters consumed by category c

hen e shelf elements are used. We introduce the binary variable 

 ce , indicating the number of shelf elements e allocated to category 

. The SAM can then be formulated as follows. 

ax �(y ce ) = 

∑

c∈ C

∑

e ∈ E c 
�ce · y ce (8) 

subject to 

 ∈ E c 
y ce = 1 ∀ c ∈ C (9) 
9 
c∈ C

∑

e ∈ E c 
r ce · y ce ≤ R (10) 

 

min 
d ≤

∑

c∈ C d 

∑

e ∈ E c 
r ce · y ce ≤ U 

max 
d ∀ d ∈ D (11) 

 ce ∈ { 0 , 1 } ∀ c ∈ C, e ∈ E c (12)

Within the objective function (8) the total profit of the store �

s maximized by summing up the chosen shelf elements times the 

espective profits across all categories. Constraints (9) ensure that 

xactly one number of shelf elements is assigned to each category. 

he total store space is respected using Constraints (10) . Moreover, 

he upper and lower bounds for divisions are set in Constraints 

11) . Finally, the decision variable y ce is defined as binary in Con- 

traint (12) . 

.2.3. SWISS optimization 

Algorithm 1 summarizes the solution approach for SWISS opti- 

ization that combines PAM and SAM. 

PAM determines the profits for all possible shelf sizes of each 

ategory �ce ( c ∈ C, e ∈ E c ) (see lines 3 to 12 in Algorithm 1 ). The

emand Function (3) results in a non-linear model due to the sub- 

titutions. We therefore apply an iterative approach to solve a lin- 

arized PAM for each possible allocation of shelf elements e, e ∈ E c ,

nd the corresponding shelf size S ce . This means that we precal- 

ulate the substitution demand (see second term of (3) ) – using 

he assortment decisions of the previous PAM iteration – and then 

pdate the complete demand (incl. substitution effects) after each 

teration with the newly obtained assignment (see details below). 

n this way it possible to solve the BIP with CPLEX, but it has the

radeoff that the actual demand is always lagging one iteration be- 

ind. We repeat the iterations until the objective value no longer 

hanges. Hübner and Schaal [55] demonstrate that this is an effi- 

ient approach to include substitutions. We detail the iterative ap- 

roach of PAM that comprises an initialization and three further 

teps in the following: 

• Step 0 – Initialization: We introduce the index 	 to count the 

number of iterations. For the initialization of PAM, the demand 
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for all items of a category i, i ∈ I c , is calculated assuming that all

items are included in the assortment ( I + c = I c ). This means that

there is no substitution effect (as all items are listed, I −c = ∅ )
and the demand function reduces to δ(0) 

ik 
= αi · k βi . In this way 

the demand can be precalculated for all items i and possible 

facings k, k ∈ K i . 
• Step 1 – Solving PAM: In each iteration 	 we set the demand 

for each item equal to the demand obtained in the previous 

(initial) iteration, i.e., δ(	 ) 
ik 

= δ(	 −1) 
ik 

. With this demand, we then 

precalculate the item profit πik for every item and every pos- 

sible facing and solve the PAM 

(	 ) as denoted by Formulas (4) –

(7) . The solution of PAM provides the number of facings x (	 ) 
ik 

for 

each item, and with that a solution for the current assortment, 

i.e., it determines the sets I +(	 ) 
c and I −(	 ) 

c for listed and delisted 

items. 
• Step 2 – Demand update: The solution of PAM 

(	 ) (Step 1) is now 

used to update the demand values. In detail, using the current 

assortment solution, i.e., the sets I +(	 ) 
c and I −(	 ) 

c , we can now 

update the demand δ(	 ) 
ik 

using Eq. (3) . This means in particular 

that the substitution demand is updated using the information 

of delisted items in the current iteration. We therefore add the 

substitution demand ex post to the current solution by updat- 

ing the demand for all items listed i, i ∈ I + c . The updated de-

mand δ(	 ) 
ik 

is then used for the next iteration (see Step 1). 
• Step 3 – Stop criteria: In the final step of each iteration 	, we 

compare the solution obtained to that of the previous iteration. 

If the change in profits between iterations lies below the limit 

ε (i.e., | �(	 ) 
ce − �(	 −1) 

ce | ≤ ε), the algorithm stops and returns the 

profit �ce for this category shelf element combination. Other- 

wise, Steps 1 and 2 are repeated. 

Once the profit values �ce are available for all categories c ∈ 

and related shelf elements e ∈ E c the SAM can be solved with 

ormulas (8) –(12) . The SAM provides the optimal segmentation of 

tore space, i.e., the division and category sizes are determined. 

. Numerical analysis 

This section analyzes the efficiency and effectiveness of SWISS 

ptimization. First we present a case study that shows the im- 

rovement potential for retailers using real-world data. To gener- 

lize these findings, we further apply tests on a large set of sim- 

lated data. Here we show the effectiveness of the planning ap- 

roach chosen and demonstrate the performance of the two-step 

pproach suggested. Furthermore, we examine the runtime depen- 

ent on varying problem sizes and parameters to derive additional 

anagerial insights. 

