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a b s t r a c t 

Retailers usually apply repetitive weekly delivery patterns when scheduling the workforce for shelf re- 

plenishment, defining cyclic transportation routes and managing warehouse capacities. In doing so, all 

logistics subsystems are jointly scheduled. Grocery products require different temperature zones. As long 

as transport was in separated vehicles due to temperature requirements, it was not possible to coordi- 

nate deliveries across different temperature zones. The recent introduction of multi-compartment trucks 

has changed this and allows joint deliveries. This simultaneous delivery of multiple product segments 

impacts repetitive weekly delivery patterns as, for example, low volume segments can be delivered more 

frequently if they are transported together with high volume segments. 

We address the problem of defining delivery patterns for delivery with multi-compartment vehi- 

cles. After deriving decision-relevant costs, we propose a novel model that defines the Periodic Multi- 

Compartment Vehicle Routing Problem. The model is solved by an integrated framework that determines 

delivery patterns within an Adaptive Large Neighborhood Search in combination with a Large Neighbor- 

hood Search for solving the routing problem. We analyze the impact of selecting delivery patterns across 

product segments and show the efficiency of our integrated planning approach using numerical studies. 

Joint planning generates cost savings of up to 15%. Furthermore, we show that the algorithm provided 

can also improve single-segment problems by 3% compared to a state-of-the art benchmark. Beyond that 

we demonstrate the applicability and advantage of our approach in a case study with a large German 

grocery retailer. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction and motivation 

Retailers constantly strive for excellence in logistics due to tight 

argins, heavy competition and high customer expectations. This 

ay be achieved with new technologies and advanced planning 

pproaches that enable better coordination within and between 

ubsystems in a retail supply chain. Grocery stores exhibit a repet- 

tive sales pattern. Consequently, grocers define store-specific de- 

ivery patterns (DP) and cyclically supply stores with their require- 

ents of products and goods. The DPs constitute a defined combi- 

ation of weekdays on which a store is supplied. They are usually 

efined as part of the tactical planning for standard weeks without 
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xternal influences (e.g., public holidays) ( Kuhn & Sternbeck, 2013 ). 

efining the DPs also means determining the delivery frequency. 

he delivery frequency, however, impacts the volume per store de- 

ivery, which in turn affects the associated logistics costs in the dis- 

ribution center (DC), transportation and store. For example, while 

 larger delivery volume is beneficial for picking and transportation 

rocesses due to economies of scale, it is unfavorable for store pro- 

esses as storage space within stores is usually very limited ( Taube 

 Minner, 2018 ). Deliveries that do not fit onto the shelves require 

xtra handling and intermediate storage in the backroom ( Kotzab 

 Teller, 2005; Reiner, Teller, & Kotzab, 2013 ). The resulting trade- 

ff for distribution, warehouse and store costs has to be considered 

ithin the planning process ( Sternbeck & Kuhn, 2014 ). 

Furthermore, the distribution process in grocery retail involves 

ulti-temperature logistics due to the different temperature re- 
under the CC BY-NC-ND license 
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uirements across products. These requirements range right from 

ub-zero temperatures for the transport of frozen products, lightly 

ooled products, through to ambient products without any tem- 

erature regulation. The exact temperatures are strictly regulated 

y law and the cooling chain must not be violated during the pro- 

essing of orders. Retailers usually categorize product segments to 

ifferent product groupings with similar temperature requirements 

e.g., deep-frozen, fresh, dairy, ambient) and organize warehouses 

y temperature zones. These segments were generally distributed 

ndividually in the past. However, multi-compartment vehicles 

MCVs) – recently introduced in a flexible version for food trans- 

ortation – allow multi-temperature transportation. These trucks 

nable the joint transportation of multiple segments, i.e., products 

ith differing temperature requirements on the same vehicle. The 

oading area of an MCV can be split flexibly into different com- 

artments for each tour, and the temperature of each compart- 

ent can be adjusted individually ( Ostermeier, Henke, Hübner, & 

äscher, 2020; Ostermeier & Hübner, 2018 ). This allows for high 

exibility in assigning orders to tours and sequencing the indi- 

idual routes. MCVs also open up new possibilities for the def- 

nition of DPs. The DPs of different segments of a store can be 

ligned to achieve transportation synergies, which may result in 

igher delivery frequencies for the store. For instance, frozen prod- 

cts are often delivered once or twice per week due to small order 

olumes. If combined with other segments (e.g., fresh or ambient 

roducts), the frequency can be adjusted to enable more frequent 

eliveries. The simultaneous supply of different segments reduces 

he number of stops per route ( Hübner & Ostermeier, 2019 ) and 

ncreases the probability that the products delivered could be en- 

irely stacked on the shelf, since greater delivery frequency will de- 

rease the product volume per delivery ( Donselaar, Gaur, Woensel, 

roekmeulen, & Fransoo, 2010; Reiner et al., 2013; van Zelst, van 

onselaar, van Woensel, Broekmeulen, & Fransoo, 2009 ). 

In current literature the definition of DPs differs for each 

roduct segment and generally assumes store deliveries with 

ingle-compartment vehicles (SCV) (e.g., Gaur and Fisher (2004) ; 

olzapfel, Hübner, Kuhn, and Sternbeck (2016) ; Sternbeck and 

uhn (2014) ; Taube and Minner (2018) ). The joint delivery of mul- 

iple segments is not considered. This raises the question of how 

he combination of the supply across multiple product segments 

nfluences the definition of store-specific DPs for individual seg- 

ents, and how the altered DPs affect total logistics costs. To ad- 

ress this question, we formulate the Periodic Multi-Compartment 

ehicle Routing Problem (PMCVRP), including the definition of DPs 

nd decisions on the corresponding delivery schedules. To fur- 

her detail the problem, we provide the related problem char- 

cteristics and literature in Sections 2 and 3 . Section 4 presents 

he PMCVRP that considers several product segments demand- 

ng different tem perature zones. The PMCVRP simultaneously de- 

ides on (i) the optimal delivery frequency and days for each seg- 

ent and each store, and (ii) the optimal delivery of the asso- 

iated store orders with multi-compartment vehicles. The deci- 

ion model formulated explicitly takes into account the interde- 

endency between delivery frequency and routing decisions. The 

esulting problem is NP-hard since it is a generalization of the 

apacitated VRP ( Toth & Vigo, 2014 ), and thus a heuristic solu- 

ion approach is presented for practice-relevant problem sizes in 

ection 5 . We introduce an approach that iteratively addresses 

he multi-period problem of defining DPs with an Adaptive Large 

eighborhood Search (ALNS) and the corresponding routing prob- 

em with MCVs with a Large Neighborhood Search (LNS). To the 

est of our knowledge, this is the first comprehensive model and 

olution approach for this problem. Section 6 provides numerical 

tudies, and Section 7 summarizes our findings and refers to fu- 

ure research opportunities. 
d
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. Grocery supply chain, associated processes and costs 

.1. Distribution processes in grocery retailing 

Grocery retailers channel about 70% to 90% of shipment vol- 

mes to their stores via DCs. Most retailers operate their own 

ertically integrated logistics network with several central and re- 

ional DCs, a vehicle fleet and a large number of local stores to 

anage ( Kuhn & Sternbeck, 2013 ). Usually between 50 and 400 

utlets are served from a single DC ( Glatzel, Großpietsch, & Hüb- 

er, 2012 ). In this context, the internal grocery retail supply chain 

an be divided into three logistics subsystems: DC, transportation 

nd store. The store delivery process can be characterized as fol- 

ows. The products of a store order are picked onto pallets or role 

age in the DC. Next, trucks transport the goods to the stores. Store 

mployees then bring the load carriers to the show room and di- 

ect shelf filling takes place ( Reiner et al., 2013 ). If products do not

t onto the shelves, the remaining units are carried to the back- 

oom of the store. Refilling takes place later, when space becomes 

vailable due to consumer purchases ( Holzapfel et al., 2016; Kotzab 

 Teller, 2005; Kuhn & Sternbeck, 2013 ). 

