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Retailers usually apply repetitive weekly delivery patterns when scheduling the workforce for shelf re-
plenishment, defining cyclic transportation routes and managing warehouse capacities. In doing so, all
logistics subsystems are jointly scheduled. Grocery products require different temperature zones. As long
as transport was in separated vehicles due to temperature requirements, it was not possible to coordi-
nate deliveries across different temperature zones. The recent introduction of multi-compartment trucks
has changed this and allows joint deliveries. This simultaneous delivery of multiple product segments
impacts repetitive weekly delivery patterns as, for example, low volume segments can be delivered more
frequently if they are transported together with high volume segments.

We address the problem of defining delivery patterns for delivery with multi-compartment vehi-
cles. After deriving decision-relevant costs, we propose a novel model that defines the Periodic Multi-
Compartment Vehicle Routing Problem. The model is solved by an integrated framework that determines
delivery patterns within an Adaptive Large Neighborhood Search in combination with a Large Neighbor-
hood Search for solving the routing problem. We analyze the impact of selecting delivery patterns across
product segments and show the efficiency of our integrated planning approach using numerical studies.
Joint planning generates cost savings of up to 15%. Furthermore, we show that the algorithm provided
can also improve single-segment problems by 3% compared to a state-of-the art benchmark. Beyond that
we demonstrate the applicability and advantage of our approach in a case study with a large German
grocery retailer.
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1. Introduction and motivation

Retailers constantly strive for excellence in logistics due to tight
margins, heavy competition and high customer expectations. This
may be achieved with new technologies and advanced planning
approaches that enable better coordination within and between
subsystems in a retail supply chain. Grocery stores exhibit a repet-
itive sales pattern. Consequently, grocers define store-specific de-
livery patterns (DP) and cyclically supply stores with their require-
ments of products and goods. The DPs constitute a defined combi-
nation of weekdays on which a store is supplied. They are usually
defined as part of the tactical planning for standard weeks without

* Corresponding author.
E-mail address: heinrich.kuhn@ku.de (H. Kuhn).

https://doi.org/10.1016/j.ejor.2020.12.033

external influences (e.g., public holidays) (Kuhn & Sternbeck, 2013).
Defining the DPs also means determining the delivery frequency.
The delivery frequency, however, impacts the volume per store de-
livery, which in turn affects the associated logistics costs in the dis-
tribution center (DC), transportation and store. For example, while
a larger delivery volume is beneficial for picking and transportation
processes due to economies of scale, it is unfavorable for store pro-
cesses as storage space within stores is usually very limited (Taube
& Minner, 2018). Deliveries that do not fit onto the shelves require
extra handling and intermediate storage in the backroom (Kotzab
& Teller, 2005; Reiner, Teller, & Kotzab, 2013). The resulting trade-
off for distribution, warehouse and store costs has to be considered
within the planning process (Sternbeck & Kuhn, 2014).
Furthermore, the distribution process in grocery retail involves
multi-temperature logistics due to the different temperature re-
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quirements across products. These requirements range right from
sub-zero temperatures for the transport of frozen products, lightly
cooled products, through to ambient products without any tem-
perature regulation. The exact temperatures are strictly regulated
by law and the cooling chain must not be violated during the pro-
cessing of orders. Retailers usually categorize product segments to
different product groupings with similar temperature requirements
(e.g., deep-frozen, fresh, dairy, ambient) and organize warehouses
by temperature zones. These segments were generally distributed
individually in the past. However, multi-compartment vehicles
(MCVs) - recently introduced in a flexible version for food trans-
portation - allow multi-temperature transportation. These trucks
enable the joint transportation of multiple segments, i.e., products
with differing temperature requirements on the same vehicle. The
loading area of an MCV can be split flexibly into different com-
partments for each tour, and the temperature of each compart-
ment can be adjusted individually (Ostermeier, Henke, Hiibner, &
Wascher, 2020; Ostermeier & Hiibner, 2018). This allows for high
flexibility in assigning orders to tours and sequencing the indi-
vidual routes. MCVs also open up new possibilities for the def-
inition of DPs. The DPs of different segments of a store can be
aligned to achieve transportation synergies, which may result in
higher delivery frequencies for the store. For instance, frozen prod-
ucts are often delivered once or twice per week due to small order
volumes. If combined with other segments (e.g., fresh or ambient
products), the frequency can be adjusted to enable more frequent
deliveries. The simultaneous supply of different segments reduces
the number of stops per route (Hiibner & Ostermeier, 2019) and
increases the probability that the products delivered could be en-
tirely stacked on the shelf, since greater delivery frequency will de-
crease the product volume per delivery (Donselaar, Gaur, Woensel,
Broekmeulen, & Fransoo, 2010; Reiner et al., 2013; van Zelst, van
Donselaar, van Woensel, Broekmeulen, & Fransoo, 2009).

In current literature the definition of DPs differs for each
product segment and generally assumes store deliveries with
single-compartment vehicles (SCV) (e.g., Gaur and Fisher (2004);
Holzapfel, Hiibner, Kuhn, and Sternbeck (2016); Sternbeck and
Kuhn (2014); Taube and Minner (2018)). The joint delivery of mul-
tiple segments is not considered. This raises the question of how
the combination of the supply across multiple product segments
influences the definition of store-specific DPs for individual seg-
ments, and how the altered DPs affect total logistics costs. To ad-
dress this question, we formulate the Periodic Multi-Compartment
Vehicle Routing Problem (PMCVRP), including the definition of DPs
and decisions on the corresponding delivery schedules. To fur-
ther detail the problem, we provide the related problem char-
acteristics and literature in Sections 2 and 3. Section 4 presents
the PMCVRP that considers several product segments demand-
ing different temperature zones. The PMCVRP simultaneously de-
cides on (i) the optimal delivery frequency and days for each seg-
ment and each store, and (ii) the optimal delivery of the asso-
ciated store orders with multi-compartment vehicles. The deci-
sion model formulated explicitly takes into account the interde-
pendency between delivery frequency and routing decisions. The
resulting problem is NP-hard since it is a generalization of the
capacitated VRP (Toth & Vigo, 2014), and thus a heuristic solu-
tion approach is presented for practice-relevant problem sizes in
Section 5. We introduce an approach that iteratively addresses
the multi-period problem of defining DPs with an Adaptive Large
Neighborhood Search (ALNS) and the corresponding routing prob-
lem with MCVs with a Large Neighborhood Search (LNS). To the
best of our knowledge, this is the first comprehensive model and
solution approach for this problem. Section 6 provides numerical
studies, and Section 7 summarizes our findings and refers to fu-
ture research opportunities.
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2. Grocery supply chain, associated processes and costs
2.1. Distribution processes in grocery retailing

Grocery retailers channel about 70% to 90% of shipment vol-
umes to their stores via DCs. Most retailers operate their own
vertically integrated logistics network with several central and re-
gional DCs, a vehicle fleet and a large number of local stores to
manage (Kuhn & Sternbeck, 2013). Usually between 50 and 400
outlets are served from a single DC (Glatzel, GroRpietsch, & Hiib-
ner, 2012). In this context, the internal grocery retail supply chain
can be divided into three logistics subsystems: DC, transportation
and store. The store delivery process can be characterized as fol-
lows. The products of a store order are picked onto pallets or role
cage in the DC. Next, trucks transport the goods to the stores. Store
employees then bring the load carriers to the show room and di-
rect shelf filling takes place (Reiner et al., 2013). If products do not
fit onto the shelves, the remaining units are carried to the back-
room of the store. Refilling takes place later, when space becomes
available due to consumer purchases (Holzapfel et al., 2016; Kotzab
& Teller, 2005; Kuhn & Sternbeck, 2013).

Groceries are stored in and transported from DCs to stores
in different temperature zones. The specific temperature require-
ments during storage and transportation are subject to legal reg-
ulations. In the European Union, temperatures of —20°C to —18°C
for deep-frozen products, +2°C to +7°C for cooled products (like
meat and dairy products), and +4°C to +7°C for fruits and vegeta-
bles are mandatory. For some fresh products, retailers apply fur-
ther product-specific temperature zones to obtain a longer shelf
life (e.g., a maximum temperature of +2°C for fresh fish and
seafood). Only ambient products like dry goods and beverages do
not need to adhere to specific transportation temperature require-
ments. Considering the mandated temperature zones plus ambi-
ent products, there are at least four different zones in grocery
distribution. On the grounds of temperature requirements, retail-
ers store, pick, and prepare the deliveries in temperature-specific
DC areas. The traditional approach is to distribute goods sepa-
rately for each product segment with their specific temperature re-
quirements. Recent truck models are equipped with temperature-
specific compartments that allow the transport of different product
segments in the corresponding chambers (compartments) of one
truck (Ostermeier & Hiibner, 2018). For example, when considering
deep-frozen and ambient products ordered by the same outlet, the
use of such MCVs makes it possible to deliver both product seg-
ments on the same truck at the same time. Whereas the transport
of the different product segments needs to be planned separately
when SCVs with one temperature zone are applied, it becomes
necessary to jointly plan flows across segments when MCVs are
available. The loading area of an MCV is customized for each tour.
Each compartment can be adjusted to a given temperature accord-
ing to the requirements of loaded product segments. The delivery
process with MCVs starts with the collection of orders for all seg-
ments assigned to the corresponding tour. Collection involves the
approach of multiple shipping gates as each segment is stored in a
separate area at the DC (see Fig. 1). After all segments are loaded,
the MCV jointly supplies the corresponding stores with the differ-
ent product segments. Fig. 1 illustrates the overall process of an
MCV tour with four segments.