SWISS optimization is implemented within a Java applet that 

alls the IBM ILOG CPLEX Optimization Studio 12.6.2.0 in order to 

olve the models PAM and SAM. The experiments have been com- 

uted on a Windows 8 64 bit computer with 16 GB RAM and an

ntel(R) Core(TM) i5-6440HQ CPU with 2.6 GHz. The runtime pre- 

ented in this section refers to the complete processing times of 

WISS optimization, from data input to solution output. This in- 

ludes the preprocessing and precalculation steps as well as the 

pplication of PAM and SAM. We set the stop criteria of PAM at 

= 0 . 2% . This means the PAM iterations stop if the profit delta be-

ween two iterations is below this value. 

.1. SWISS optimization applied in practice 

The SWISS optimization was tested in a case study with one of 

urope’s biggest hypermarket chains. We had access to a test su- 

ermarket located in Eastern Europe and the corresponding data 

f each category. In our application we consider modern trade for- 

ats such as supermarkets and hypermarkets. These markets fol- 
10 
ow comparable settings across Europe and as such no differences 

etween markets in Western or Eastern Europe apply. The test set 

ncluded the food categories. The retailer had excluded non-food 

ivisions and service counters from the scope. In total, the data 

et comprises three divisions with 53 categories and between 20 

nd 1445 items per category. The divisions are regular dry food 

A), dairy products (B) and self-service shelves for fresh meat (C). 

ivision A contains 44 categories, B six categories and C three cat- 

gories, see Appendix B for a detailed list of the single categories 

nd the corresponding number of products. A total of 11,628 items 

re considered. An individual minimum shelf quantity T min 
i 

of 6 

ays of supply and a maximum shelf reach T max 
i 

of 70 days is 

onsidered for each item listed. Product margins and demand fig- 

res are subject to a non-disclosure agreement. The data set fur- 

her includes item dimensions to determine the space consump- 

ion of a facing a i as well as the possible number units behind 

ach facing g i for each product i . Space elasticity is set at βi = 0 . 17

see [25] ). In the case study, substitution is assumed to be zero 

 γ ji = 0 , ∀ j ∈ I −c ) due to the retailer’s request to compute a lower

ound of the profit potential and low substitution rates assumed 

y the retailer. On a category level, for each category a minimum 

nd maximum number of shelf elements E min 
c and E max 

c is provided 

hat is part of the retailer’s master data and usually defined taking 

nto consideration several impacts (e.g., marketing strategy, layout 

uidelines, purchasing contracts, and logistics planning). The cate- 

ories are assigned to either a regular shelf or a chilled shelf. All 

helves across categories in division A are regular shelves. Within 

ivision B some categories are displayed in regular shelves while 

thers need to be placed within chilled shelves. Finally, all cate- 

ories of division C are assigned to chilled shelves. The dimensions 

f a regular shelf are 133 × 180 × 57 cm and for a chilled shelf 

25 × 200 × 80 cm. The available store space R for these three di- 

isions, measured in running meters, is 886 meters. Further, we 

eceived data on the current number of shelf elements. The data 

rovided did not contain the information about the actual product 

llocation in the store. To obtain a benchmark we therefore applied 

ur PAM for each category using the current number of shelf ele- 

ents. This means that the benchmark is based on the assumption 

hat the product allocation of the status quo within each category 

s already optimal (in terms of PAM) for the current number of 

helf elements. The results of this analysis provide a lower bound 

f the actual improvement potential using SWISS. More specifically, 

t represents the minimal profit improvement for the retailer when 

pplying SAM, while the positive effect of PAM on product alloca- 

ion cannot be singled out. 

We identify the impact of optimizing the category sizes across 

ll divisions of the store in Table 3 . The minimum profit improve- 

ent is 3.2%. The runtime of SWISS optimization amounts to 830 s. 

For division A, a profit increase of 1.9% is achieved, which re- 

ults exclusively from the reallocation of shelf elements across cat- 

gories, while the total space assigned to division A decreases. For 

xample, the number of shelf elements increases by three shelf el- 

ments for Category 4 and the profit contribution increases by 11.9 

urrency units (CU), whereas the number of shelves is reduced by 

our elements for Category 5 and the profit contribution decreases 

y 5.6 CU. As a result, total profit increases by 6.3 CU, while the to-

al number of shelf elements decreases by one for division A. We 

ee significant improvements of 8.6% and 6.6% for divisions B and 

. On the one hand, the total number of shelf elements assigned to 

hese divisions increases up to U 

max , which has a straightforward 

ositive effect on each division’s profit. On the other hand the allo- 

ation of shelf elements to categories is optimized across divisions 

 and C as explained for division A. 

Table 4 presents further details on a category level. There have 

een changes in the number of shelf elements and profits in 41 

ut of 54 categories. The reduction of space of a certain category 



                                                                

                 
                                    

Table 3 

Impact of SWISS optimization on a division level. 