Groceries are stored in and transported from DCs to stores 

n different temperature zones. The specific temperature require- 

ents during storage and transportation are subject to legal reg- 

lations. In the European Union, temperatures of −20 ◦C to −18 ◦C 

or deep-frozen products, +2 ◦C to +7 ◦C for cooled products (like 

eat and dairy products), and +4 ◦C to +7 ◦C for fruits and vegeta- 

les are mandatory. For some fresh products, retailers apply fur- 

her product-specific temperature zones to obtain a longer shelf 

ife (e.g., a maximum temperature of +2 ◦C for fresh fish and 

eafood). Only ambient products like dry goods and beverages do 

ot need to adhere to specific transportation temperature require- 

ents. Considering the mandated temperature zones plus ambi- 

nt products, there are at least four different zones in grocery 

istribution. On the grounds of temperature requirements, retail- 

rs store, pick, and prepare the deliveries in temperature-specific 

C areas. The traditional approach is to distribute goods sepa- 

ately for each product segment with their specific temperature re- 

uirements. Recent truck models are equipped with temperature- 

pecific compartments that allow the transport of different product 

egments in the corresponding chambers (compartments) of one 

ruck ( Ostermeier & Hübner, 2018 ). For example, when considering 

eep-frozen and ambient products ordered by the same outlet, the 

se of such MCVs makes it possible to deliver both product seg- 

ents on the same truck at the same time. Whereas the transport 

f the different product segments needs to be planned separately 

hen SCVs with one temperature zone are applied, it becomes 

ecessary to jointly plan flows across segments when MCVs are 

vailable. The loading area of an MCV is customized for each tour. 

ach compartment can be adjusted to a given temperature accord- 

ng to the requirements of loaded product segments. The delivery 

rocess with MCVs starts with the collection of orders for all seg- 

ents assigned to the corresponding tour. Collection involves the 

pproach of multiple shipping gates as each segment is stored in a 

eparate area at the DC (see Fig. 1 ). After all segments are loaded,

he MCV jointly supplies the corresponding stores with the differ- 

nt product segments. Fig. 1 illustrates the overall process of an 

CV tour with four segments. 

.2. Selection of delivery patterns 

Theoretically, each store could be supplied individually when- 

ver an order is triggered. However, retailers limit the delivery fre- 

uency to a certain degree for practical reasons and use weekly 

elivery cycles. Applying such repetitive and store- and segment- 
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Fig. 1. Distribution process with MCVs. 

Fig. 2. Example of delivery patterns for a store with three segments. 
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pecific DPs has several reasons. Retailers usually apply periodic 

nventory review policies (see e.g., Broekmeulen, van Donselaar, 

ransoo, and Woensel (2006) ; Cur ̧s eu, van Woensel, Fransoo, van 

onselaar, and Broekmeulen (2009) ; Minner and Transchel (2010) ). 

 replenishment order is issued whenever store inventory falls to 

r below a reorder level. Such a cyclic ordering policy allows or- 

er volumes to be adapted and eases subsequent logistics plan- 

ing. The orders arrive at a store on identical weekdays each week. 

cheduling the workforce for the shelf replenishment process is 

herefore much easier. Likewise, in terms of transportation, such 

yclic ordering and defined delivery days offer the opportunity to 

esign cyclic master routes for each week. At the DC, shift planning 

an be adjusted with regard to expected picking volumes that are 

ependent on the delivery frequency determined across all stores 

 Holzapfel et al., 2016 ). Finally, retail practice considers the selec- 

ion of DPs as an important lever to balance DC, transportation and 

nstore requirements ( Hübner, Kuhn, & Sternbeck, 2013; Sternbeck 

 Kuhn, 2014 ). 

Assuming a one-week delivery cycle with six delivery days al- 

ows for one to six deliveries per week and store, resulting in 

 

6 − 1 = 63 possible DPs. This yields 63 | N| possible combinations 

or | N| stores. The majority of retailers apply store- and segment- 

pecific DPs. This means that individual patterns for each product 

egment are defined for each store. This is motivated by the fact 

hat both stores (regarding sales volumes and shelf capacity) and 

egments (regarding freshness requirements) are heterogeneous. As 

uch, the combinatorial challenge increases to 63 | N|×| S| possibili- 

ies, where | S| indicates the number of product segments. An ex- 

mple for store- and segment-specific DPs is shown in Fig. 2 . It 

llustrates three different DPs for the corresponding segments of a 

ingle store. 
497 
.3. Identification of decision-relevant costs and constraints for 

efining DPs and using MCVs 

A DP defines the delivery frequency (e.g., three times per week) 

nd the corresponding delivery days (e.g., each Monday, Wednes- 

ay and Friday). It therefore also determines the delivery quantities 

or each day selected. The daily demand of each store for each seg- 

ent can be estimated and builds the foundation of the planning. 

hen using daily demand, the weekly seasonality is also incorpo- 

ated (e.g., higher demand on Saturdays). The demand between or- 

er intervals is aggregated to the preceding delivery, e.g., if a deliv- 

ry happens on Monday and Wednesday, the demand for Tuesday 

ill be fulfilled on Monday. This means that the delivery size of 

ach segment and each store in each period results from selecting 

 DP. A DP with a higher weekly delivery frequency leads to more 

ut smaller deliveries while the total delivery quantity remains 

onstant. Hence, as order intervals are a result of the DPs applied, 

olume effects along the supply chain occur that strongly influence 

perations and costs along the whole grocery supply chain. When 

pplying MCVs, delivery days can be optimized across segments. 

his also impacts the frequency and size of deliveries of the seg- 

ents. 

The following details the processes, constraints and costs in- 

olved in the corresponding subsystems. The analysis is based on 

ur work with a case company and related literature, in particular 

ternbeck and Kuhn (2014) , Holzapfel et al. (2016) and Hübner and 

stermeier (2019) . 

Distribution center. The store orders are processed in segment- 

pecific areas of the DC. These areas particularly fulfill the specific 

emperature requirements of the individual products of the seg- 
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Fig. 3. Decision-relevant operations, distribution costs and constraints along the internal retail supply chain. 
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ents. The picking volume in each of these areas is generally lim- 

ted on each working day of the week. In addition, retailers define 

inimum workload levels for each area to balance the workloads 

etween consecutive working days. This avoids workload peaks 

nd eases shift scheduling. Furthermore, each order causes order 

rocessing costs at the associated area of the DC. These are fixed 

osts for each order. A higher delivery frequency therefore leads to 

n increasing number of orders and higher overall order processing 

osts at the DC. After the order processing, the respective products 

re picked and then placed on a load carrier. The entire order is 

nally packaged and placed at the DC area’s gate for loading and 

ransportation. These are variable costs that depend on the deliv- 

ry size. A higher delivery frequency leads to smaller pick sizes 

nd thus to higher overall picking and packing costs . 