2.2. Selection of delivery patterns

Theoretically, each store could be supplied individually when-
ever an order is triggered. However, retailers limit the delivery fre-
quency to a certain degree for practical reasons and use weekly
delivery cycles. Applying such repetitive and store- and segment-
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Fig. 2. Example of delivery patterns for a store with three segments.

specific DPs has several reasons. Retailers usually apply periodic
inventory review policies (see e.g., Broekmeulen, van Donselaar,
Fransoo, and Woensel (2006); Curseu, van Woensel, Fransoo, van
Donselaar, and Broekmeulen (2009); Minner and Transchel (2010)).
A replenishment order is issued whenever store inventory falls to
or below a reorder level. Such a cyclic ordering policy allows or-
der volumes to be adapted and eases subsequent logistics plan-
ning. The orders arrive at a store on identical weekdays each week.
Scheduling the workforce for the shelf replenishment process is
therefore much easier. Likewise, in terms of transportation, such
cyclic ordering and defined delivery days offer the opportunity to
design cyclic master routes for each week. At the DC, shift planning
can be adjusted with regard to expected picking volumes that are
dependent on the delivery frequency determined across all stores
(Holzapfel et al., 2016). Finally, retail practice considers the selec-
tion of DPs as an important lever to balance DC, transportation and
instore requirements (Hiibner, Kuhn, & Sternbeck, 2013; Sternbeck
& Kuhn, 2014).

Assuming a one-week delivery cycle with six delivery days al-
lows for one to six deliveries per week and store, resulting in
26 —1 =63 possible DPs. This yields 63N possible combinations
for |N| stores. The majority of retailers apply store- and segment-
specific DPs. This means that individual patterns for each product
segment are defined for each store. This is motivated by the fact
that both stores (regarding sales volumes and shelf capacity) and
segments (regarding freshness requirements) are heterogeneous. As
such, the combinatorial challenge increases to 63/N*ISI possibili-
ties, where |S| indicates the number of product segments. An ex-
ample for store- and segment-specific DPs is shown in Fig. 2. It
illustrates three different DPs for the corresponding segments of a
single store.
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2.3. Identification of decision-relevant costs and constraints for
defining DPs and using MCVs

A DP defines the delivery frequency (e.g., three times per week)
and the corresponding delivery days (e.g., each Monday, Wednes-
day and Friday). It therefore also determines the delivery quantities
for each day selected. The daily demand of each store for each seg-
ment can be estimated and builds the foundation of the planning.
When using daily demand, the weekly seasonality is also incorpo-
rated (e.g., higher demand on Saturdays). The demand between or-
der intervals is aggregated to the preceding delivery, e.g., if a deliv-
ery happens on Monday and Wednesday, the demand for Tuesday
will be fulfilled on Monday. This means that the delivery size of
each segment and each store in each period results from selecting
a DP. A DP with a higher weekly delivery frequency leads to more
but smaller deliveries while the total delivery quantity remains
constant. Hence, as order intervals are a result of the DPs applied,
volume effects along the supply chain occur that strongly influence
operations and costs along the whole grocery supply chain. When
applying MCVs, delivery days can be optimized across segments.
This also impacts the frequency and size of deliveries of the seg-
ments.

The following details the processes, constraints and costs in-
volved in the corresponding subsystems. The analysis is based on
our work with a case company and related literature, in particular
Sternbeck and Kuhn (2014), Holzapfel et al. (2016) and Hiibner and
Ostermeier (2019).

Distribution center. The store orders are processed in segment-
specific areas of the DC. These areas particularly fulfill the specific
temperature requirements of the individual products of the seg-
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Fig. 3. Decision-relevant operations, distribution costs and constraints along the internal retail supply chain.

ments. The picking volume in each of these areas is generally lim-
ited on each working day of the week. In addition, retailers define
minimum workload levels for each area to balance the workloads
between consecutive working days. This avoids workload peaks
and eases shift scheduling. Furthermore, each order causes order
processing costs at the associated area of the DC. These are fixed
costs for each order. A higher delivery frequency therefore leads to
an increasing number of orders and higher overall order processing
costs at the DC. After the order processing, the respective products
are picked and then placed on a load carrier. The entire order is
finally packaged and placed at the DC area’s gate for loading and
transportation. These are variable costs that depend on the deliv-
ery size. A higher delivery frequency leads to smaller pick sizes
and thus to higher overall picking and packing costs.

Transportation. Subsequent to the picking and packing in the
DC, the product segments are loaded onto trucks with limited ca-
pacity. The associated costs are denoted as loading costs. As de-
scribed above, the distribution process with MCVs requires the col-
lection of segments from different DC areas. These costs depend on
the number of segments assigned to a tour and thus on the num-
ber of compartments required on the vehicle. For the actual de-
livery tour, transportation costs arise that involve costs for travel-
ing between the locations and costs for unloading the goods at the
stores. The travel costs depend on the distance covered by a truck
between the locations, i.e., DCs and stores. The transportation costs
obviously increase with higher frequency and more tours, but may
also decrease if segments are transported jointly across segments.
Unloading costs occur when a truck stops at a store and unloads
the delivery. These costs are induced by setup times for unload-
ing goods from the vehicles and goods receiving processes in the
store. The latter include tasks of store employees for checking the
items received and complete administrative steps for the goods re-
ception. The resulting costs are fixed costs for each receiving pro-
cess. The entire unloading costs can therefore be reduced if DPs
are synchronized across multiple segments, since this will reduce
the number of stops required at the stores.

Store. At each arrival of a new delivery at a store, the orders
are further processed. The entire store receiving capacity is gener-
ally limited because of space and workforce limitations. This limits
the entire volume that can be delivered on a single day. A deliv-
ery is either immediately used for direct shelf filling purposes or
stored in a backroom until refilling is required. The associated re-
filling costs are independent of the usage of MCVs. The following
costs only depend on the delivery frequency and size.

First of all, direct shelf filling costs represent the transport of
goods received from the store inbound area to the shelves and
putting the units onto the shelves. They are store- and segment-
specific and depend on the different settings concerning store lay-
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out and shelf types. If the quantity of a product delivered exceeds
the shelf capacity, the remaining units have to be brought to the
backroom and are stored there until the required capacity is avail-
able due to customer purchases and a refill can take place. The
related costs are denoted as shelf refilling costs from the backroom.
This additional refill process is considerably more costly than di-
rect shelf filling. With a higher frequency of deliveries and smaller
delivery sizes, this process becomes less frequent and less capacity
may be required to store additional units in the backroom that did
not fit on the shelves. Finally, new orders are submitted as soon as
the reorder level is reached. The reorder level depends on the or-
der size and therefore on the delivery frequency. Each order causes
fixed order placement costs at the stores. These costs increase with
higher delivery frequency.

Summary. Some of the costs above depend on the same deci-
sions and can therefore be summarized in a single cost parameter
to streamline the cost model. First of all, a pattern-dependent cost
parameter is introduced that comprises costs for order processing
and picking and packing at the DC as well as direct shelf filling,
shelf refilling, and order placement costs at the store. The DP de-
fines - via the chosen delivery days - the total number of deliver-
ies per period, e.g., per week, and the corresponding delivery sizes
of each segment per store delivery, which affect all the cost factors
mentioned. Secondly, travel and unloading costs can be summa-
rized, as they both depend on the routing. Fig. 3 summarizes the
decision-relevant costs and constraints per subsystem considered
in the present paper. In addition it lists the relevant constraints
that have to be taken into account.

3. Related literature

The problem considered generally belongs to the class of pe-
riodic vehicle routing problems (PVRP). There is a wide range of
publications available concerning the PVRP (e.g., Campbell & Wil-
son (2014)). Classical PVRP literature however neglects several es-
sential characteristics that are relevant when planning DPs and
MCVs in grocery retailing. We therefore focus our literature review
on publications related to DP and MCV planning.

Literature on DP planning. Publications on DP planning consider
- contrary to pure PVRP publications - pattern-dependent costs,
and analyze their influences on overall planning. They especially
take into account that the delivery sizes per day depend on the
DPs chosen. An approach to determine a weekly delivery sched-
ule is provided by Gaur and Fisher (2004) based on a periodic in-
ventory routing problem. Ronen and Goodhart (2008) consider a
related problem and include DC costs and additional extensions,
such as limited picking capacity, a heterogeneous fleet, and daily
minimum utilization rates for DC and transportation subsystems.
Similar stores are clustered and patterns are predefined for these
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clusters using an MIP. Furthermore, a PVRP is applied for the rout-
ing. Clustering, pattern-definition and routing is not done sequen-
tially without any feedback loops. This causes the problem that
once patterns are assigned to the stores they cannot be changed
any more although the routing step may reveal that adapting the
delivery patterns could capture additional savings (Holzapfel et al.,
2016). In addition, they neglect instore operational costs. Sternbeck
and Kuhn (2014) are the first to examine the logistics processes
comprehensively in DCs, transportation and stores and their de-
pendencies on DPs. They develop a binary integer program that
minimizes the sum of all relevant costs identified and apply it
to a real-life case. Transportation costs are approximated with a
cost matrix dependent on distance and order size. Actual tours are
not considered. Holzapfel et al. (2016) also take into account DC,
transportation and instore logistics and propose an advanced solu-
tion approach that clusters stores and approximates transportation
costs using the logic of Fisher and Jaikumar (1981). Taube and Min-
ner (2018) focus on handling costs at the DC and stores. They con-
sider a classical joint replenishment problem with stochastic de-
mand and present decomposition approaches and a genetic algo-
rithm to solve it. After experimenting with random data instances,
they use the most promising model for a case study with a Euro-
pean retailer.

To sum up, this literature stream is related to our problem set-
ting, but falls short in approximating transportation costs without
directly solving the related VRP or neglecting instore costs. Further-
more, MCVs and product flows across segments have not been in-
vestigated so far.