U min 
d 

U max 
d 

Current no. shelf elements SWISS 

No. shelf elements Profit impact by SAM 

a 

Division A 342 707 607 573 1.9% 

Division B 44 75 44 75 8.6% 

Division C 10 23 18 23 6.6% 

Total 396 805 669 671 3.2% 

Regular shelves 617 585 

Chilled shelves 52 86 

a Profit improvement by SAM with SWISS optimization representing the lower bound on profit potential. 

Table 4 

Case study: Impact of SAM on category level. 

Categories Category values Change in % 

Unchanged Changed Min. Avg. Max. 

13 41 Profit 13.0 + 3.2 + 25.2 

Shelf elements 60.0 + 18.1 + 200.0 
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nd the related demand losses are outperformed by increasing the 

rofits of categories receiving more space. The positive average in- 

rease of shelf elements of +18.1% highlights a tendency to increase 

maller categories, which results in high percentage increases. The 

bsolute number of shelf elements within the store is only in- 

reased by 0.3% (see Table 3 ). 

.2. Performance tests and generalization of results with simulated 

ata 

The analysis of performance considers computations times, ob- 

ective values and solution structures. Randomly generated data in- 

tances are employed that are informed by the case study data. We 

herefore leverage the case study to generate additional instances 

o generalize our findings. 

Data generation. We use instances ranging from 20 to 80 cat- 

gories and 50 to 200 items per category. The minimum number 

f shelf elements assigned to a category is randomly chosen (fol- 

owing a uniform distribution) between one and five for categories 

ith 50 items and between two and eight for categories with 200 

tems. The range for the required space is then chosen using the 

ame limits, resulting in the total range, i.e., the lower and upper 

ound for shelf elements. For instance, if the minimum number of 

helf elements has been set at two for a test set with 50 items, 

he range of space requirement for the category is again chosen 

andomly between one and five elements. Assuming that the range 

as set at 3, the total range of possible shelf elements is given by 

he lower bound two and the upper bound five ( E c = [2 , 3 , 4 , 5] ).

e consider three different shelf types to map different shelf lay- 

uts within the stores (e.g., regular shelf, chilled shelf and freezer). 

he corresponding dimensions (width × height × depth) observed 

n practice for the different types are as follows (in cm): type 1: 

33 × 180 × 40 , type 2: 125 × 160 × 50 and type 3: 140 × 60 × 70 .

he shelf types are randomly assigned to each category such that 

n average of 70% of the categories are defined by shelf type 1, 

0% by type 2 and 10% by type 3. Exactly one shelf type is se-

ected for each category. The lower and upper limits for the shelf 

uantity of an item are defined in accordance with the case study 

nd ensure at least 6 days and at most 70 days of supply. We 

urther assume that case packs are allocated to the shelves, i.e. 

ach facing contains several sales units next to each other. The di- 

ensions of case packs are randomly distributed at 7–30 cm for 

he width, at 10–40 cm for the height, and at 5–40 cm for the 

epth. The number of sales units within one case pack ranges be- 
11 
ween 4 and 24 pieces. The margin for each item follows a trian- 

le distribution and ranges between 0.4 and 1.1 of the purchasing 

rice of a product, with a mode of 0.8. Finally, the base demand 

f items is generated using a gamma distribution with the pa- 

ameters p = 8 and b = 3 (i.e., using the probability density func- 

ion f (x ) = 

1 
�(p) 

b p x p−1 e −bx ). These distributions resemble the data 

tructure that we have found in our case data. The space elasticity 

arameter is again set at βi = 0 . 17 for each product (cf. [25] ). If not

tated otherwise, we use an aggregated substitution rate for items 

, i ∈ I −c with γ = 

∑ 

j∈ I + c 
γi j = 0 . 50 . That means 50% of the demand

f a delisted item is substituted and 50% is lost. Thereby the sub- 

titution demand is equally split across all listed items. The corre- 

ponding store size for each instance is calculated by considering 

he shelf spaces of all corresponding categories with their mini- 

um and maximum number of shelf elements. All categories are 

ssigned to five di visions according to the following proportion: 

5% of categories are assigned to divisions 1, 2 and 3 each, while 

5% are assigned to division 4 and the remaining 10% of categories 

elong to division 5. The lower and upper limits for the shelf space 

f each division are 20% and 30% of the total store space for divi- 

ions 1, 2 and 3, 10% and 20% for division 4, and finally 5% and 15%

or division 5. 

Computational times of SWISS for varying problem sizes. The com- 

utational effort of SWISS optimization is assessed by examin- 

ng eight instance classes of increasing size, from 10 0 0 to 16,0 0 0

tems. We analyze 10 instances with the given specifications for 

ach class. Table 5 summarizes the average computation times 

cross the instances for each test class. Even for the largest class 

f instances with 16,0 0 0 items (80 categories, 200 items per cat- 

gory), SWISS requires only 599 s on average. The maximum run- 

ime amounts to 665 s, which is still a reasonable time consid- 

ring that we are dealing with a tactical decision problem and in 

articular as the PAM is solved iteratively and called upon multi- 

le times to incorporate substitution effects. An average of 99.9% 

f the entire computation time is consumed by the PAM. As we 

how, the runtime decreases significantly when substitution effects 

re not considered. 