Transportation. Subsequent to the picking and packing in the 

C, the product segments are loaded onto trucks with limited ca- 

acity. The associated costs are denoted as loading costs . As de- 

cribed above, the distribution process with MCVs requires the col- 

ection of segments from different DC areas. These costs depend on 

he number of segments assigned to a tour and thus on the num- 

er of compartments required on the vehicle. For the actual de- 

ivery tour, transportation costs arise that involve costs for travel- 

ng between the locations and costs for unloading the goods at the 

tores. The travel costs depend on the distance covered by a truck 

etween the locations, i.e., DCs and stores. The transportation costs 

bviously increase with higher frequency and more tours, but may 

lso decrease if segments are transported jointly across segments. 

nloading costs occur when a truck stops at a store and unloads 

he delivery. These costs are induced by setup times for unload- 

ng goods from the vehicles and goods receiving processes in the 

tore. The latter include tasks of store employees for checking the 

tems received and complete administrative steps for the goods re- 

eption. The resulting costs are fixed costs for each receiving pro- 

ess. The entire unloading costs can therefore be reduced if DPs 

re synchronized across multiple segments, since this will reduce 

he number of stops required at the stores. 

Store. At each arrival of a new delivery at a store, the orders 

re further processed. The entire store receiving capacity is gener- 

lly limited because of space and workforce limitations. This limits 

he entire volume that can be delivered on a single day. A deliv- 

ry is either immediately used for direct shelf filling purposes or 

tored in a backroom until refilling is required. The associated re- 

lling costs are independent of the usage of MCVs. The following 

osts only depend on the delivery frequency and size. 

First of all, direct shelf filling costs represent the transport of 

oods received from the store inbound area to the shelves and 

utting the units onto the shelves. They are store- and segment- 

pecific and depend on the different settings concerning store lay- 
S

498 
ut and shelf types. If the quantity of a product delivered exceeds 

he shelf capacity, the remaining units have to be brought to the 

ackroom and are stored there until the required capacity is avail- 

ble due to customer purchases and a refill can take place. The 

elated costs are denoted as shelf refilling costs from the backroom. 

his additional refill process is considerably more costly than di- 

ect shelf filling. With a higher frequency of deliveries and smaller 

elivery sizes, this process becomes less frequent and less capacity 

ay be required to store additional units in the backroom that did 

ot fit on the shelves. Finally, new orders are submitted as soon as 

he reorder level is reached. The reorder level depends on the or- 

er size and therefore on the delivery frequency. Each order causes 

xed order placement costs at the stores. These costs increase with 

igher delivery frequency. 

Summary. Some of the costs above depend on the same deci- 

ions and can therefore be summarized in a single cost parameter 

o streamline the cost model. First of all, a pattern-dependent cost 

arameter is introduced that comprises costs for order processing 

nd picking and packing at the DC as well as direct shelf filling, 

helf refilling, and order placement costs at the store. The DP de- 

nes – via the chosen delivery days – the total number of deliver- 

es per period, e.g., per week, and the corresponding delivery sizes 

f each segment per store delivery, which affect all the cost factors 

entioned. Secondly, travel and unloading costs can be summa- 

ized, as they both depend on the routing. Fig. 3 summarizes the 

ecision-relevant costs and constraints per subsystem considered 

n the present paper. In addition it lists the relevant constraints 

hat have to be taken into account. 

. Related literature 

The problem considered generally belongs to the class of pe- 

iodic vehicle routing problems (PVRP). There is a wide range of 

ublications available concerning the PVRP (e.g., Campbell & Wil- 

on (2014) ). Classical PVRP literature however neglects several es- 

ential characteristics that are relevant when planning DPs and 

CVs in grocery retailing. We therefore focus our literature review 

n publications related to DP and MCV planning. 

Literature on DP planning. Publications on DP planning consider 

contrary to pure PVRP publications – pattern-dependent costs, 

nd analyze their influences on overall planning. They especially 

ake into account that the delivery sizes per day depend on the 

Ps chosen. An approach to determine a weekly delivery sched- 

le is provided by Gaur and Fisher (2004) based on a periodic in- 

entory routing problem. Ronen and Goodhart (2008) consider a 

elated problem and include DC costs and additional extensions, 

uch as limited picking capacity, a heterogeneous fleet, and daily 

inimum utilization rates for DC and transportation subsystems. 

imilar stores are clustered and patterns are predefined for these 
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lusters using an MIP. Furthermore, a PVRP is applied for the rout- 

ng. Clustering, pattern-definition and routing is not done sequen- 

ially without any feedback loops. This causes the problem that 

nce patterns are assigned to the stores they cannot be changed 

ny more although the routing step may reveal that adapting the 

elivery patterns could capture additional savings ( Holzapfel et al., 

016 ). In addition, they neglect instore operational costs. Sternbeck 

nd Kuhn (2014) are the first to examine the logistics processes 

omprehensively in DCs, transportation and stores and their de- 

endencies on DPs. They develop a binary integer program that 

inimizes the sum of all relevant costs identified and apply it 

o a real-life case. Transportation costs are approximated with a 

ost matrix dependent on distance and order size. Actual tours are 

ot considered. Holzapfel et al. (2016) also take into account DC, 

ransportation and instore logistics and propose an advanced solu- 

ion approach that clusters stores and approximates transportation 

osts using the logic of Fisher and Jaikumar (1981) . Taube and Min- 

er (2018) focus on handling costs at the DC and stores. They con- 

ider a classical joint replenishment problem with stochastic de- 

and and present decomposition approaches and a genetic algo- 

ithm to solve it. After experimenting with random data instances, 

hey use the most promising model for a case study with a Euro- 

ean retailer. 

To sum up, this literature stream is related to our problem set- 

ing, but falls short in approximating transportation costs without 

irectly solving the related VRP or neglecting instore costs. Further- 

ore, MCVs and product flows across segments have not been in- 

estigated so far. 

Literature on the MCVRP. The largest body of MCVRP literature 

eals with applications in fuel distribution and fixed compartment 

izes (e.g., Avella, Boccia, and Sforza (2004) ; Coelho and Laporte 

2015) ). Yet in our problem context, the flexibility of compartments 

s a central characteristic and we therefore focus on related publi- 

ations. The first comprehensive formulation of a vehicle routing 

roblem with both fixed and flexible compartments is presented 

y Derigs et al. (2011) . The authors use and evaluate a whole 

tring of heuristic solution methods (construction-, search- and 

etaheuristics) for the problem, while focusing on their applica- 

ion in food and petrol distribution. Henke, Speranza, and Wäscher 

2015) discuss an MCVRP with flexible compartments for applica- 

ion in German glass waste collection. A VNS is used to improve 

n initial solution generated by a randomized construction proce- 

ure. Koch, Henke, and Wäscher (2016) and Henke, Speranza, and 

äscher (2019) consider a similar problem formulation but pro- 

ose different solution approaches. Koch et al. (2016) present a ge- 

etic algorithm that may also be modified for a multi-period con- 

ext and Henke et al. (2019) develop a branch-and-cut algorithm 

o address the problem. Hübner and Ostermeier (2019) consider 

n MCVRP in the context of grocery retailing, taking into account 

CV-specific costs for the first time. An LNS is applied to solve 

he corresponding problem. Ostermeier and Hübner (2018) also 

xtend this research and present a vehicle selection model for 

he MCVRP. Furthermore, Ostermeier, Martins, Amorim, and Hüb- 

er (2018) consider the use of flexible compartments and corre- 

ponding loading issues. The authors present a mathematical for- 

ulation for the extended MCVRP and solve the problem with 

 branch-and-cut approach as well as an adapted LNS. Besides 

exible compartments, Hsiao, Chen, and Chin (2017) also consider 

he flexible adjustment of compartment temperatures and present 

 biogeography-based optimization approach. Martins, Ostermeier, 

morim, Hübner, and Almada-Lobo (2019) present an MCVRP for 

ultiple periods that considers consistent deliveries across seg- 

ents but uses the given DPs as input parameter. They solve the 

esulting multi-period MCVRP with product-oriented time win- 

ows using an ALNS. For a review on MCVRP literature, we further 

efer to Ostermeier et al. (2020) . 
499 
To sum up this literature stream, we can state that current 

CVRP literature for flexible compartments has been developed 

nly recently. Multi-period problems are rare and – if available –

o not consider the assignment of DPs and, particularly, the choice 

f delivery days. 