Literature on the MCVRP. The largest body of MCVRP literature
deals with applications in fuel distribution and fixed compartment
sizes (e.g., Avella, Boccia, and Sforza (2004); Coelho and Laporte
(2015)). Yet in our problem context, the flexibility of compartments
is a central characteristic and we therefore focus on related publi-
cations. The first comprehensive formulation of a vehicle routing
problem with both fixed and flexible compartments is presented
by Derigs et al. (2011). The authors use and evaluate a whole
string of heuristic solution methods (construction-, search- and
metaheuristics) for the problem, while focusing on their applica-
tion in food and petrol distribution. Henke, Speranza, and Wdscher
(2015) discuss an MCVRP with flexible compartments for applica-
tion in German glass waste collection. A VNS is used to improve
an initial solution generated by a randomized construction proce-
dure. Koch, Henke, and Wascher (2016) and Henke, Speranza, and
Wascher (2019) consider a similar problem formulation but pro-
pose different solution approaches. Koch et al. (2016) present a ge-
netic algorithm that may also be modified for a multi-period con-
text and Henke et al. (2019) develop a branch-and-cut algorithm
to address the problem. Hiibner and Ostermeier (2019) consider
an MCVRP in the context of grocery retailing, taking into account
MCV-specific costs for the first time. An LNS is applied to solve
the corresponding problem. Ostermeier and Hiibner (2018) also
extend this research and present a vehicle selection model for
the MCVRP. Furthermore, Ostermeier, Martins, Amorim, and Hiib-
ner (2018) consider the use of flexible compartments and corre-
sponding loading issues. The authors present a mathematical for-
mulation for the extended MCVRP and solve the problem with
a branch-and-cut approach as well as an adapted LNS. Besides
flexible compartments, Hsiao, Chen, and Chin (2017) also consider
the flexible adjustment of compartment temperatures and present
a biogeography-based optimization approach. Martins, Ostermeier,
Amorim, Hiibner, and Almada-Lobo (2019) present an MCVRP for
multiple periods that considers consistent deliveries across seg-
ments but uses the given DPs as input parameter. They solve the
resulting multi-period MCVRP with product-oriented time win-
dows using an ALNS. For a review on MCVRP literature, we further
refer to Ostermeier et al. (2020).
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To sum up this literature stream, we can state that current
MCVRP literature for flexible compartments has been developed
only recently. Multi-period problems are rare and - if available -
do not consider the assignment of DPs and, particularly, the choice
of delivery days.

Summary. Despite the numerous publications on DPs and
MCVs, none of the above integrates the diverse problem charac-
teristics mentioned. We address this gap in literature and present
a problem formulation that considers the joint selection of DPs
across stores and segments in the circumstances of MCV deliver-
ies. Moreover, the interrelation of the joint DP selection of prod-
uct segments on warehousing, MCV routing, and store operations
requires an integrative planning approach. Only the simultaneous
consideration of all decision-relevant costs and constraints ensures
feasible and cost-optimal decisions for the entire distribution pro-
cess. As such, our work extends the literature on both DP and MCV
planning in grocery distribution. Our research specifically makes a
contribution to:

o Identifying decision-relevant costs in warehousing, transporta-
tion and instore operations when selecting DPs across product
segments and using MCVs for their joint store deliveries;

o Formulating a novel model, i.e., the PMCVRP that simultane-
ously defines cost-minimal DPs and MCV delivery tours for a
diverse set of product segments in a multiple period environ-
ment;

o Developing a sophisticated heuristic solution algorithm that
finds good solutions in acceptable computation times for the
defined PMCVRP model, and

o Generating numerical examples with simulated and actual re-
tail data to obtain insights into the value of integration when
DPs of products with different temperature requirements are
jointly delivered from the DCs to the stores.

4. Decision model

In the present section we formulate the mathematical model of
the decision problem described. The model is based on the PVRP
where transportation is executed by MCVs, and DC-related, trans-
portation and store-related costs are considered that depend on
the DP chosen. We denote this problem as PMCVRP. The model is
formulated as follows using the notation given in Table 1.

Let G = (Np, E) be an undirected, weighted graph consisting of a
vertex set Ng = {0, 1, ..., |N|}, representing the location of the depot
(0) and the locations of stores (N = {1, ..., |N|}), and a set of edges
E={(i,Jj):1i,je Ng}, representing the connection between differ-
ent locations. Each edge is associated with non-negative travel
costs cga"el. The product segments are denoted by the set S =
{1, ..., |S|}. The stores are supplied using a heterogeneous fleet of
MCVs denoted by the set of vehicles K = {1, ..., |[K|}. The vehicle
fleet is assumed to be sufficiently large to satisfy the total demand.
The compartment setting for each MCV is adjustable, i.e., the num-
ber and size of compartments is not predetermined but part of
the decision problem. Further, the total vehicle capacity Q¢h is
not affected by the specific compartment setting due to the given
flexibility. Each MCV is used for one tour per period at most. The
planning horizon comprises one delivery cycle with a given set of
delivery periods, T = {1, ..., |T|}. Further, a set of possible delivery
patterns P = {1, ..., |P|} is introduced that covers all possible store-
and segment-specific delivery schedules. Generally, this set can in-
clude all feasible weekday combinations of all frequencies, but a
prior limitation, e.g., dependent on certain segment or store fea-
tures, is reasonable.

Every store has a positive demand for each segment across the
planning horizon. The delivery quantity op; indicates the demand
of store i for product segment s at period t when DP p is selected.
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Table 1
Notation used to model PMCVRP.
Sets
K Set of vehicles K = {1, ..., |K|}
N Set of stores N = {1, ..., [N|}, No = {0, 1, ..., [N|} with 0 as depot
P Set of delivery patterns P = {1, ..., |P|}
S Set of product segments S = {1, ..., |S|}
T Set of periods T = {1, ..., |T|}
Parameters
ape ap =1, if period t, t € T, is included in pattern p, p € P, 0 otherwise
cload Loading costs for segment s, s € S
cfj?a“ Transportation costs for approaching location j after i for i, j € No, where cga“ = CS-"’"EI + c;‘“'“d
cgs"f Pattern-dependent costs of segment s, s € S, and store i, i € N, when pattern p, p € P, is selected
O psit Delivery quantity of segment s, s € S, for store i, i € N, in period t, t € T, when pattern p, p € P, is selected
Q"_Eh » Vehicle capacity
pickmin Minimum picking capacity for segment s, s € S, at the DC
pickmax  Maximum picking capacity for segment s, s € S, at the DC
Qecmax Maximum receiving capacity for store i, i ¢ N

Decision and auxiliary variables

Ugge Binary; indicating whether segment s, s € S, is delivered by vehicle k, k € K, in period t, t € T

Xijke Binary; indicating whether vehicle k, k € K, travels from location i to j for i, j € Ny, in period t, t € T
Vsikt Binary; indicating whether store i, i € N, receives segment s, s € S, in period t, t € T, by vehicle k, k € K
Zpsi Binary; indicating whether pattern p, p € P, is selected for segment s, s € S, and store i, ie N

It depends on the pattern assigned, and is part of the decision
problem. The total demand of a segment is split across actual days
of delivery according to the chosen DP. The quantity of a delivery
must include the demand of the period during which the delivery
takes place and the demand of all following periods until the next
scheduled delivery. In line with this, the parameter ap indicates
whether period t is included in pattern p or not. Moreover, single
orders for one segment in one period may not be split up across
different vehicles.

The cost parameters are defined as follows. The loading costs
cload represent the costs for stopping at a segment-specific gate at
the depot and for loading the order onto the truck. Travel costs
ch]r.""e' include the costs for the travel from location i to loca-

tion j. Unloading costs c}‘“'oad cover the costs for each stop at a
store. For the sake of simplicity, we summarize travel and unload-
ing costs in a generalized cost term for transportation, and define
cfran ;= cfravel  cunload, Finally, the pattern-dependent costs cgsaf in-
dicate the costs that occur when store i is supplied with segment s
according to pattern p. The pattern-dependent costs comprise both
depot- and store-specific handling costs as described in Section 2.
The following binary decision variables are applied:

* X;jir indicates whether vehicle k travels from location i to j
within period t, k € K,i, j € Ng,t € T.

* Vi indicates whether store i receives segment s by vehicle k
within period t, s€S,ie N, ke K, t € T.

* Z, indicates whether pattern p is selected for segment s and
store i, pe P,seS,ieN.

Additionally, we introduce the auxiliary binary variables ug, in-
dicating if vehicle k contains at least one order of segment s on
day t. The mathematical model for the PMCVRP can then be for-
mulated as follows.

min. TC=3"3"%"c™ uge+ 3 3 > ™ X

seS keK teT ieNg jeNy keK teT
i#]
at
+2D D Chi s (1)
peP seS ieN
subject to

> zpi=1 VseS VieN (2)
peP

Z Xijke = Z Xjike

ieNp ieNy

i4] i%]

30D Xojke < K|

keK jeNy

D Vsiee < ISI+ Y Xijie
ses icNo
DO e < LI -1
iel jel

Z Xojke < 1

JjeNo

Z Z Zopsit ‘Zpsi *Ysike = QVEh

peP seS ieN

pickmin pickmax
QS = Z Zopsit 'Zpsi =

peP ieN
recmax
Z Zopsit < Zpsi = U
peP seS
Z.ysikt = Zzpsi - Apt
keK peP

ZYSikt = Use - |N|

ieN
ug, € {0, 1}

Xijie € 10, 1}

Vsike € {0, 1}

500

Vke K.Yt e T,Vj e Ny

VteT

VjeNVteT,VkeK

VteT,Vke K,VLC N, |L| > 2

VteT,VkeK

VteT,Vke K

VseSVteT

VieNVteT

VseS VieNVteT

VseS Vke K VteT

VseS VkeK VteT

Vi,jeNo,VkeK,VteT

VseS VieNVkeK VteT
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Zpsi € {0, 1} (16)

The objective function (1) minimizes the total costs (TC),
consisting of loading, transportation (including unloading), and
pattern-dependent costs that arise for every pattern that is as-
signed to a segment-store combination (s,i), seS,ieN. Con-
straints (2) ensure that exactly one delivery pattern per product
segment is assigned for each store. Constraints (3) represent the
flow conservation, guaranteeing that every store visited is also left
again. Additionally, each vehicle has to start from the depot as de-
fined by Constraints (4). Constraints (5) guarantee that a store is
visited if a corresponding order is loaded. The subtour elimina-
tion constraints are denoted by Constraints (6). According to Con-
straints (7), every vehicle may be used only once per day. Con-
straints (8) ensure that the vehicle capacity is not exceeded. Con-
straints (9) ensure that the picking effort at each segment-specific
DC area neither falls below the minimum nor exceeds the maxi-
mum picking capacity on each day t. Constraints (10) consider the
maximum receiving capacity of each store i on each delivery day t.
Constraints (11) ensure that if a store receives a product segment
on day t according to the selected DP, the corresponding segment
has to be assigned to a vehicle on this delivery day. Further, if at
least one order of segment s is assigned to vehicle k, the corre-
sponding compartment is required and thus, ug, is activated (Con-
straints (12)). Lastly, the decision and auxiliary variables are de-
fined as binary by Constraints (13)-(16).