Impact of decomposition. In this experiment we analyze the ef- 

ciency of our two-step approach. To do this, we compare our ap- 

roach to two alternative approaches that solve the problem in 

 single step. The alternative approaches represent a product al- 

ocation model, where the shelf space refers to the total store 

pace and the items considered refer to the whole assortment 

f the store. In other words, the PAM is executed for the com- 

lete store, i.e., across all categories. The alternatives are denoted 

s PAM Al l InOne and PAM 

Cat .limit s 
Al l InOne 

. The latter includes category limit 

onstraints by taking into account the space consumption of all 

tems of a category, while the first neglects these limits. We fur- 

her applied some simplifications to these one-step approaches. 

n detail, as it is common for product allocation models we de- 

ide on the shelf space assigned to individual items, not on the 

umber of shelf elements of a category, nor do we consider dif- 



                                                                

                 
                                    

Table 5 

Runtime analysis of SWISS optimization for varying problem sizes. 

Runtime [s] 

with substitution without substitution a 

Number of categories | C| Number of items per category | I c | Total number of items | I| Store space R [m] Min. Avg. Max. Min. Avg. Max. 

20 50 1000 130 14 16 18 9 10 11 

20 200 4000 240 122 154 192 63 82 106 

40 50 2000 260 29 34 39 15 18 24 

40 200 8000 450 278 311 350 144 160 181 

60 50 3000 390 47 52 55 23 31 71 

60 200 12,000 700 399 484 534 201 239 272 

80 50 4000 520 80 87 91 33 37 42 

80 200 16,000 900 550 599 665 287 338 398 

a Runtime without substitution and only one PAM iteration. 

Table 6 

Solution of SWISS optimization compared to alternative ap- 

proaches. 

SWISS PAM 

Cat .limit s 
Al l InOne 

PAM Al l InOne 

Avg. runtime [s] 69 73 44 

Min. profit delta a — + 0.11% + 1.05% 

Avg. profit delta a — + 0.14% + 1.07% 

Max. profit delta a — + 0.17% + 1.14% 

a Delta in objective value compared to SWISS solution. 
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erent shelf types. We further do not include substitution effects. 

hese simplifications are necessary due to the increased complex- 

ty of a one-step approach. The runtime increases exponentially 

nd causes memory issues for larger instances. For the result com- 

arison, the number of shelf elements per category are calculated 

x-post based on the obtained space allocation decisions for cor- 

esponding items of a category. We use 10 data sets containing 15 

ategories and 200 products per category, which results in 30 0 0 

tems. Further, we define two different shelf types with different 

idths: type 1 (90 cm width) and type 2 (133 cm width). The 

eight and depth of the shelf types are set at 180cm and 40cm 

n both cases due to the computational limitations of PAM Al l InOne . 

Table 6 shows the average performance across all instances. 

able 7 presents details of the results of a sample instance for each 

ategory and assigned shelf space. It shows that the integer re- 

uirement for the shelf elements is not kept in both benchmarks, 

nd that PAM Al l InOne violates the minimum and maximum number 

f shelf elements in 6 out of 15 categories. Even though runtime 

eems to be very low for both variants, our tests resulted in mem- 

ry issues whenever the PAM Al l InOne had to compute larger data 

ets or to include substitution. 

As there are no category size limits, PAM Al l InOne provides a 1.1% 

igher total profit on average. It can be seen as an upper bound 

or the profits and indicates the profit impact of category size lim- 

tations when identical shelves across categories are applied. How- 

ver, in PAM Al l InOne solutions, all items are treated as items of one 

ig category, and shelf space is thus spread arbitrarily across items. 

hat also means that items of different categories share the same 

helves, which is unwanted and non-feasible in retail practice. In 

ontrast, SWISS optimization and PAM 

Cat .limit s 
Al l InOne 

respect the given 

ategory limits. This results in a 0.1% marginally higher profit than 

WISS. Yet only SWISS optimization provides feasible and optimal 

esults by determining integer values for the number of shelf el- 

ments. The implementation of minimum / maximum restrictions 

ithin PAM 

Cat .limit s 
Al l InOne 

results in a number of shelf elements that lies 

etween these bounds. This means that fractional parts of shelf el- 

ments are assigned to categories, which also leads to non-feasible 

olutions. In conclusion, the results of SWISS optimization are close 

o the solutions of a model without limits (PAM Al l InOne ) and frac- 

ional solutions (PAM 

Cat .limit s 
Al l InOne 

), which provide an upper bound for 
12 
ossible profits. The implications of these results are even more 

mpressive when considering that differing shelf dimensions per 

ategory have not been considered, and that it was only possible 

o solve limited data sets of up to 30 0 0 items. 