Summary. Despite the numerous publications on DPs and 

CVs, none of the above integrates the diverse problem charac- 

eristics mentioned. We address this gap in literature and present 

 problem formulation that considers the joint selection of DPs 

cross stores and segments in the circumstances of MCV deliver- 

es. Moreover, the interrelation of the joint DP selection of prod- 

ct segments on warehousing, MCV routing, and store operations 

equires an integrative planning approach. Only the simultaneous 

onsideration of all decision-relevant costs and constraints ensures 

easible and cost-optimal decisions for the entire distribution pro- 

ess. As such, our work extends the literature on both DP and MCV 

lanning in grocery distribution. Our research specifically makes a 

ontribution to: 

• Identifying decision-relevant costs in warehousing, transporta- 

tion and instore operations when selecting DPs across product 

segments and using MCVs for their joint store deliveries; 
• Formulating a novel model, i.e., the PMCVRP that simultane- 

ously defines cost-minimal DPs and MCV delivery tours for a 

diverse set of product segments in a multiple period environ- 

ment; 
• Developing a sophisticated heuristic solution algorithm that 

finds good solutions in acceptable computation times for the 

defined PMCVRP model, and 

• Generating numerical examples with simulated and actual re- 

tail data to obtain insights into the value of integration when 

DPs of products with different temperature requirements are 

jointly delivered from the DCs to the stores. 

. Decision model 

In the present section we formulate the mathematical model of 

he decision problem described. The model is based on the PVRP 

here transportation is executed by MCVs, and DC-related, trans- 

ortation and store-related costs are considered that depend on 

he DP chosen. We denote this problem as PMCVRP. The model is 

ormulated as follows using the notation given in Table 1 . 

Let G = (N 0 , E) be an undirected, weighted graph consisting of a 

ertex set N 0 = { 0 , 1 , ..., | N|} , representing the location of the depot

0) and the locations of stores ( N = { 1 , ..., | N|} ), and a set of edges

 = { (i, j) : i, j ∈ N 0 } , representing the connection between differ-

nt locations. Each edge is associated with non-negative travel 

osts c travel 
i j 

. The product segments are denoted by the set S = 

 1 , ..., | S|} . The stores are supplied using a heterogeneous fleet of

CVs denoted by the set of vehicles K = { 1 , ..., | K|} . The vehicle

eet is assumed to be sufficiently large to satisfy the total demand. 

he compartment setting for each MCV is adjustable, i.e., the num- 

er and size of compartments is not predetermined but part of 

he decision problem. Further, the total vehicle capacity Q 

v eh is 

ot affected by the specific compartment setting due to the given 

exibility. Each MCV is used for one tour per period at most. The 

lanning horizon comprises one delivery cycle with a given set of 

elivery periods, T = { 1 , ..., | T |} . Further, a set of possible delivery

atterns P = { 1 , ..., | P |} is introduced that covers all possible store-

nd segment-specific delivery schedules. Generally, this set can in- 

lude all feasible weekday combinations of all frequencies, but a 

rior limitation, e.g., dependent on certain segment or store fea- 

ures, is reasonable. 

Every store has a positive demand for each segment across the 

lanning horizon. The delivery quantity o psit indicates the demand 

f store i for product segment s at period t when DP p is selected. 
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Table 1 

Notation used to model PMCVRP. 

Sets 

K Set of vehicles K = { 1 , ..., | K|} 
N Set of stores N = { 1 , ..., | N|} , N 0 = { 0 , 1 , ..., | N|} with 0 as depot 

P Set of delivery patterns P = { 1 , ..., | P|} 
S Set of product segments S = { 1 , ..., | S|} 
T Set of periods T = { 1 , ..., | T |} 
Parameters 

a pt a pt = 1 , if period t, t ∈ T, is included in pattern p, p ∈ P, 0 otherwise 

c load 
s Loading costs for segment s, s ∈ S

c tran 
i j 

Transportation costs for approaching location j after i for i, j ∈ N 0 , where c tran 
i j 

= c travel 
i j 

+ c unload 
j 

c pat 
psi 

Pattern-dependent costs of segment s, s ∈ S, and store i, i ∈ N, when pattern p, p ∈ P, is selected 

o psit Delivery quantity of segment s, s ∈ S, for store i, i ∈ N, in period t, t ∈ T, when pattern p, p ∈ P, is selected 

Q veh Vehicle capacity 

Q pickmin 
s Minimum picking capacity for segment s, s ∈ S, at the DC 

Q pickmax 
s Maximum picking capacity for segment s, s ∈ S, at the DC 

Q recmax 
i 

Maximum receiving capacity for store i, i ∈ N
Decision and auxiliary variables 

u skt Binary; indicating whether segment s, s ∈ S, is delivered by vehicle k, k ∈ K, in period t, t ∈ T 
x i jkt Binary; indicating whether vehicle k, k ∈ K, travels from location i to j for i, j ∈ N 0 , in period t, t ∈ T 
y sikt Binary; indicating whether store i, i ∈ N, receives segment s, s ∈ S, in period t, t ∈ T, by vehicle k, k ∈ K
z psi Binary; indicating whether pattern p, p ∈ P, is selected for segment s, s ∈ S, and store i, i ∈ N

I

p

o

m

t

s

w

o

d

c

t

c

t

s

i

c

d

a

d

T

d

d

m

m

∑

∑
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∑

∑
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∑
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∑
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t depends on the pattern assigned, and is part of the decision 

roblem. The total demand of a segment is split across actual days 

f delivery according to the chosen DP. The quantity of a delivery 

ust include the demand of the period during which the delivery 

akes place and the demand of all following periods until the next 

cheduled delivery. In line with this, the parameter a pt indicates 

hether period t is included in pattern p or not. Moreover, single 

rders for one segment in one period may not be split up across 

ifferent vehicles. 

The cost parameters are defined as follows. The loading costs 

 

load 
s represent the costs for stopping at a segment-specific gate at 

he depot and for loading the order onto the truck. Travel costs 

 

travel 
i j 

include the costs for the travel from location i to loca- 

ion j. Unloading costs c unload 
j 

cover the costs for each stop at a 

tore. For the sake of simplicity, we summarize travel and unload- 

ng costs in a generalized cost term for transportation, and define 

 

tran 
i j 

:= c travel 
i j 

+ c unload 
j 

. Finally, the pattern-dependent costs c 
pat 
psi 

in- 

icate the costs that occur when store i is supplied with segment s 

ccording to pattern p. The pattern-dependent costs comprise both 

epot- and store-specific handling costs as described in Section 2 . 

he following binary decision variables are applied: 

• x i jkt indicates whether vehicle k travels from location i to j

within period t, k ∈ K, i, j ∈ N 0 , t ∈ T . 
• y sikt indicates whether store i receives segment s by vehicle k 

within period t, s ∈ S, i ∈ N, k ∈ K, t ∈ T . 
• z psi indicates whether pattern p is selected for segment s and 

store i, p ∈ P, s ∈ S, i ∈ N. 