The PMCVRP extends both PVRP and MCVRP. As such, it gener-
alizes the well-known CVRP that is known to be an NP-hard opti-
mization problem (see e.g., Laporte (2009); Toth and Vigo (2014)).
Exact solution approaches are only able to solve small problem in-
stances. In our application we consider industry cases with hun-
dreds of stores that are served from temperature-specific DCs with
a diverse set of product segments. In these cases, heuristics are re-
quired to provide solutions for the PMCVRP.

VpeP, VseS VieN

5. Solution approach

We propose a heuristic algorithm to solve the PMCVRP. The
algorithm iteratively optimizes the assignment of DPs for each
segment-store combination and solves the corresponding MCVRP
in each period of the planning horizon. Fig. 4 illustrates the gen-
eral framework of the algorithm proposed. It contains three ma-
jor parts that are described in more detail within the upcoming
section. After generating an initial solution (see Section 5.1), the
algorithm performs two sequential stages within its second part
(see Section 5.2). In Stage 1, an ALNS framework is used to de-
termine individual DPs for each segment-store combination (see
Section 5.2.1). This results in new partial solutions that define the
delivery quantities for each period and each segment-store com-
bination of the entire planning horizon. Stage 2 then solves the
resulting MCVRPs applying an LNS approach in each period of the
planning horizon (see Section 5.2.2). The ALNS optimizes delivery
patterns across all periods, whereas the LNS only optimizes the
routing within a period. Finally a Simulated Annealing approach is
used to decide on the next candidate schedule to work on during
the subsequent iteration. This part of the algorithm also adapts the
parameters of the search process (Section 5.3).

Please note that we use the following terminology within the
detailed description of the algorithm. Deliveries are set by segment
and store and are therefore uniquely defined for each segment-
store combination subject to the assigned patterns. We will there-
fore use the term “segment-store combination” (s,i), s€ S,i€ N to
uniquely define the object and planning entity. We use this term
whenever we consider the characteristics attributed to a store and
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Fig. 4. Algorithmic structure.

the corresponding segment (e.g., weekly demand for segment s by
store i). Furthermore, a DP p is assigned to each segment-store
combination, indicated by the triple (p,s,i), pe P,seS,ieN.

5.1. Initial solution

The solution approach starts with a random initial assignment
of patterns. This assignment specifies the delivery days and the as-
sociated delivery quantities for each segment-store combination. It
also determines the entire delivery requirements in each period.
Afterwards, the procedure applies the Savings Algorithm by Clarke
and Wright (1964) to construct feasible delivery tours in each pe-
riod. The Savings Algorithm was used in many VRP and MCVRP for-
mulations and provides fast and reasonable initial solutions (Toth
& Vigo, 2014). We use the parallel version of the algorithm as it
provides better solutions than the sequential approach (Laporte,
2009). The procedure starts constructing single tours for every
segment-store delivery scheduled in each period of the planning
horizon. Afterwards we calculate the associated savings values for
all pairs of segment-store combinations [(s,), (5, j)]. s.§€S.i,j €
N, if they were jointly delivered: Acggj =l + cfiave! — clravel,
Here, O represents the depot and cga"el denotes the travel costs be-
tween the respective locations i and j (i, j € N). Iterating across the
sorted decreasing list of savings-values Acg;sj, the corresponding
tours of the pairs (s,i) and (8§, j) are merged if feasible.

5.2. Improvement heuristic

In each iteration of our solution approach we change large
parts of the current solution by assigning new delivery patterns to
segment-store combinations (Stage 1) and solving the correspond-
ing routing problems (Stage 2). Please note that we are keeping
track of all partial solutions created (Stage 1), whereas the routing
for each period (Stage 2) is only executed if a new solution (i.e., as-
signment of patterns) has been reached. In addition, we verify the
feasibility of each pattern assignment in respect of the lower and
upper picking limits at the DC and the store’s maximum receiving
capacity. In the event that it is not feasible, the partial solution is
rejected and Stage 1 is repeated. In the following both stages are
described in detail.
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Table 2
Operators used within the ALNS algorithm.

Operator h  Operator type Operator name

1 Proximity Operator

2 (i) Score-related Segment Bundle Operator

3 Sales Volume Operator

4 (ii) Cost-related Pattern-dependent Cost Operator
5 (iii)  Move-related Move-One Operator

6 Move-Two Operator

7 (iv) Random Random Operator

5.2.1. Stage 1: ALNS for optimizing DPs

The ALNS approach introduced by Shaw (1997) was effectively
applied when solving multiple variants of the VRP (e.g., Shaw
(1997), Ropke and Pisinger (2006)), and it was particularly effective
when solving PVRPs (e.g., Zajac (2017)) and MCVRPs (e.g., Martins
et al. (2019)). On the basis of an initial solution, it typically uses
several remove and insertion operators to destroy and repair large
parts of the solution in each iteration. In order to adapt the ALNS
approach to the present problem and to the state of the search
process, a weight is assigned to each operator that determines
how often it is selected during the search process. The weights are
adjusted dynamically depending on the past performance of the
respective operator with respect to the overall solution. We de-
scribe this adjustment procedure in detail in Section 5.3. We use
the ALNS as it enables us to embed a whole set of operators de-
rived from and built with problem-specific knowledge. Further, the
adaptive mechanism decides which operators to use for which type
of problem instance.

Most ALNS approaches include remove and reinsertion opera-
tors for customers or orders to recreate large parts of the solution.
In this aspect, our ALNS differs from other formulations. Rather
than removing and reinserting orders or deliveries, the operators
used in our approach select new patterns for segment-store com-
binations, i.e., they decide on how often and on which days a store
receives the respective segments. Traditional remove and insert op-
erators are not applicable for our problem as these usually assume
that the order sizes per customer and period are independent of
the solution. In our case, however, the order size per store deliv-
ery depends on the chosen DP. For example, modifying a current
DP will at least omit, add or move one delivery day. Consequently,
this will change the delivery size and the related costs of the as-
sociated deliveries since we assume a pre-defined weekly demand
pattern for all segment-store combinations. Modifying an individ-
ual pattern of a segment-store combination may therefore result in
a completely new delivery schedule. Table 2 summarizes the ALNS
operators applied. It comprises the following operator types: (i)
score-related, (ii) cost-related, (iii) move-related and (iv) random.
Each operator will change the patterns in an iteration for a given
number of segment-store combinations.

(i) Score-related operators. The structure of our score-related
operators is based on the well-known Removal Operator by Shaw
(Shaw, 1997). For each score-related operator we define a relat-
edness measure Rgs; for two segment-store combinations (s, i)
and (§,j), i,j €N, s,§eS. The algorithmic structure of the score-
related operators is identical despite the different relatedness mea-
sures. We therefore present this general five-step structure first
and then detail the individual operators. The general structure of
the score-related operators is further given in Algorithm 1.

After a random segment-store combination (s,i) has been se-
lected in Step 1, the relatedness R;5; between delivery schedules
for segment-store combination (s,i) and all other combinations
(5,j), §€S,jeN, is calculated in Step 2 and ranked in ascending
order according to the relatedness measure calculated, Rg;¢;. The
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Algorithm 1 Score-related operators.

1: Input: Solution S, set of patterns P, number of segment-store
combinations to be changed c, degree of randomization «
2: ListL=9¢
3: Randomly select a segment-store combination (s,i), s€S,ie N
and add it to list L
: while |[L| < ¢ do
5. Step 1: randomly select a segment-store combination from
list L, (s,i)eL,seS,ieN
6:  Step 2: compute score Rys; for all segment-store combina-
tions (5, j) ¢L,§€ S, j e N, and sort by their score in ascend-
ing order
7. Step 3: draw a random number ¢ €[0,1] and select the
segment-store combination (8, j), §€ S, je N, that lays ¢%
down the ranking
8:  if pattern p assigned to (s, i) differs from pattern p’ assigned
to (5, j) (i.e, p#p'. p.p' € P), then
9: Step 4: assign new pattern to segment-store combination
(8, j) that is selected randomly among all patterns p, p
P, with a higher pattern similarity w,q; 55 to the current
pattern p of (s, i)

10: else

11: continue;

12:  end if

13:  Step 5:add (5, j) to L

14: end while

15: return new partial solution S* with the updated pattern

assignments for all segment-store combinations considered
(s,i),seS,ieN.

more related the attributes of two segment-store combinations, the
more likely it is to obtain synergies in a joint consideration and
the higher the expected additional cost savings by aligning the re-
spective patterns. Subsequent to the relatedness calculated, an ad-
ditional parameter « is used that determines the degree of ran-
domization of the search. More precisely, after sorting all segment-
store combinations (8, j) according to their score, a random num-
ber ¢, ¢ €0, 1] is drawn in Step 3, selecting the combination that
lays ¢% down the ranking. If the combination selected (§, j) has
a different pattern p’, p’ € P compared to the combination (s, i), a
new pattern is assigned to combination (3§, j) in Step 4. Here, the
new pattern is chosen randomly among all patterns p, p € P that
have a higher pattern similarity (wps; p5;) than the previously as-
signed pattern. The pattern similarity is calculated using Eq. (17).
This metric is determined by the ratio of matching periods n;si,ﬁs"j
for pattern p and p, to the total number of periods |T|. Matching
periods are days where both patterns intend to carry out a store
delivery.

121 n;si,ﬁs"j

IT|

This process is repeated until the patterns for ¢ segment-store
combinations are adjusted. The resulting new solution S* is then
the input for solving the MCVRPs in Stage 2.