Impact of detailed product allocation. A core aspect of SWISS op- 

imization is the product allocation. The allocation of products has 

o be applied for varying category sizes to approximate the corre- 

ponding profit contributions of each category setting. It is conse- 

uently essential that the product allocation can be solved time- 

fficiently to ensure short processing times of SWISS optimization. 

e use PAM as a streamlined product allocation model in our ap- 

roach. It focuses on the essential parts of product allocation and 

pproximates profits for each category without using sophisticated 

xtensions to mirror exact shelf dimensions and characteristics. In 

his section we analyze if a more sophisticated product allocation 

odel can improve the results of SWISS optimization. 

We introduce an extended SWISS optimization approach, de- 

oted as SWISS ext . SWISS ext follows the same algorithmic struc- 

ure as SWISS, but relies on an extended product allocation model. 

n detail, the extended allocation model incorporates the determi- 

ation of the number and position of shelf elements, exact stack- 

ng restrictions within the shelf level dimensions and a detailed 

llocation of products to shelf levels. It is therefore in line with 

tate of the art product allocation models that consider multiple 

helf dimensions (see e.g., [50] ) and enable a detailed planning 

f planograms for retailers. The mathematical formulation of the 

xtended allocation model is provided in Appendix A . Please note 

hat SWISS ext causes memory issues for any larger data sets with 

ore than 5 categories and 50 products per category due to the 

xtended product allocation model. The analysis is therefore lim- 

ted to this scope. 

Table 8 presents the results of a comparison between SWISS 

nd SWISS ext . The runtime analysis demonstrates a significant in- 

rease when SWISS ext is used. On average, the runtime increases 

y a factor of 150, with a maximum increase by a factor of 570. 

his resembles tremendous growth in runtime, especially consid- 

ring the very limited data size. 

We further analyze whether the high computational effort of 

he more sophisticated model is justified with better solution qual- 

ty. The objective of our approach is to determine the optimal shelf 

pace for categories and divisions. We therefore need to evaluate 

hether the store space solutions generated within the SWISS are 

 good basis for the actual product allocation in stores, which takes 

lace after the strategic planning of store space and its assignment 

o categories. For this purpose we first solve the store space allo- 

ation problem with SWISS and SWISS ext and apply the advanced 

roduct allocation model PAMiSD of [51] afterwards. The right part 

f Table 8 shows that the SWISS optimization reaches an average 

f 99.8% of the solution quality using SWISS ext when both are post- 

ptimized with the detailed shelf optimization model PAMiSD. Tak- 



                                                                

                 
                                    

Table 7 

Example: number of shelf elements for different solution approaches. 

Category data Optimization with 

Category 

(shelf type) 

Minimum 

shelf elements 

Maximum 

shelf elements 

SWISS 

shelf elements 

PAM Al l InOne 

shelf elements 

PAM 

Cat .limit s 
Al l InOne 

shelf elements 

C1 (type 1) 2 7 7 9.59 6.99 

C2 (type 1) 5 11 11 10.84 10.49 

C3 (type 1) 3 12 12 10.99 10.53 

C4 (type 1) 10 18 10 8.54 10.00 

C5 (type 1) 7 12 11 9.81 9.07 

C6 (type 1) 10 14 12 10.27 10.00 

C7 (type 1) 3 10 10 9.94 9.55 

C8 (type 1) 2 5 5 10.16 4.99 

C9 (type 1) 8 13 13 10.77 9.91 

C10 (type 1) 6 12 12 10.39 9.92 

C11 (type 2) 8 15 9 7.29 8.01 

C12 (type 2) 3 8 8 6.85 6.60 

C13 (type 2) 10 14 10 6.58 10.00 

C14 (type 2) 9 16 9 6.51 9.00 

C15 (type 2) 6 9 7 5.73 6.00 

Table 8 

Comparison of SWISS with PAM and PAM 

plus , with | C| = 5 and | I c | = 50. 

Instance Runtime [s] Obj. value of SWISS in 

% of SWISS ext a 

SWISS SWISS ext � i n % 

1 2 240 + 14,010 99.7 

2 2 1285 + 57,613 99.4 

3 2 263 + 11,005 98.9 

4 2 187 + 9518 99.8 

5 2 255 + 13,077 99.9 

6 2 86 + 5401 100.0 

7 2 156 + 9314 99.9 

8 2 188 + 10,320 100.0 

9 3 481 + 16,156 100.0 

10 2 163 + 8406 99.8 

Average 2 330 + 15,481 99.8 

a Both with ex-post optimization using PAMiSD of [51] . 

Table 9 

Impact of substitution rates on solution structure. 

Aggregated substitution rate γ

0.00 0.25 base = 0.50 0.75 1.00 

Change in total profit, in % 2.5 1.3 – + 1.4 + 3.0 

Avg. assortment size a , in % 78 77 77 75 73 

Avg. min. assortment size a , in % 42 40 38 31 27 

Avg. max. assortment size a , in % 89 89 89 90 92 

Avg. share of categories changed b , 

in % 

41.8 27.5 – 31.2 58.0 

Max. increase c , abs. 5 5 – 4 6 

Max. decrease c , abs. 2 2 – 5 7 

a Average (minimum, maximum) ratio of listed items to total assortment per cat- 

egory. 
b Categories with changed shelf space compared to base case. 
c Maximum increase (decrease) of shelf elements compared to base case. 
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ng into account the runtimes of SWISS ext and the need to process 

arger data sets, we can state that PAM provides a sufficient ap- 

roximation of profits for product allocation within the SWISS op- 

imization for store space allocation decisions. 