Additionally, we introduce the auxiliary binary variables u skt in- 

icating if vehicle k contains at least one order of segment s on 

ay t . The mathematical model for the PMCVRP can then be for- 

ulated as follows. 

in TC = 

∑ 

s ∈ S 

∑ 

k ∈ K 

∑ 

t∈ T 
c load 

s · u skt + 

∑ 

i ∈ N 0 

∑ 

j∈ N 0 
i � = j 

∑ 

k ∈ K 

∑ 

t∈ T 
c tran 

i j · x i jkt 

+ 

∑ 

p∈ P 

∑ 

s ∈ S 

∑ 

i ∈ N 
c pat 

psi 
· z psi (1) 

subject to 
 

p∈ P 
z psi = 1 ∀ s ∈ S, ∀ i ∈ N (2) 
500 
 

 ∈ N 0 
i � = j 

x i jkt = 

∑ 

i ∈ N 0 
i � = j 

x jikt ∀ k ∈ K, ∀ t ∈ T , ∀ j ∈ N 0 (3) 

 

k ∈ K 

∑ 

j∈ N 0 
x 0 jkt ≤ | K| ∀ t ∈ T (4) 

 

s ∈ S 
y s jkt ≤ | S| · ∑ 

i ∈ N 0 
x i jkt ∀ j ∈ N, ∀ t ∈ T , ∀ k ∈ K (5) 

 

i ∈ L 

∑ 

j∈ L 
x i jkt ≤ | L | − 1 ∀ t ∈ T , ∀ k ∈ K, ∀ L ⊆ N, | L | ≥ 2 (6) 

∑ 

j∈ N 0 
x 0 jkt ≤ 1 ∀ t ∈ T , ∀ k ∈ K (7) 

 

p∈ P 

∑ 

s ∈ S 

∑ 

i ∈ N 
o psit · z psi · y sikt ≤ Q 

veh ∀ t ∈ T , ∀ k ∈ K (8) 

 

pickmin 
s ≤

∑ 

p∈ P 

∑ 

i ∈ N 
o psit · z psi ≤ Q 

pickmax 
s ∀ s ∈ S, ∀ t ∈ T (9) 

 

p∈ P 

∑ 

s ∈ S 
o psit · z psi ≤ Q 

recmax 
i ∀ i ∈ N, ∀ t ∈ T (10) 

 

k ∈ K 
y sikt = 

∑ 

p∈ P 
z psi · a pt ∀ s ∈ S, ∀ i ∈ N, ∀ t ∈ T (11) 

 

i ∈ N 
y sikt ≤ u skt · | N| ∀ s ∈ S, ∀ k ∈ K, ∀ t ∈ T (12) 

 skt ∈ { 0 , 1 } ∀ s ∈ S, ∀ k ∈ K, ∀ t ∈ T (13) 

 i jkt ∈ { 0 , 1 } ∀ i, j ∈ N 0 , ∀ k ∈ K, ∀ t ∈ T (14) 

 sikt ∈ { 0 , 1 } ∀ s ∈ S, ∀ i ∈ N, ∀ k ∈ K, ∀ t ∈ T (15) 
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Fig. 4. Algorithmic structure. 
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 psi ∈ { 0 , 1 } ∀ p ∈ P, ∀ s ∈ S, ∀ i ∈ N (16) 

The objective function (1) minimizes the total costs (TC), 

onsisting of loading, transportation (including unloading), and 

attern-dependent costs that arise for every pattern that is as- 

igned to a segment-store combination (s, i ) , s ∈ S, i ∈ N. Con-

traints (2) ensure that exactly one delivery pattern per product 

egment is assigned for each store. Constraints (3) represent the 

ow conservation, guaranteeing that every store visited is also left 

gain. Additionally, each vehicle has to start from the depot as de- 

ned by Constraints (4) . Constraints (5) guarantee that a store is 

isited if a corresponding order is loaded. The subtour elimina- 

ion constraints are denoted by Constraints (6) . According to Con- 

traints (7) , every vehicle may be used only once per day. Con- 

traints (8) ensure that the vehicle capacity is not exceeded. Con- 

traints (9) ensure that the picking effort at each segment-specific 

C area neither falls below the minimum nor exceeds the maxi- 

um picking capacity on each day t . Constraints (10) consider the 

aximum receiving capacity of each store i on each delivery day t . 

onstraints (11) ensure that if a store receives a product segment 

n day t according to the selected DP, the corresponding segment 

as to be assigned to a vehicle on this delivery day. Further, if at 

east one order of segment s is assigned to vehicle k, the corre- 

ponding compartment is required and thus, u skt is activated (Con- 

traints (12) ). Lastly, the decision and auxiliary variables are de- 

ned as binary by Constraints (13) –(16) . 

The PMCVRP extends both PVRP and MCVRP. As such, it gener- 

lizes the well-known CVRP that is known to be an NP-hard opti- 

ization problem (see e.g., Laporte (2009) ; Toth and Vigo (2014) ). 

xact solution approaches are only able to solve small problem in- 

tances. In our application we consider industry cases with hun- 

reds of stores that are served from temperature-specific DCs with 

 diverse set of product segments. In these cases, heuristics are re- 

uired to provide solutions for the PMCVRP. 

. Solution approach 

We propose a heuristic algorithm to solve the PMCVRP. The 

lgorithm iteratively optimizes the assignment of DPs for each 

egment-store combination and solves the corresponding MCVRP 

n each period of the planning horizon. Fig. 4 illustrates the gen- 

ral framework of the algorithm proposed. It contains three ma- 

or parts that are described in more detail within the upcoming 

ection. After generating an initial solution (see Section 5.1 ), the 

lgorithm performs two sequential stages within its second part 

see Section 5.2 ). In Stage 1, an ALNS framework is used to de-

ermine individual DPs for each segment-store combination (see 

ection 5.2.1 ). This results in new partial solutions that define the 

elivery quantities for each period and each segment-store com- 

ination of the entire planning horizon. Stage 2 then solves the 

esulting MCVRPs applying an LNS approach in each period of the 

lanning horizon (see Section 5.2.2 ). The ALNS optimizes delivery 

atterns across all periods, whereas the LNS only optimizes the 

outing within a period. Finally a Simulated Annealing approach is 

sed to decide on the next candidate schedule to work on during 

he subsequent iteration. This part of the algorithm also adapts the 

arameters of the search process ( Section 5.3 ). 

Please note that we use the following terminology within the 

etailed description of the algorithm. Deliveries are set by segment 

nd store and are therefore uniquely defined for each segment- 

tore combination subject to the assigned patterns. We will there- 

ore use the term “segment-store combination” (s, i ) , s ∈ S, i ∈ N to

niquely define the object and planning entity. We use this term 

henever we consider the characteristics attributed to a store and 
d

501 
he corresponding segment (e.g., weekly demand for segment s by 

tore i ). Furthermore, a DP p is assigned to each segment-store 

ombination, indicated by the triple (p, s, i ) , p ∈ P, s ∈ S, i ∈ N. 