Proximity Operator. The first score-related operator is based on
the idea that it is usually cost-efficient to serve stores in geograph-
ical proximity using the same vehicle. In order to enable a conjoint
delivery in each period of the planning horizon, the patterns of
these segment-store combinations should be as similar as possi-
ble. If two neighboring stores and their segments or two segments
of the same store share the same delivery days (but only if this
is the case), they should be placed on the same tours by the sub-
sequent routing decision and transportation synergies can be re-
alized. To do this, the Proximity Operator tries to assimilate the

Wpsi p5j = (17)
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patterns of segment-store combinations by selecting combinations
(s,i) and (S, j) with a lower value R i subject to the patterns p
and p currently selected.

SIS

travel

1
R Ctravel + (1 - IB) Wpsi, psj

s1,5]

=B (18)

R;l 5 comprises two components that are weighted by B: the
geographical proximity of the respective stores i and j and the
current similarity of their patterns p and p. The first metric is ex-
pressed by the travel costs c}]r.a"e' between the store locations of i
and j and the maximum travel costs between any two store com-
binations ¢""®. Second, the pattern similarity wpsi 5sj (see Eq. (17))
of the current patterns of the segment-store combinations consid-
ered is included as we aim at changing combinations with dissim-
ilar patterns.

Segment Bundle Operator. A further operator bundles deliveries
across segments. Scheduling deliveries from different stores but
the same segment in the same period can lead to savings on load-
ing costs by decreasing the number of loading gates a single MCV
has to approach at the depot. However, savings on loading costs
may be exceeded by additional travel costs that arise if deliveries
from the same segment but not from the same delivery area are
placed on a single tour. To avoid this, the Segment Bundle Operator
tries to assimilate patterns of segment-store combinations that are
located in the same neighborhood and concern identical segments.
It combines the metric for the travel costs between segment-store
combinations with the segment similarity. The segment similarity,
defined as o5, indicates whether the segments considered are
equal or not:

0, ifs=¢
Osisj = {1, otherwise (19)
The relatedness measure R2 .. for this operator is denoted by

si,5j
Eq. (20). Again, we use a weight § for the two components of RS, 5
To achieve the desired effect, the weights here are to be chosen
differently to the Proximity Operator, with a stronger focus on the
similarity of segments than on the relative travel costs of the cor-
responding stores.

travel

=4

Sl ,5j

+ (1-10) 055 (20)

travel

Sales Volume Operator. The third score-related operator is based
on the overall segment-specific demand of a store for the entire
planning period. This total demand is denoted by W, s € S,ie N.
It may be favorable to align deliveries for stores with compara-
ble demand since we consider heterogeneous stores with different
store sizes and sales volumes for each segment. The operator of-
fers the option to copy cost-efficient patterns already found for a
segment-store combination to another store with a similar demand
structure. Unlike the first two operators, it solely aims to reduce
pattern-dependent costs and hence supports the diversification of
our search algorithm. Again, the more similar the total demands,
the lower the calculated Rfl 5 (see Eq. (21)). This represents the
absolute difference of the total demand of the combinations (s, i)
and (8, j).

|\IJ51 “ps”jl (21)

sx ,5j

(ii) Cost-related Operator. Cost-intensive patterns may be as-
signed in the course of the ALNS as they may be favorable in terms
of transportation costs. Yet depending on the problem instance’s
cost structure, the pattern-dependent costs may exceed the sav-
ings achieved. Moreover, specific delivery period combinations or
delivery frequencies can be extraordinarily costly. We therefore in-
troduce an operator directly focusing on pattern-dependent costs
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that counteracts this effect. The operator therefore considers the
cost of a chosen pattern p, p € P, for a segment-store combina-
tion (s,i) and aims to find a new pattern p’, p’ € P: p’ # p, with
lower pattern-dependent costs. Algorithm 2 presents the algorith-

Algorithm 2 Pattern-dependent Cost Operator.

1: Input: Solution S, set of patterns P, number of segment-store
combinations to be changed c, pattern-dependent costs of all
combinations c"at degree of randomization ¢, list O of all
segment-store combmatlons (s,i),seS,ieN

2: ListL=9¢

3: while |L| < c do

Step 1: sort all segment-store combinations (s,i) € O by CZ‘;

in descending order

5. Step 2: draw a random number ¢ €[0,1] and select the
segment-store combination (s,i), that lays ¢{* down the
ranking

6: if pattern-dependent costs of current pattern p of segment-
store combination (s, i) do not equal g‘;‘i, then

7. Step 3: assign a new pattern p’, p' € P, to segment-store
combination (s,i), which is selected randomly among all
patterns P with lower c;‘?;. than the current pattern of

segment-store combination (s, i)

8: else

9: continue;

10:  end if

11:  Step 4: remove (s, i) from O, add (s,i) to L

12: end while

13: forall (s,i) € O do

14:  keep the assigned pattern p, p € P

15: return new partial solution S* with the updated pattern

assignments for all segment-store combinations considered
(s,i),seS,ieN.

mic structure of this operator. Please note that Algorithm 2 is
similar to Algorithm 1 but not identical. The pattern-dependent
cost operator directly considers the cost delta between the current,

cg;.t, and the minimum pattern-dependent costs, gp;t of a pattern-

segment-store combination (p, s, i), Acg;t = cg;t cg;t DP p, lead-

ing to the minimum pattern-dependent costs, is determined as fol-
lows: p =arg minpep[cﬁi ]. The Pattern-dependent Cost Operator
evaluates whether a pattern that results in lower costs is available.
In Step 2 of Algorithm 2 we do not select the segment-store combi-
nation that promises the highest savings, but the combination that
lays ¢* down the descending cost ranking (cf. score-related opera-
tors). If the minimum pattern-dependent costs during an iteration
are not yet reached, a new pattern p’ is selected randomly among
the set of all patterns P, implying lower pattern-dependent costs.
Due to its nature, the Pattern-dependent Cost Operator can be seen
as a regulatory operator. For the overall problem it is not effec-
tive to select the patterns with minimum costs for each segment-
store combination as this would usually lead to high transporta-
tion costs. Yet the pattern-dependent costs are one main driver of
a successful search, and low-priced patterns have to be utilized in
different combinations.

(iii) Move-related operators. Two move-related operators are
introduced to increase the diversification of the search algorithm
as they do not use a specific search criterion but randomly choose
orders to be considered for moves. A move, in this context, is the
change of delivery periods while maintaining the identical num-
ber of deliveries per week. For example, if a store receives a prod-
uct segment on day 1 and 2, the Move-One Operator moves one
and only one of these delivery days to another period where cur-
rently a delivery is not intended. So the DP may change to deliver-
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ies on day 2 and day 5. The DP featuring a delivery frequency of |T|
times within the planning horizon stays unconsidered since none
of the delivery days scheduled can be moved. The pseudo-code of
the Move-One Operator is denoted in Algorithm 3.

Algorithm 3 Move-One Operator.

1: Input: Solution S, set of patterns P, number of segment-store
combinations to be changed c, list O of all segment-store com-
binations (s,i), s€S,ie N

2: ListL=9¢

3: while |L| < c do

: Step 1: randomly select a segment-store combination (s, i) €

0

5. if the frequency of the current pattern p of (s,i) is unequal
|T|, then

6: Step 2: randomly select one delivery period tq,t; e
{T|ap, =1} of the current pattern p of segment-store com-
bination (s, i)

7. Step 3: move the delivery from period t; to period t;, t; €
{T|ap, =0} in the current pattern p of (s,i) and assign the
resulting pattern p’ to (s, 1)

8: end if

. Step 4: remove (s, i) from O, add (s,i) to L

10: end while

11: forall (s,i) € O do

12:  keep the assigned pattern p, p € P

13: return new partial solution S* with the updated pattern

assignments for all segment-store combinations considered
(s,i), seS,ieN.

The Move-Two Operator moves two delivery periods planned to
two delivery periods not yet scheduled. The DPs that intend deliv-
eries on |T|, |T| —1 or 1 periods of the planning horizon are not
considered since no feasible moves exist for these patterns. We use
the Move-One Operator in those cases, except when the delivery
frequency equals |T]|.

(iv) Random Operator. The Random Operator is introduced as
an additional diversification operator that also changes the pat-
terns. It randomly selects segment-store combinations and ran-
domly assigns a new pattern from all possible patterns.

5.2.2. Stage 2: LNS for solving the routing in each period

Stage 2 within the improvement phase of the entire algorithm
addresses the routing problem. This stage solves the MCVRP for
each period ¢, t €T, assuming the DPs selected in Stage 1. We
apply the LNS framework suggested by Hiibner and Ostermeier
(2019) for solving the MCVRP since they assume an equivalent
cost structure to ours. In addition, the LNS approach enables high-
quality solutions in short computation times (see also Derigs et al.
(2011)) that are particularly relevant in our case since we need to
solve the MCVRP in each iteration for each period of the planning
horizon. The LNS approach of Hiibner and Ostermeier (2019) uses
the Savings Algorithm by Clarke and Wright (1964) to generate an
initial solution for the routing in each period. This is conducted
equivalently as described in Section 5.1. Based on the initial so-
lution, Shaw Removal and Regret-k Insertion are used within the
LNS. The Shaw Removal is based on Shaw (1997), but is modi-
fied to consider the joint delivery of multiple segments. In the
present implementation of the LNS we further adapt the Shaw Re-
moval operator to account for the dynamic structure of the deliv-
ery sizes. The algorithmic structure presented in Algorithm 1 re-
sembles the structure of Shaw Removal as it also serves as the ba-
sis for our score-related operators. The associated relatedness mea-
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sure is given in Eq. (22).