Impact of substitution. Product substitution has an impact on 

emand and thus on the facing assignment for each item. We 

herefore analyze the impact of substitution with different mag- 

itudes as shown in Table 9 . We use test instances with | C| = 60

nd | I c | = 200 for this analysis. A change in substitution rates af-

ects total store profits. If the substitution rate is doubled from 50% 

o 100%, the profit increases by 3.0% in our setting. The other way 

round, if no substitution is assumed, profits decrease by 2.5%. In 

ur base setting an average of only 77% of the total assortment of 
13 
 category is listed, as space is very limited. This means a large 

roportion of products are delisted and gives substitution greater 

mportance. To this end, this analysis provides a rough indication 

nd upper bound of the total profit impact for such a strong as- 

ortment reduction. In the case of increased store space, broader 

ssortment sizes can be expected and the impact of substitutions 

ay be lower. 

Substitution also has a significant impact on solution structure. 

his can be seen by assortment and category changes. Assortments 

re reduced by 4 percentage points on average when the substitu- 

ion rate is doubled. This equals a delisting of 480 items of the 

tore. The impact decreases for lower substitution rates. With re- 

pect to categories, an average of 42% receive a different number 

f shelf elements when no substitution is considered. The category 

ize is very sensitive to the substitution rate, leading to the conclu- 

ion that substitution has a major impact on the solution quality 

nd accuracy in the context of store space allocation. 

Impact of store size. Store size is a central aspect of our prob- 

em as it sets the limits for the optimization. We therefore analyze 

he impact of the store size R on store space allocation decisions. 

gain, the test class with | C| = 60 and | I c | = 200 , ∀ c ∈ C, is used.

ith less space available, the competition between categories and 

tems within categories becomes more intense. On the other hand, 

ore available store space offers more options that have to be 

onsidered, i.e., more possible combinations of space allocated for 

ach category. As a consequence, the possible store profit depends 

n R, and by analyzing different store sizes we provide insights on 

he impact of potential store dimensioning decisions. We use our 

ase case with 700 shelf meters and show the effect of possible 

xtension and reductions. The number of items and categories re- 

ains unchanged. Please note that store space can be reduced by 

o more than -30% to ensure minimum quantities T min . 

Table 10 summarizes the results. The runtime of SWISS is ro- 

ust against changes of R . The results show that the possibility of 

xtending the store space to achieve increasing profits is limited. 

t may be uneconomical to extend the store space by +30% when 

t the same time profits only increase by +3.5%. The average as- 

ortment size increases with increasing store size and vice versa. 

gain, the changes are limited and the entire assortment is not 

isted even in very large stores. In the -30% setting, a dispropor- 

ionate reduction of the average assortment can be observed. The 

verage minimum assortment size undergoes an even higher re- 

uction in this setting. This is induced by a total store space that 

ecomes so small that each category is forced to its minimum size 

nd thus – as minimum shelf quantities need to be considered for 

isted items – only a very small assortment can be chosen. 



                                                                

                 
                                    

Table 10 

Impact of varying store space R . 

Average change compared to base setting, in % 

Assortment a 

Store space R Runtime Profit Avg. Min. Max. 

30% 2.5 10.2 16.9 39.5 1.1 

20% 2.5 5.4 7.8 11.6 0.0 

15% 4.2 3.7 5.2 4.7 0.0 

10% 4.2 2.3 2.6 2.3 0.0 

5% 2.5 1.1 0.0 2.3 0.0 

base = 700 m 239 40,729 154/200 86/200 188/200 

+ 5% 0.8 + 0.9 + 2.6 0.0 + 1.1 

+ 10% 2.1 + 1.8 + 3.9 0.0 + 2.2 

+ 15% 2.1 + 2.5 + 3.9 0.0 + 3.4 

+ 20% 1.3 + 3.1 + 5.2 0.0 + 5.6 

+ 30% 2.5 + 3.5 + 6.5 0.0 + 7.9 

a Delta in average (min/max) ratio of listed products to total assortment 

per category. 

Table 11 

Impact of division limits with evenly distributed categories. 