.1. Initial solution 

The solution approach starts with a random initial assignment 

f patterns. This assignment specifies the delivery days and the as- 

ociated delivery quantities for each segment-store combination. It 

lso determines the entire delivery requirements in each period. 

fterwards, the procedure applies the Savings Algorithm by Clarke 

nd Wright (1964) to construct feasible delivery tours in each pe- 

iod. The Savings Algorithm was used in many VRP and MCVRP for- 

ulations and provides fast and reasonable initial solutions ( Toth 

 Vigo, 2014 ). We use the parallel version of the algorithm as it 

rovides better solutions than the sequential approach ( Laporte, 

009 ). The procedure starts constructing single tours for every 

egment-store delivery scheduled in each period of the planning 

orizon. Afterwards we calculate the associated savings values for 

ll pairs of segment-store combinations [(s, i ) , ( ̃ s , j)] , s, ̃  s ∈ S, i, j ∈
, if they were jointly delivered: �c si, ̃ s j = c travel 

i 0 
+ c travel 

0 j 
− c travel 

i j 
. 

ere, 0 represents the depot and c travel 
i j 

denotes the travel costs be- 

ween the respective locations i and j ( i, j ∈ N). Iterating across the 

orted decreasing list of savings-values �c si, ̃ s j , the corresponding 

ours of the pairs (s, i ) and ( ̃ s , j) are merged if feasible. 

.2. Improvement heuristic 

In each iteration of our solution approach we change large 

arts of the current solution by assigning new delivery patterns to 

egment-store combinations ( Stage 1 ) and solving the correspond- 

ng routing problems ( Stage 2 ). Please note that we are keeping 

rack of all partial solutions created ( Stage 1 ), whereas the routing 

or each period ( Stage 2 ) is only executed if a new solution (i.e., as-

ignment of patterns) has been reached. In addition, we verify the 

easibility of each pattern assignment in respect of the lower and 

pper picking limits at the DC and the store’s maximum receiving 

apacity. In the event that it is not feasible, the partial solution is 

ejected and Stage 1 is repeated. In the following both stages are 

escribed in detail. 
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Table 2 

Operators used within the ALNS algorithm. 

Operator h Operator type Operator name 

1 Proximity Operator 

2 (i) Score-related Segment Bundle Operator 

3 Sales Volume Operator 

4 (ii) Cost-related Pattern-dependent Cost Operator 

5 (iii) Move-related Move-One Operator 

6 Move-Two Operator 

7 (iv) Random Random Operator 
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Algorithm 1 Score-related operators. 

1: Input: Solution S , set of patterns P , number of segment-store 

combinations to be changed c, degree of randomization α
2: List L = ∅ 
3: Randomly select a segment-store combination (s, i ) , s ∈ S, i ∈ N 

and add it to list L 

4: while |L| < c do 

5: Step 1: randomly select a segment-store combination from 

list L , (s, i ) ∈ L, s ∈ S, i ∈ N

6: Step 2: compute score R si, ̃ s j for all segment-store combina- 

tions ( ̃ s , j) �∈ L, ̃  s ∈ S, j ∈ N, and sort by their score in ascend- 

ing order 

7: Step 3: draw a random number ζ ∈ [0 , 1] and select the 

segment-store combination ( ̃ s , j) , ˜ s ∈ S, j ∈ N, that lays ζ α

down the ranking 

8: if pattern p assigned to (s, i ) differs from pattern p ′ assigned 

to ( ̃ s , j) (i.e., p � = p ′ , p, p ′ ∈ P ) , then 

9: Step 4: assign new pattern to segment-store combination 

( ̃ s , j) that is selected randomly among all patterns ˜ p , ˜ p ∈ 

P , with a higher pattern similarity ω psi, ̃ p ̃ s j to the current 

pattern p of (s, i ) 

10: else 

11: continue; 

12: end if 

13: Step 5: add ( ̃ s , j) to L 

14: end while 

15: return new partial solution S 
∗ with the updated pattern 

assignments for all segment-store combinations considered 

(s, i ) , s ∈ S, i ∈ N. 
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.2.1. Stage 1: ALNS for optimizing DPs 

The ALNS approach introduced by Shaw (1997) was effectively 

pplied when solving multiple variants of the VRP (e.g., Shaw 

1997) , Ropke and Pisinger (2006) ), and it was particularly effective 

hen solving PVRPs (e.g., Zajac (2017) ) and MCVRPs (e.g., Martins 

t al. (2019) ). On the basis of an initial solution, it typically uses 

everal remove and insertion operators to destroy and repair large 

arts of the solution in each iteration. In order to adapt the ALNS 

pproach to the present problem and to the state of the search 

rocess, a weight is assigned to each operator that determines 

ow often it is selected during the search process. The weights are 

djusted dynamically depending on the past performance of the 

espective operator with respect to the overall solution. We de- 

cribe this adjustment procedure in detail in Section 5.3 . We use 

he ALNS as it enables us to embed a whole set of operators de- 

ived from and built with problem-specific knowledge. Further, the 

daptive mechanism decides which operators to use for which type 

f problem instance. 

Most ALNS approaches include remove and reinsertion opera- 

ors for customers or orders to recreate large parts of the solution. 

n this aspect, our ALNS differs from other formulations. Rather 

han removing and reinserting orders or deliveries, the operators 

sed in our approach select new patterns for segment-store com- 

inations, i.e., they decide on how often and on which days a store 

eceives the respective segments. Traditional remove and insert op- 

rators are not applicable for our problem as these usually assume 

hat the order sizes per customer and period are independent of 

he solution. In our case, however, the order size per store deliv- 

ry depends on the chosen DP. For example, modifying a current 

P will at least omit, add or move one delivery day. Consequently, 

his will change the delivery size and the related costs of the as- 

ociated deliveries since we assume a pre-defined weekly demand 

attern for all segment-store combinations. Modifying an individ- 

al pattern of a segment-store combination may therefore result in 

 completely new delivery schedule. Table 2 summarizes the ALNS 

perators applied. It comprises the following operator types: (i) 

core-related, (ii) cost-related, (iii) move-related and (iv) random. 

ach operator will change the patterns in an iteration for a given 

umber of segment-store combinations. 

(i) Score-related operators. The structure of our score-related 

perators is based on the well-known Removal Operator by Shaw 

 Shaw, 1997 ). For each score-related operator we define a relat- 

dness measure R si, ̃ s j for two segment-store combinations (s, i ) 

nd ( ̃ s , j) , i, j ∈ N, s, ̃  s ∈ S. The algorithmic structure of the score-

elated operators is identical despite the different relatedness mea- 

ures. We therefore present this general five-step structure first 

nd then detail the individual operators. The general structure of 

he score-related operators is further given in Algorithm 1 . 