RS it rE [0psic — Opsjt (22)
sisi = M- Zran +V-Osizj+§ - omax
RS .. takes three metrics into account: transportation costs,

SL,S.
produc]t segment and delivery sizes, weighted by u, v, and &, re-
spectively. The metrics for transportation costs and segment simi-
larity are identical to those used in the Segment Bundle Operator.
Additionally, the delivery size is included as swapping deliveries
with similar sizes result in the faster generation of new feasible
solutions. Delivery sizes are compared using the difference in size
of deliveries o, and opj; (for the given delivery period t and the
corresponding patterns p and p) in relation to the highest deliv-
ery quantity across all deliveries (o™3*). After the defined number
of deliveries has been removed (see Algorithm 1), removed deliv-
eries are reinserted applying Regret-k Insertion (Ropke & Pisinger,
2006). It calculates the regret values, i.e., differences, between the
best insertion possibility of a delivery and the k-best options. The
delivery with the highest difference (regret) is inserted in each it-
eration. This allows a more foresighted insertion that takes future
costs into account. The Regret Operator is indispensable for the
search as it significantly improves the solution quality of MCVRPs
(see Derigs et al. (2011)). Finally, Record-To-Record Travel as intro-
duced by Dueck (1993) is used as an acceptance criterion for the
LNS. Accordingly, a new solution is accepted as a new incumbent
solution if it lays within a defined deviation (D) from the best so-
lution found so far. The LNS terminates after a predefined number
of iterations without a solution improvement.

5.3. Evaluation and control mechanism of entire algorithm

Simulated Annealing. While testing our approach we found that
the search process tends to get trapped in local minima. We there-
fore use a Simulated Annealing framework to govern the search
and enable broader diversification. Accordingly, a new solution S*
found within the improvement heuristic is accepted if it is better
than the best-known solution so far, Spes, or the incumbent so-
lution, S;,.. Further, for a higher degree of diversification, a worse

solution is accepted as an incumbent solution with the probabil-
fE)=FGine)
ity e~ F " . This probability is then decreased in the course of

the search process. The temperature E > 0 is initialized using Esart
and decreased in each successive iteration by the cooling rate fac-
tor d €]0; 1[. For the calculation of Estar¢ we adapted the method of
Ropke and Pisinger (2006) to fit the requirements of the PMCVRP.
Consequently, Eswre is set such that a solution subsequently ob-
tained is accepted with a probability of 0.5, i.e., Estart = —%,
if its objective function value is g percent worse than the starting
solution.

Additional diversification. Apart from being used as operator
within the ALNS, the Random Operator is deployed as an addi-
tional tool of diversification. This is why we introduce a reset bor-
der A. If A iterations are made without a new best solution being
found, the Random Operator is used, changing a high number of
segment-store combinations and thereby destroying a large part of
the current solution.

Termination criterion. If the number of ALNS iterations without
a new best solution found reaches a predefined limit, the search
process is stopped. This limit is independent of the reset border A
and is never readjusted in the course of the solution approach.

Adaptive operator selection. The final step of each ALNS itera-
tion is the adaptation of operator weights used within the ALNS
approach. As stated above (Section 5.2.1), the operator selection
within the ALNS is based on individual weights for each opera-
tor. As proposed in Ropke and Pisinger (2006), we use a roulette
wheel selection principle where the probability &, of operator
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Table 3
Overview of numerical experiments.
Section  Experiments and purpose Stores Segments  Data set Number of
instances
6.1 Runtime analysis 25,50,100 3 Solomon (1987) 18
6.2 Single segment benchmark 30, 40 1 Holzapfel et al. (2016) 120
6.3 Value of MCV integration and 50 2-4 Simulated data, informed by 20
joint deliveries for DP planning real-world data
6.4 Case study 376 3 Real-world data 1

h, he{1,2,...,7} (see Table 2) being selected for the current it-
eration is determined by its weight p, and &, = Zﬁhﬂh' In the be-
ginning of the search, the likelihood of selection is equal for all
operators, i.e., the weights of all operators are set to 1. Later, the
weights are adjusted depending on their performance in the pre-
vious search leg. Note, a single search leg is defined by a specific
number of consecutive iterations. A score ®, is introduced to mea-
sure the performance of operator h during the last search leg. The
performance of the operators is measured by evaluating the over-
all solution obtained, i.e., the total costs according to Eq. (1). ®, is
increased by 6, if the operator results in a new best solution, by
6, if the operator results in a new incumbent solution, and by 65
if the operator results in a new solution, but is not accepted. At
the end of each search leg, the weights p,, for every operator h are
updated according the average scores achieved, g—: using Eq. (23).
2, denotes the number of times operator h is selected in the last
search leg. The magnitude of change for the weights is controlled
by the smoothing factor t €]0; 1[. After all new weights have been
calculated, all ®, are reset to zero for the next search leg.

phZ(‘l—T)'ph-l—T'% Vhe{l,,7}
Qp

Post-optimization of routing. After the stop criteria of the ALNS
are met, we apply a post-optimization step to improve the final
routing solutions, i.e., the MCVRPs for each period of |T|. We there-
fore apply an extended LNS to the routing problem of each period,
increasing the LNS search limit of unsuccessful iterations signifi-
cantly. Please note that using a higher limit for the LNS is only
feasible at the end of the ALNS search, as the LNS is frequently
applied during the search (i.e., |T| times per ALNS iteration) and
runtimes would increase exponentially.

(23)

6. Numerical experiments

Numerical experiments are applied to evaluate the performance
of our solution approach and the interdependence between the
planning of DPs and MCVs. The runtime is analyzed in Section 6.1.
Section 6.2 compares our approach to the results of Holzapfel et al.
(2016) to provide a benchmark with regard to solution quality. The
impact of using MCVs instead of SCVs for the determination of DPs

and the overall solution structure is assessed in Section 6.3. Finally,
we apply our approach to a real-world case at a major German re-
tailer in Section 6.4. Table 3 gives an overview of the numerical
experiments and the data sets used.

Data applied. Each test instance is defined by the number of
stores (and their spatial distribution), number of segments (and
the number of their products) as well as the planning horizon,
which in turn determines the number of possible DPs. If not stated
otherwise, we consider five days (|T| = 5) as planning horizon with
all possible DPs (i.e., 2° —1 =31 combinations). The number of
possible DPs may, however, be reduced due to non-feasible com-
binations, i.e., we check if a DP violates vehicle or store capaci-
ties (Q“¢? and Qeem™) for all given segment-store combinations.
We apply a daily demand for each segment-store combination
and specify the ranges for each data set. The daily demand for
the specific weekdays depends on the weekly seasonality obtained
from data of a benchmark case (see Section 6.2) and a real case
study (see Section 6.4). The shelf capacity for each product was
set equally for all stores in all tests. It was determined using the
ratio of average weekly product demand to product shelf capacity
as given in Holzapfel et al. (2016). Vehicle capacity is set to 2,700
transportation units (TU). Also, we adopt the empirical cost pa-
rameter setting by Holzapfel et al. (2016) for store- and DC-related
costs as well as MCV-related loading and unloading cost parame-
ters from Hiibner and Ostermeier (2019). The exact values of case
study related data are subject to non-disclosure agreements.

Implementation details. The algorithm-specific parameter setting
used for our experiments is summarized in Table 4. We adopted
the corresponding values reported in literature (see Table 4) for
the majority of parameters as these yield excellent results for our
setting. The weights § and € in the bundle operator segment have
been tuned within our tests. The cooling rate (d) was adjusted
compared to values reported in Ropke and Pisinger (2006) due
to a differing number of iterations and different objective value
ratios. The number of segment-store combinations (c) was cho-
sen depending on the corresponding problem size as depicted in
Table 5. All experiments were executed with a limit of 3,000 iter-
ations without a new best solution found. The adaptive weights
were adjusted after every search segment of 50 iterations. The
LNS for the evaluation of the MCVRPs terminates after 100 unsuc-

Table 4

Algorithm parameters used.
Parameter ~ Value Function Origin
o 6 Degree of randomization Ropke and Pisinger (2006)
By 0.8, 0.2 Weights of proximity operator at ALNS Derigs et al. (2011)
8, € 0.3, 0.7 Weights of segment bundle operator at ALNS Own experiments
n, v, & 0.6, 0.2,0.2  Weights at LNS Hiibner and Ostermeier (2019)
k 2 Regret insertion parameter at LNS Hiibner and Ostermeier (2019)
D 0.003 Deviation allowed at LNS Hiibner and Ostermeier (2019)
d 0.99975 Simulated annealing cooling rate Own experiments
g 0.03 Start temperature control parameter Ropke and Pisinger (2006)
A 200 Reset border Derigs et al. (2011)
01, 0,, 05 33,9, 11 Operator score increase for new solutions Ropke and Pisinger (2006)
r 0.1 Reaction factor for operator weight adjustment  Ropke and Pisinger (2006)
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Table 5
Setting of parameter c.

Instance size  No. of segment-store combinations

# stores Minimum Maximum
25 5 15
50 5 20
100 5 30
>200 5 50

cessful iterations. The extended LNS, which is applied only in the
post-optimization when the ALNS is terminated, stops after 2,000
unsuccessful iterations. Our algorithm is also built on a stochas-
tic search procedure. To balance this out, we apply the same in-
stance multiple times, depending on the data set used. The fre-
quency is denoted in the respective tests. The algorithm described
in Section 5 was implemented in Java 8 and used for all following
experiments.

6.1. Runtime analysis

Runtime data. We use the VRPTW data sets provided by
Solomon (1987) to analyze the computation times of our solution
approach. The data set comprises instances with 25, 50 and 100
customers and is subdivided into three categories: (C) clustered
stores, (R) uniformly random distributed stores and a (RC) mix-
ture of both. Solomon (1987) provides two different spatial distri-
butions of stores for each category, resulting in six instances for
each of the classes with 25, 50 and 100 stores. We use the num-
ber and the spatial distribution of customers from these data sets.
The actual distances are multiplied such that the delivery area re-
sembles a realistic distribution area in retail practice, similar to our
case study (see Section 6.4). This allows maintenance of the gen-
eral cost parameter setting as otherwise the share of travel costs
would be underestimated. We set up three product segments for a
five-day week.