Scenario Fixed limit Range limit Without limit 

Avg. division shares 

- Division 1 25.0% 21.4% 19.9% 

- Division 2 25.0% 21.2% 20.1% 

- Division 3 25.0% 22.6% 21.3% 

- Division 4 15.0% 19.8% 19.7% 

- Division 5 10.0% 15.0% 18.9% 

Avg. delta in obj. value a 1.51% — + 0.28% 

Avg. runtime [s] 264 280 245 

a Delta in objective value compared to base scenario with range limits. 
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Impact of division limits. Our concluding test analyses the im- 

act of different settings for division limits. Retailers apply divi- 

ions to define locations and roles for categories. Certain space lim- 

ts therefore apply for marketing or image reasons. We consider 

hree different settings for the division limits. The standard setting 

as given above with min./max. values for each range, denoted as 

ange limit) is extended by a scenario with fixed limits, i.e., the 

ize of each division is fixed in advance, and by a scenario without 

ny predefined limits. Within the fixed limit scenario, the division 

hares are fixed at 25% for divisions 1, 2 and 3, 15% for division

, and 10% for division 5 of total store space R . In the scenario

ithout limits, the choice of the division sizes is unrestricted. We 

urther need to relax category affiliation, as otherwise the number 

f categories is too restrictive for the decision on division sizes. 

o do so, we alternate the data setting to one where the share of 

ategories per division is evenly distributed (i.e., 20% of total cate- 

ories per division). We use the same data set as for the store anal-

sis above. Table 11 summarizes our findings. Imposing fixed lim- 

ts decreases the profit by 1.51%, whereas without division limits 

he profit can only be increased by 0.28%. Furthermore, the share 

f store space for single divisions changes significantly when there 

re no limits, or a limit range is specified. For instance, the share 

f division 5 increases from 10% (fixed limits) to 15% (range limits) 

nd 18.9% (no limits). This shows that the store space allocation 

ecisions are sensitive to the given division limits. The determi- 

ation of division limits should therefore be part of the optimiza- 

ion problem by providing limits for the actual minimum and max- 

mum sizes required. 

. Conclusion 

Our work presents a hierarchical approach for the space allo- 

ation to categories. We consider the total store space and find a 
14 
artition of available space across categories and divisions to maxi- 

ize the overall store profit. Our approach links store layout plan- 

ing with product allocations. It provides a basis for product al- 

ocation decisions which is only successful if the shelf space al- 

ocated for each category is reasonable. At our case company the 

ssignment of shelf space to categories had up to the start of our 

tudy mostly been driven by “gut feeling” decisions without tak- 

ng into account the actual profit potential of each category and 

he superordinate division. In literature, the majority of publica- 

ions focus on the product allocation problem. This means that the 

vailable shelf space for each category is assumed to be an ex- 

genous input parameter that has been defined in advance. Con- 

equently, publications are lacking that consider the definition of 

vailable space per category. Prevailing publications with a store- 

ide focus determine category sizes but neglect product alloca- 

ion decisions and corresponding category profit changes. There 

s consequently no work in our problem context that provides a 

odel for a detailed category sizing together with numerical ex- 

eriments to analyze the impact of these decisions within a prac- 

ical application. We solve the store-wide shelf space allocation 

roblem using SWISS optimization, which consists of two solu- 

ion steps to determine store space allocation: (1) the PAM ap- 

roximates the profit contribution of each category for all possi- 

le shelf space allocation options; (2) the SAM selects the opti- 

al combination of category sizes while respecting the restrictions 

f the corresponding divisions. Using preprocessing and iterations, 

oth models can be implemented as BIP and solved using CPLEX. 

his fact increases the attractiveness of our approach in practice, 

here understandable and efficient solution methods are required. 

he efficiency of our approach is shown in various experiments for 

ractical relevant problem sizes. Further, we show that our PAM 

pproach is a sufficient approximation tool for profits per cate- 

ory, and thus provides a solid basis for additional instore planning 

teps. Finally, we demonstrate the practical use of our approach 

n a case study with a major European retailer. We show that our 

pproach is able to improve the given planning situation by more 

han 3%. 

This paper closes an existing gap in literature and provides an 

fficient planning approach for practitioners. However, there are 

till numerous possibilities for future research projects. As men- 

ioned above, we use an approximation for the detailed product 

llocation to obtain profits per category. In our setting, we show 

hat a more sophisticated product allocation model does not im- 

rove overall performance, and that only small instances are solv- 

ble when more complex models are used. Nevertheless, one has 

o bear in mind that the PAM serves as approximation of prof- 

ts per category for a chosen shelf size. The results obtain from 

WISS build the basis for the subsequent shelf space allocation. 

he SWISS solutions can be used as input for more detailed and 

ranular shelf space allocation models for each category where 

helf space is an input parameter (see e.g., [5,45,51] ). The itera- 

ive application of the super- and subordinate planning approaches 

ould be worth investigating. In line with this, the models could 

e enriched by stochastic demand, seasonal demand, and demand 

ffects caused by promotions or item pricing, as these are valu- 

ble avenues for further research in this area (see [6] ). Our ap- 

roach aims at a space allocation that maximizes category profit 

nd with this the corresponding store profit. We therefore opti- 

ize the problem form a retailer perspective. A different point of 

iew would be to consider the perspective of a manufacturer in 

he context of “category captainship” (cf e.g., [11,56] ). A study that 

ddresses all the relevant subjects of negotiation between manu- 

acturers and retailers (such as assortment, prices and shelf space) 

ould be a valuable contribution. Lastly, our approach determines 

he share of shelf space for each category and division, while we 

ssume the number and location of both categories and divisions 
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s given. Our problem could be further extended to decide on the 

equence of categories within a division, or the overall arrange- 

ent of categories and divisions within stores. 
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ppendix A. Extended product allocation model 