After a random segment-store combination (s, i ) has been se- 

ected in Step 1 , the relatedness R si, ̃ s j between delivery schedules 

or segment-store combination (s, i ) and all other combinations 

 ̃ s , j) , ˜ s ∈ S, j ∈ N, is calculated in Step 2 and ranked in ascending

rder according to the relatedness measure calculated, R si, ̃ s j . The 
502 
ore related the attributes of two segment-store combinations, the 

ore likely it is to obtain synergies in a joint consideration and 

he higher the expected additional cost savings by aligning the re- 

pective patterns. Subsequent to the relatedness calculated, an ad- 

itional parameter α is used that determines the degree of ran- 

omization of the search. More precisely, after sorting all segment- 

tore combinations ( ̃ s , j) according to their score, a random num- 

er ζ , ζ ∈ [0 , 1] is drawn in Step 3 , selecting the combination that

ays ζ α down the ranking. If the combination selected ( ̃ s , j) has 

 different pattern p ′ , p ′ ∈ P compared to the combination (s, i ) , a

ew pattern is assigned to combination ( ̃ s , j) in Step 4 . Here, the

ew pattern is chosen randomly among all patterns ˜ p , ˜ p ∈ P that 

ave a higher pattern similarity ( ω psi, ̃ p ̃ s j ) than the previously as- 

igned pattern. The pattern similarity is calculated using Eq. (17) . 

his metric is determined by the ratio of matching periods ηt 
psi, ̃ p ̃ s j 

or pattern p and ˜ p , to the total number of periods | T | . Matching

eriods are days where both patterns intend to carry out a store 

elivery. 

 psi, ̃ p ̃ s j = 

∑ | T | 
t=1 

ηt 
psi, ̃ p ̃ s j 

| T | (17) 

This process is repeated until the patterns for c segment-store 

ombinations are adjusted. The resulting new solution S 
∗ is then 

he input for solving the MCVRPs in Stage 2 . 

Proximity Operator. The first score-related operator is based on 

he idea that it is usually cost-efficient to serve stores in geograph- 

cal proximity using the same vehicle. In order to enable a conjoint 

elivery in each period of the planning horizon, the patterns of 

hese segment-store combinations should be as similar as possi- 

le. If two neighboring stores and their segments or two segments 

f the same store share the same delivery days (but only if this 

s the case), they should be placed on the same tours by the sub- 

equent routing decision and transportation synergies can be re- 

lized. To do this, the Proximity Operator tries to assimilate the 
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atterns of segment-store combinations by selecting combinations 

s, i ) and ( ̃ s , j) with a lower value R 1 
si, ̃ s j 

subject to the patterns p

nd ˜ p currently selected. 

 

1 
si, ̃ s j = β ·

c travel 
i j 

c 
travel 

+ (1 − β) · ω psi, ̃ p ̃ s j (18) 

R 1 
si, ̃ s j 

comprises two components that are weighted by β: the 

eographical proximity of the respective stores i and j and the 

urrent similarity of their patterns p and ˜ p . The first metric is ex- 

ressed by the travel costs c travel 
i j 

between the store locations of i 

nd j and the maximum travel costs between any two store com- 

inations c travel . Second, the pattern similarity ω psi, ̃ p ̃ s j (see Eq. (17) ) 

f the current patterns of the segment-store combinations consid- 

red is included as we aim at changing combinations with dissim- 

lar patterns. 

Segment Bundle Operator. A further operator bundles deliveries 

cross segments. Scheduling deliveries from different stores but 

he same segment in the same period can lead to savings on load- 

ng costs by decreasing the number of loading gates a single MCV 

as to approach at the depot. However, savings on loading costs 

ay be exceeded by additional travel costs that arise if deliveries 

rom the same segment but not from the same delivery area are 

laced on a single tour. To avoid this, the Segment Bundle Operator 

ries to assimilate patterns of segment-store combinations that are 

ocated in the same neighborhood and concern identical segments. 

t combines the metric for the travel costs between segment-store 

ombinations with the segment similarity. The segment similarity, 

efined as σsi, ̃ s j , indicates whether the segments considered are 

qual or not: 

si, ̃ s j = 

{
0 , if s = 

˜ s 
1 , otherwise 

(19) 

The relatedness measure R 2 
si, ̃ s j 

for this operator is denoted by 

q. (20) . Again, we use a weight δ for the two components of R 2 
si, ̃ s j 

.

o achieve the desired effect, the weights here are to be chosen 

ifferently to the Proximity Operator, with a stronger focus on the 

imilarity of segments than on the relative travel costs of the cor- 

esponding stores. 

 

2 
si, ̃ s j = δ ·

c travel 
i j 

c 
travel 

+ (1 − δ) · σsi, ̃ s j (20) 

Sales Volume Operator. The third score-related operator is based 

n the overall segment-specific demand of a store for the entire 

lanning period. This total demand is denoted by 
si , s ∈ S, i ∈ N.

t may be favorable to align deliveries for stores with compara- 

le demand since we consider heterogeneous stores with different 

tore sizes and sales volumes for each segment. The operator of- 

ers the option to copy cost-efficient patterns already found for a 

egment-store combination to another store with a similar demand 

tructure. Unlike the first two operators, it solely aims to reduce 

attern-dependent costs and hence supports the diversification of 

ur search algorithm. Again, the more similar the total demands, 

he lower the calculated R 3 
si, ̃ s j 

(see Eq. (21) ). This represents the 

bsolute difference of the total demand of the combinations (s, i ) 

nd ( ̃ s , j) . 

 

3 
si, ̃ s j = | 
si − 
˜ s j | (21) 

(ii) Cost-related Operator. Cost-intensive patterns may be as- 

igned in the course of the ALNS as they may be favorable in terms 

f transportation costs. Yet depending on the problem instance’s 

ost structure, the pattern-dependent costs may exceed the sav- 

ngs achieved. Moreover, specific delivery period combinations or 

elivery frequencies can be extraordinarily costly. We therefore in- 

roduce an operator directly focusing on pattern-dependent costs 
503 
hat counteracts this effect. The operator therefore considers the 

ost of a chosen pattern p, p ∈ P, for a segment-store combina- 

ion (s, i ) and aims to find a new pattern p ′ , p ′ ∈ P : p ′ � = p, with

ower pattern-dependent costs. Algorithm 2 presents the algorith- 

lgorithm 2 Pattern-dependent Cost Operator. 

1: Input: Solution S , set of patterns P , number of segment-store 

combinations to be changed c, pattern-dependent costs of all 

combinations c pat 

psi 
, degree of randomization α, list O of all 

segment-store combinations (s, i ) , s ∈ S, i ∈ N

2: List L = ∅ 
3: while | L | < c do 

4: Step 1: sort all segment-store combinations (s, i ) ∈ O by c pat 

psi 

in descending order 

5: Step 2: draw a random number ζ ∈ [0 , 1] and select the 

segment-store combination (s, i ) , that lays ζ α down the 

ranking 

6: if pattern-dependent costs of current pattern p of segment- 

store combination (s, i ) do not equal c pat 

psi 
, then 

7: Step 3: assign a new pattern p ′ , p ′ ∈ P , to segment-store

combination (s, i ) , which is selected randomly among all 

patterns P with lower c pat 

p ′ si 
than the current pattern of 

segment-store combination (s, i ) 

8: else 

9: continue; 

0: end if 

11: Step 4: remove (s, i ) from O , add (s, i ) to L 

2: end while 

3: forall (s, i ) ∈ O do 

4: keep the assigned pattern p, p ∈ P 

5: return new partial solution S 
∗ with the updated pattern 

assignments for all segment-store combinations considered 

(s, i ) , s ∈ S, i ∈ N. 

ic structure of this operator. Please note that Algorithm 2 is 

imilar to Algorithm 1 but not identical. The pattern-dependent 

ost operator directly considers the cost delta between the current, 

 

pat 
psi 

, and the minimum pattern-dependent costs, c 
pat 
p si 

of a pattern- 

egment-store combination (p, s, i ) , �c 
pat 
psi 

= c 
pat 
psi 

− c 
pat 
p si 

. DP p , lead-

ng to the minimum pattern-dependent costs, is determined as fol- 

ows: p = arg min p∈ P [ c 
pat 
psi 

] . The Pattern-dependent Cost Operator 

valuates whether a pattern that results in lower costs is available. 

n Step 2 of Algorithm 2 we do not select the segment-store combi- 

ation that promises the highest savings, but the combination that 

ays ζ α down the descending cost ranking (cf. score-related opera- 

ors). If the minimum pattern-dependent costs during an iteration 

re not yet reached, a new pattern p ′ is selected randomly among 

he set of all patterns P, implying lower pattern-dependent costs. 

ue to its nature, the Pattern-dependent Cost Operator can be seen 

s a regulatory operator. For the overall problem it is not effec- 

ive to select the patterns with minimum costs for each segment- 

tore combination as this would usually lead to high transporta- 

ion costs. Yet the pattern-dependent costs are one main driver of 

 successful search, and low-priced patterns have to be utilized in 

ifferent combinations. 