Runtime comparison. The runtime analysis is summarized by
each instance class in Table 6. As the definition of DPs is a tac-
tical planning problem, the runtimes are still within an acceptable
range, considering DPs are not defined on a weekly but monthly
or yearly basis. The runtime strongly increases with the increase of
problem sizes. This is due to the increase in segment-store combi-
nations and the resulting complexity for pattern and routing deci-
sions. More than 90% of computational time is consumed by the
Regret-k-Insertion heuristic within the LNS for the daily routing.
However, the Regret-k-Insertion is substantial to obtain good rout-
ing solutions as it significantly improves the solution quality of the
search (see also Derigs et al. (2011)). The regret value has to be re-
calculated for each insertion and each possible position on trucks
and therefore consumes significant computation time. Several pa-
rameters impact the runtime of the Regret-k-Insertion heuristic.
The number of orders to be removed, the degree of regret (k), and
the overall number of orders on each day are the most important
drivers. In our problem, the number of orders per day changes dy-
namically and also the corresponding delivery volume. In contrast
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to other PVRPs, both delivery frequency and days are permanently
changed within our approach.

6.2. Comparison with single segment benchmark

Benchmark approach. The effectiveness of our approach is shown
by a comparison with Holzapfel et al. (2016). This approach is a
special variant of our problem (multi-period, single segment and
SCVs), and the only available benchmark for our setting. The au-
thors solve the allocation of DPs by an optimally solved general as-
signment problem (GAP) while approximating the resulting trans-
portation costs using the approach of Fisher and Jaikumar (1981).
Contrary to our approach, day-to-day vehicle routing is not part of
their solution procedure. They assume stable base tours, i.e., as-
signments of store orders to vehicles for each day of the planning
horizon. In order to make a fair comparison, we re-evaluated the
DP assignment from Holzapfel et al. (2016) using our general ap-
proach to solve the VRPs on each day of the planning horizon. This
means, we also apply the LNS approach proposed in the present
paper for each instance derived from Holzapfel et al. (2016) to fur-
ther improve the results presented there. In doing so, we apply
the extended LNS for each delivery day five times and keep the
best daily solution found. This procedure entirely corresponds to
the assumptions and the implementation of our overall modeling
and solution approach.

Benchmark data. Holzapfel et al. (2016) apply scenarios for a sin-
gle segment across six delivery days with 10, 20, 30 and 40 stores
and three different delivery area sizes. The stores are randomly lo-
cated within a delivery area of 50km x 50km (“Metropolitan”),
200km x 200 km (“District”) or 400 km x 400 km (“State”). All de-
mand, store and cost parameters in Holzapfel et al. (2016) are set
according to empirical data of a partner company as well as to data
collected by Kuhn and Sternbeck (2013) and Sternbeck and Kuhn
(2014). In the benchmark data, not all of the 26 — 1 = 63 DPs are
feasible for all stores due to vehicle (QV¢¢) or receiving capacities
at stores (Q*“™™). Consequently, around one-third of DPs can be
excluded upfront with respect to individual segment-store combi-
nations. Since smaller problem classes are not relevant for our ap-
plication, we focus on instances with 30 and 40 stores, totaling 120
instances, for the benchmark calculations.

Benchmark comparison. The overall approach suggested in the
present paper achieved costs savings in all instances but one (see
Fig. 5) compared to the adapted Holzapfel et al. (2016) approach.

In detail, two effects can be observed. First, the larger the de-
livery area, the greater are the improvements achieved. With in-
creasing delivery area size and thus higher travel costs, routing be-
comes more important. Since Holzapfel et al. (2016) approximate
the travel costs, actually solving the VRP gains importance. Sec-
ondly, it can be observed that the average improvement for in-
stances with 40 stores is slightly lower than with 30 stores. This
can be attributed to the increasing impact of DP selection. As more
customers are involved, it is more important to find the optimal
DP assignment in order to exploit the bundling effects in trans-
portation. As Holzapfel et al. (2016) solve the allocation of DPs op-
timally using approximations for the resulting travel costs, it be-

Table 6

Total computation times for different problem sizes, in hours.
No. of stores 25 50 100
No. of segment-store combinations 75 150 300
Type of spatial store distribution C R RC C R RC C R RC
Runtime, min 013 0.21 016 035 057 034 1.83 1.30 1.09
Runtime, average 036 065 057 150 1.60 093 4.77 4.72 3.93
Runtime, max 0.74 107 084 333 280 194 1548 1017 9.28
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Table 7
Cost savings in comparison to the adapted benchmark of Holzapfel et al. (2016) (best of 5 runs).
Delivery area Metropolitan District State Average
Number of stores 30 40 30 40 30 40
Total cost savings 0.56%  0.44% 2.05% 1.55% 3.71% 2.81% 1.85%
Savings share of?
Travel costs 0.50%  0.36% 1.93% 1.46% 3.58% 2.73% 1.76%
Unloading costs 0.03% -0.06% -0.06% —-0.05% -0.03% -0.06% —0.04%
Pattern-dependent costs  0.03%  0.13% 0.18% 0.14% 0.16% 0.13% 0.13%
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Fig. 5. Distribution of total cost savings depending on delivery area and number of
stores in comparison to the adapted benchmark of Holzapfel et al. (2016) (best of 5
runs).

comes more difficult for our approach to generate additional im-
provements via delivery pattern assignment. Table 7 shows the
cost savings in percent of total costs obtained by Holzapfel et al.
(2016). Our results show that total cost savings originate almost
entirely from travel costs, whereas the relative pattern-dependent
cost savings are on average only around 0.13%.

Concerning computation times, Holzapfel et al. (2016) report
an average of 2.7 minutes in addition to a pre-processing time of
about 5 minutes for instances with 40 customers, while the com-
putation times of our approach amount to an average of 5.23 min-
utes per single run for the same instances.

In conclusion, we observe that our solution approach is able to
solve the related benchmark problem effectively. It improves the
benchmark solutions by around 1.85% on average across all prob-
lem classes when applying the best solution of five runs. The aver-
age of all five runs still improves the results by around 1.25% across
all problem classes. Moreover, we would like to note that our ap-
proach aims at problems with multiple segments and the corre-
sponding cost savings when segments are jointly delivered. This
effect is not taken into account within the benchmark comparison
as only a single segment is considered.

6.3. Planning of delivery patterns across segments with
multi-compartment vehicles

A core aspect of our work is the use of MCVs for distribution
and the corresponding impact on determining DPs. The different
product flows and consequently joint deliveries are only possible
with MCVs. In line with this, we compare the results of our solu-
tion approach with MCVs to a solution using SCVs only where the
product segments are distributed separately. In the SCV scenario
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Relative share of savings in relation to total costs of Holzapfel et al. (2016).

Table 8
(Mean) segment share of total order volume.
Scenario 1 Scenario 2 Scenario 3 Scenario 4
Segment 1 80% 50% 33.3% 54.4%
Segment 2 10% 30% 33.3% 24.4%
Segment 3 10% 20% 33.3% 21.1%

we apply our solution approach for each product segment sepa-
rately, thus generating independent single segment solutions. The
scenario with joint planning and delivery is denoted as “MCV” and
the separate one as “SCV".

Test data. For the following analysis we use simulated data sets.
It compromises four scenarios with five instances for each, total-
ing 20 data sets. The generation of these data sets is informed by
the real-world data from our case study. All instances comprise 50
stores, which are randomly located around a DC within a delivery
area of 230km x 180 km. Demands are simulated for three prod-
uct segments. The total demand across the delivery week follows a
normal distribution with u = 1,400 and o = 800. Stores generally
feature - depending on their size - different sales volumes across
segments. The weekly demand is therefore randomly multiplied by
a factor of 0.5 (low), 1.0 (medium) or 1.5 (high) to simulate differ-
ent store sizes. The daily demand is subject to weekly seasonality
with the distribution factors {0.149, 0.233, 0.205, 0.211, 0.202} for a
five-day week. The shelf capacity for each product is set equally for
all stores, but randomly across products, according to the ratios of
demand to shelf capacity reported by Holzapfel et al. (2016). Based
on the medium store size, this results in normally distributed shelf
capacity with © = 1,000 and o = 400. As the available real-world
data lacks information on picking and store receiving capacities,
these are set as unconstrained. We apply our heuristic five times
to each instance and compare the best results achieved.

The segment share of the total order volume may have a major
impact. One could expect that the more segments are available, the
higher the potential for cost savings through the joint delivery of
segments. We therefore apply four different scenarios. The demand
share of each segment for each scenario is given in Table 8. In Sce-
narios 1 to 3, each store follows the segment shares indicated. In
Scenario 1 for example, Segments 1, 2 and 3 comprise 80%, 10%
and 10% of the total order volume, respectively. Scenario 4 com-
bines Scenarios 1 to 3 by randomly assigning one of the given sce-
narios to each store.

Results. We first analyze the overall cost structure for all sce-
narios. Table 9 illustrates the share of cost components of the total
costs across the different scenarios.

The cost structure of the MCV and SCV scenarios identify
pattern-dependent costs as main cost driver of the PMCVRP.
Pattern-dependent costs account for almost two-thirds of total
costs with an average of 63% (MCV) and 61% (SCV). The share
of travel costs on the other hand is only half as high with 27%
(MCV) and 31% (SCV). This underlines the importance of DP selec-
tion for a low cost solution. We further compare potential cost sav-



M. Frank, M. Ostermeier, A. Holzapfel et al.

European Journal of Operational Research 293 (2021) 495-510

Table 9
Share of costs components of total costs.
Scenario 1 2 3 4
MCV  SCV MCV  SCV MCV  SCV MCV  SCV
Loading costs 5.6% 1.7% 5.7% 1.7% 5.7% 1.6% 5.3% 1.6%
Travel costs 26.5% 289% 267% 30.9% 27.4% 343% 27.7%  30.2%
Unloading costs 43% 5.5% 42% 63%  4.1% 6.5%  4.6% 5.7%
Pattern-dependent costs 63.6% 63.8% 63.4% 61.0% 62.8% 57.6%  62.2%  62.4%
Table 10 average when using MCVs, as there are more deliveries, and thus
Cost savings of MCV compared to SCV. more possible loading combinations.
Scenario 1 2 3 4
Total costs saving 8.28% 13.12% 15.15% 10.60% 6.4. Case study
Savings share of? . .
Loading costs -343% -330% -320% —3.12% Case study data. To conclude our numerical analysis, we present
Travel costs 4.67% 7.73% 11.14%  5.44% a case study with a major German retailer. Our partner company
Unloading costs 160%  269%  298%  1.58% uses MCVs for distribution but had not considered the impact of
Pattern-dependent costs  5.44% 6.00% 4.23% 6.69%

@ Relative share of savings in relation to total SCV costs

ings and other performance indicators across all scenarios when all
segments are jointly planned and MCVs instead of SCVs are used.
Tables 10 and 11 summarize our findings. In all of our scenarios,
the joint planning and usage of MCVs results in significant cost re-
ductions, with up to 15% of total cost savings (Scenario 3).