The objective function of the PAM 

plus in (A.1) contains a param- 

ter πiklh that provides the precalculated value for item i with k 

acings on shelf level l with a stacking height of h . The binary deci- 

ion variable x iklh corresponds to 1 if item i is assigned with k fac-

ngs on shelf level l which has a stacking height h . Within the ex- 

ended demand function 

ˆ D iklh = αi · k βi · n 
δi 

ih 
· εl additionally n ih pro- 

ides the number of items stacked one above the other combined 

ith a vertical space-elasticity δi and a shelf level dependent de- 

and factor εi . Further replenishment costs are considered within 

C iklh = max [0 ; ( ̂  D iklh − q iklh ) · RV ] , where, in the event that the to-

al shelf quantity q iklh of an item i with k facings and a height de-

endent number of items stacked n ih is smaller than the demand 

ˆ 
 iklh , replenishments have to be executed with a cost factor RV per 

tem. The profit contribution of an item i with k facings on level 

and height h is then denoted by πiklh = 

ˆ D iklh · M i − RC iklh . Restric- 

ion (A.2) links the decision variable x iklh with an auxiliary variable 

 lh for the determination of shelf levels and heights using a suf- 

ciently large number (BigM). Restrictions (A.3) and (A.4) define 

hat only one solution is permitted for each item i, and that each 

helf level l has to be defined precisely with one stacking height h . 

he height of a specific shelf rack P c of a category c is considered in

estriction (A.5) , where GP corresponds to the granularity of possi- 

le height adjustments and H 

min is the minimum stacking height a 

helf level must take into account. All shelf levels determined on a 

helf rack with their individual stacking heights h must not exceed 

he total height P c of the shelf rack. The shelf space S ce of category 

with e shelf elements for each level l is considered in (A.6) with 

he number of facings k of all items i and their individual product 

imensions a i . In line with PAM, upper and lower bounds for the 

umber of facings K 

min 
ih 

and K 

max 
ih 

are given in Restrictions (A.7) . Fi- 

ally restrictions (A.8) and (A.8) define the decision variables x iklh 

nd y lh as binary. 

ax ˆ �(x iklh ) = 

∑

i ∈ I c 

∑

k ∈ K c 

∑

l∈ L 

∑

h ∈ H 
x iklh · πiklh (A.1) 

subject to 

i ∈ I c 

∑

k ∈ K c 
x iklh − BigM · y lh ≤ 0 ∀ l ∈ L, h ∈ H (A.2) 
15 
∑

 ∈ K C 

∑

l∈ L 

∑

h ∈ H 
x iklh = 1 ∀ i ∈ I c (A.3) 

 ∈ H 
y lh = 1 ∀ l ∈ L (A.4) 

l∈ L 

∑

h ∈ H 
y lh · h · GP + H 

min = P c (A.5) 

i ∈ I c 

∑

k ∈ K c 

∑

h ∈ H 
k · x iklh · a i ≤ S ce ∀ l ∈ L (A.6) 

 

min 
ih ≥

∑

k ∈ K c 

∑

l∈ L 

∑

h ∈ H 
k · x iklh ≤ K 

max 
ih ∀ i ∈ I c (A.7) 

 iklh ∈ { 0 , 1 } ∀ i ∈ I c , k ∈ K c , l ∈ L, h ∈ H (A.8)

 lh ∈ { 0 , 1 } ∀ l ∈ L, h ∈ H (A.9)

ppendix B. Case study categories 

Divison A Regular dry food 

Categories Number of items 

Backery products, desserts 242 

Bags, foils 70 

Beer 159 

Bread 173 

Sandwich spread 164 

Lemonade 84 

Oil, vinegar 165 

Ready meals 52 

Fish tinned food 112 

Ready sauces and spice mixtures 65 

Meat tinned food 73 

Tinned vegetables 247 

Face and body care 1,445 

Spices 277 

Hair care 825 

Medicine cabinet 77 

Dog food 149 

Toiletries 220 

International food 47 

Coffee 264 

Cat food 168 

Baby food 440 

Cosmetics 72 

Cake 321 

Cereals 162 

Snacks organic 35 

Tinned fruits 30 

Cleaning agents 610 

Rice and potatoes 165 

Juice 191 

Salty snacks 254 

Sparkling wine 44 

Chocolate 379 

Ice tea 146 

Liquor 326 

Sweet snacks 338 

Tea 130 

Pasta 184 

Washing agents 293 

Water 47 

Wine 459 

Dips 251 

Sugar, Salt, Flour 151 

Candy 183 
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Divison B Dairy products 

Categories Number of items 

Convenience chilled 29 

Eggs 20 

Delicacies chilled 87 

Cheese self service chilled 361 

Diary products white line chilled 385 

Diary products cheese unchilled 108 

Divison C Self service chilled 

Categories Number of items 

Meat self service chilled 46 

Chicken self service chilled 44 

Sausages self service chilled 269 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.omega.2021.102425 . 
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