As expected, loading costs increase in all scenarios when MCVs
instead of SCVs are used. They occur for each segment loaded on
a vehicle. The loading costs for MCV vs. SCV are approximately
two times higher. This shows that on nearly all tours three seg-
ments are combined when MCVs are available. The main savings
are achieved by lower pattern and travel costs. They originate in
the joint delivery of segments and are therefore dependent on the
demand scenario considered. Pattern-dependent savings are high-
est when the segment demand structure is most heterogeneous
(Scenarios 2 and 4). DPs across the different segments are aligned
and thus costs decrease. Travel cost savings are higher in scenarios
where the segment volumes are equally spread across segments as
shown in Scenario 3. With equally spread volumes, it is very likely
that different segments are supplied together, whereas in Scenario
1 (80%/10%/10% volume shares) bundling effects across segments
are limited. The same can be observed with respect to unloading
costs: most stops at stores can be avoided in Scenario 3 (306 (SCV)
vs. 164 (MCV) stops).

The corresponding solution structure for each scenario is fur-
ther depicted in Table 11. The total number of deliveries differs as
we determine the delivery frequency and therefore the split of to-
tal demand across weekdays. The most striking impact of MCVs on
the solution structure is increasing delivery frequency and there-
fore more deliveries in total. For instance, the average number of
deliveries rises in Scenario 1 from around 251 to 412 deliveries,
an increase of over 64%. The average number of tours remains
relatively stable in all scenarios, and consequently the number
of orders delivered per tour increases. Interestingly, a greater in-
crease in delivery frequency does not lead to a greater decrease in
pattern-dependent costs. Considering Scenario 1, the frequency in-
creases from 1.67 to 2.75 and pattern-dependent costs are reduced
by 5.44%. In contrast, Scenario 4 reveals a reduction of 6.69%,
while the increase in delivery frequency is lower when MCVs are
used (1.83 to 2.60 deliveries). This can be attributed to the fact
that the store-individual optimal delivery frequencies are not gen-
erally chosen when using SCVs or MCVs. Instead, a different DP
and frequency is chosen as another option enables a higher total
cost saving (e.g., due to reduced transportation costs). Also, the
average capacity utilization per tour improves by about 1.27% on
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MCVs on the determination of DPs. We therefore apply our ap-
proach to the given problem data to compare the selection of
DPs when the benefits of MCVs are taken into account during the
decision process. The case study covers a representative five-day
week with orders of 376 stores to be delivered from a single de-
pot. Most stores have a relatively small demand such that most
of them are only served once a week. The order structure is het-
erogeneous, with about 50% of stores ordering one segment, about
20% ordering two segments, and about 30% ordering all three seg-
ments. Moreover, the most frequently ordered segment accounts
for around 80% of the total order volume. The other two segments
account for roughly half of the remaining volume each. Conse-
quently, this order structure resembles Scenario 1 above. The or-
der volumes of the three segments follow a weekly seasonality.
Regarding store sizes, the 10% of stores with the highest sales also
account for more than 40% of the order volume. This means that
the majority of stores have a small demand volume. As in the pre-
vious data sets, the shelf space data was supplemented based on
an average-sized store demand assuming the same ratio between
product demand and shelf capacity as in Holzapfel et al. (2016).

In the following we analyze the potential cost savings if the
retailer coordinates DP and MCV planning. In doing so, we com-
pare the retailer’s approach denoted as “status quo approach” with
our approach denoted as “integrated approach”. The status quo ap-
proach equals our approach, but assumes the DPs currently applied
by the retailer. We therefore assume that the retailer already ap-
plies the same MCVRP solution approach as we do. This means
we only evaluate the effect of planning DPs across segments and
do not mix this with potential effects resulting from different ap-
proaches used to solve the MCVRP. We apply both approaches ten
times and compare the respective best solution.

Results. Table 12 presents the resulting cost savings in % of the
status quo total costs; and Table 13 displays some performance
indicators and reveals insights into the respective solution struc-
ture achieved. The runtime of our integrated solution approach
amounts to an average of 2.89 hours.

The integrated approach that jointly determines DPs across seg-
ments results in total cost savings of 7.68% compared to the sta-
tus quo approach. The savings mainly result from improved pattern
and travel costs, which are facilitated by improved DP assignment.
Only the segment-store combinations with very high demand are
supplied twice a week. Almost all other combinations are delivered
once a week. The number of stops and tours required are there-
fore reduced, resulting in higher vehicle capacity utilization. The
reduction of delivery tours is an essential driver of cost reduction
as it leads to personnel cost savings. This means that at our case
company the number of delivery tours should be further decreased
as the savings outweigh the increase of instore logistics costs al-



M. Frank, M. Ostermeier, A. Holzapfel et al.

European Journal of Operational Research 293 (2021) 495-510

Table 11

Solution structure of MCV compared to SCV, entire planning period.
Scenario 1 2 3 4

MCV NeY MCV NaY MCV NaY MCV NaY

@ number of orders delivered  412.8 251.2 463.2 313.0 4118 306.0 3894 2742
@ number of tours 29.0 29.0 30.2 30.6 27.8 28.0 28.2 29.0
2 number of orders/tour 14.2 8.7 15.3 10.2 14.8 10.9 13.8 9.5
2 number of stops 1784  251.2 180.2  313.0 164.8 306.0 1982 2744
@ capacity utilization 89.9% 88.5% 893% 883% 88.9% 88.7% 90.5% 87.9%
2 delivery frequency 2.75 1.67 3.09 2.09 2.74 2.04 2.60 1.83

Table 12
Cost savings of the integrated approach
compared to status quo.

Total cost savings 7.68%
Savings share of?
Loading costs 0.36%
Travel costs 4.08%
Unloading costs 0.97%
Pattern-dependent costs 2.27%

2 Relative share of savings in relation to
total costs of status quo

Table 13
Solution structure resulting from the integrated approach compared to the status
quo approach.

Status quo approach  Integrated approach

Number of orders delivered 709 630
per week

Number of tours per week 24 22

Number of stops per week 418 381

@ capacity utilization 86.7% 94.6%

though the company’s solution already reveals a low average de-
livery frequency. In conclusion, we can state that an integrated so-
lution approach enables better evaluation of the complete planning
problem. When delivery options with MCVs are taken into account,
DPs can be adjusted to align deliveries across the complete plan-
ning horizon and to ultimately reduce total costs. This can result in
both increasing (see Section 6.3) or decreasing frequency, as shown
in the case study.

7. Conclusion

In this paper we introduced a new MCVRP variant, the PMCVRP,
that addresses the selection of delivery patterns when MCVs are
used for distribution. The PMCVRP is a multi-period MCVRP ap-
plied for grocery distribution. However, the practical relevance is
not limited to this application as it can easily be adapted to other
application areas in which periodicity of deliveries is relevant (e.g.,
fuel distribution or agricultural problems). The problem presented
combines the research on DP planning with an MCVRP and con-
sequently closes an existing gap in literature by identifying new
options for delivery planning. More precisely, the objective of our
work is to highlight the impact on DP planning when the deliver-
ies of different product segments can be combined across the plan-
ning horizon when using MCVs. This paper identifies the decision-
relevant processes and corresponding costs for both the choice of
patterns and the use of MCVs, and presents a formal model de-
scription. The resulting problem is solved using an ALNS approach
for assigning patterns and an LNS for solving the routing. It is tai-
lored to the given problem specifics. The performance of the algo-
rithm proposed is compared to an existing approach in literature
to show its efficiency and effectiveness. This revealed that our ap-
proach is able to improve given solutions for DP planning. In sub-
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sequent numerical experiments we analyze the interdependencies
between routing with MCVs and DP planning. We show that, de-
pending on the given problem characteristics, the PMCVRP leads
to a different solution structure (i.e., altered delivery frequencies)
and reduces total costs compared to the prevailing planning with
SCVs as it combines different product flows and adjusts the corre-
sponding patterns of stores accordingly. Finally, we consider a case
study with a major German retailer for the supply of stores with
small order volumes. The case study shows the practical relevance
of our approach and improves the planning solution of the retailer
by around 8% if DP planning is solved using MCVs.

The research on MCVRPs has steadily grown over the past years
and our work further contributes to this field by closing another
existing gap in literature. However, there are still numerous possi-
bilities for future research. First, we consider an MCVRP for master
route planning and assume given demands for an average week. In
this context, the consideration of stochastic demand could further
improve the planning as a more realistic evaluation of costs would
be possible considering realistic demand fluctuations. In general,
the consideration of stochastic demands is still neglected in most
MCVRP applications (see Ostermeier et al. (2020)). Second, our co-
operation with industry shows that due to given economic devel-
opments and changed conditions, the existing delivery fleet usu-
ally consists of heterogeneous vehicles for different purposes, in-
cluding both MCVs and SCVs. Consequently, the consideration of a
heterogeneous fleet within the PMCVRP would be a valuable next
step. Third, the PMCVRP aims at minimizing total costs, consist-
ing of pattern- and routing-dependent cost factors. The considera-
tion of further impacts on profits (e.g., service level agreements,
tardy deliveries) as well as ecological aspects (energy consump-
tion, joint vs. split delivery) would be a valuable avenue for future
research directions. Lastly, the ALNS and LNS approaches perform
well when solving the PMCVRP and MCVRP, respectively. Recently,
other solution approaches are suggested that show promising re-
sults in related application areas, such as population-based search
algorithms relating to waste collection (see Rabbani, Farrokhi-asl,
& Rafiei (2016)).
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