(iii) Move-related operators. Two move-related operators are 

ntroduced to increase the diversification of the search algorithm 

s they do not use a specific search criterion but randomly choose 

rders to be considered for moves. A move, in this context, is the 

hange of delivery periods while maintaining the identical num- 

er of deliveries per week. For example, if a store receives a prod- 

ct segment on day 1 and 2, the Move-One Operator moves one 

nd only one of these delivery days to another period where cur- 

ently a delivery is not intended. So the DP may change to deliver- 
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es on day 2 and day 5. The DP featuring a delivery frequency of | T |
imes within the planning horizon stays unconsidered since none 

f the delivery days scheduled can be moved. The pseudo-code of 

he Move-One Operator is denoted in Algorithm 3 . 

lgorithm 3 Move-One Operator. 

1: Input: Solution S , set of patterns P , number of segment-store 

combinations to be changed c, list O of all segment-store com- 

binations (s, i ) , s ∈ S, i ∈ N

2: List L = ∅ 
3: while | L | < c do 

4: Step 1: randomly select a segment-store combination (s, i ) ∈ 

O 

5: if the frequency of the current pattern p of (s, i ) is unequal

| T | , then 

6: Step 2: randomly select one delivery period t 1 , t 1 ∈ 

{ T | a pt 1 = 1 } of the current pattern p of segment-store com-

bination (s, i ) 

7: Step 3: move the delivery from period t 1 to period t 2 , t 2 ∈
{ T | a pt 2 = 0 } in the current pattern p of (s, i ) and assign the

resulting pattern p ′ to (s, i ) 

8: end if 

9: Step 4: remove (s, i ) from O , add (s, i ) to L 

0: end while 

11: forall (s, i ) ∈ O do 

2: keep the assigned pattern p, p ∈ P 

3: return new partial solution S 
∗ with the updated pattern 

assignments for all segment-store combinations considered 

(s, i ) , s ∈ S, i ∈ N. 

The Move-Two Operator moves two delivery periods planned to 

wo delivery periods not yet scheduled. The DPs that intend deliv- 

ries on | T | , | T | − 1 or 1 periods of the planning horizon are not

onsidered since no feasible moves exist for these patterns. We use 

he Move-One Operator in those cases, except when the delivery 

requency equals | T | . 
(iv) Random Operator. The Random Operator is introduced as 

n additional diversification operator that also changes the pat- 

erns. It randomly selects segment-store combinations and ran- 

omly assigns a new pattern from all possible patterns. 

.2.2. Stage 2: LNS for solving the routing in each period 

Stage 2 within the improvement phase of the entire algorithm 

ddresses the routing problem. This stage solves the MCVRP for 

ach period t, t ∈ T , assuming the DPs selected in Stage 1. We

pply the LNS framework suggested by Hübner and Ostermeier 

2019) for solving the MCVRP since they assume an equivalent 

ost structure to ours. In addition, the LNS approach enables high- 

uality solutions in short computation times (see also Derigs et al. 

2011) ) that are particularly relevant in our case since we need to 

olve the MCVRP in each iteration for each period of the planning 

orizon. The LNS approach of Hübner and Ostermeier (2019) uses 

he Savings Algorithm by Clarke and Wright (1964) to generate an 

nitial solution for the routing in each period. This is conducted 

quivalently as described in Section 5.1 . Based on the initial so- 

ution, Shaw Removal and Regret- k Insertion are used within the 

NS. The Shaw Removal is based on Shaw (1997) , but is modi- 

ed to consider the joint delivery of multiple segments. In the 

resent implementation of the LNS we further adapt the Shaw Re- 

oval operator to account for the dynamic structure of the deliv- 

ry sizes. The algorithmic structure presented in Algorithm 1 re- 

embles the structure of Shaw Removal as it also serves as the ba- 

is for our score-related operators. The associated relatedness mea- 
504 
ure is given in Eq. (22) . 

 

S 
si, ̃ s j = μ ·

c tran 
i j 

c 
tran 

+ ν · σsi, ̃ s j + ξ · | o psit − o ˜ p ̃ s jt | 
o max 

(22) 

R S 
si, ̃ s j 

takes three metrics into account: transportation costs, 

roduct segment and delivery sizes, weighted by μ, ν, and ξ , re- 

pectively. The metrics for transportation costs and segment simi- 

arity are identical to those used in the Segment Bundle Operator. 

dditionally, the delivery size is included as swapping deliveries 

ith similar sizes result in the faster generation of new feasible 

olutions. Delivery sizes are compared using the difference in size 

f deliveries o psit and o ˜ p ̃ s jt (for the given delivery period t and the 

orresponding patterns p and ˜ p ) in relation to the highest deliv- 

ry quantity across all deliveries ( o max ). After the defined number 

f deliveries has been removed (see Algorithm 1 ), removed deliv- 

ries are reinserted applying Regret- k Insertion ( Ropke & Pisinger, 

006 ). It calculates the regret values, i.e., differences, between the 

est insertion possibility of a delivery and the k -best options. The 

elivery with the highest difference (regret) is inserted in each it- 

ration. This allows a more foresighted insertion that takes future 

osts into account. The Regret Operator is indispensable for the 

earch as it significantly improves the solution quality of MCVRPs 

see Derigs et al. (2011) ). Finally, Record-To-Record Travel as intro- 

uced by Dueck (1993) is used as an acceptance criterion for the 

NS. Accordingly, a new solution is accepted as a new incumbent 

olution if it lays within a defined deviation ( D ) from the best so-

ution found so far. The LNS terminates after a predefined number 

f iterations without a solution improvement. 

.3. Evaluation and control mechanism of entire algorithm 

Simulated Annealing. While testing our approach we found that 

he search process tends to get trapped in local minima. We there- 

ore use a Simulated Annealing framework to govern the search 

nd enable broader diversification. Accordingly, a new solution S 
∗

ound within the improvement heuristic is accepted if it is better 

han the best-known solution so far, S best , or the incumbent so- 

ution, S inc . Further, for a higher degree of diversification, a worse 

olution is accepted as an incumbent solution with the probabil- 

ty e −
f (S ′ ) − f (S inc ) 

E . This probability is then decreased in the course of 

he search process. The temperature E > 0 is initialized using E start 

nd decreased in each successive iteration by the cooling rate fac- 

or d ∈ ]0 ; 1[ . For the calculation of E start we adapted the method of

opke and Pisinger (2006) to fit the requirements of the PMCVRP. 

onsequently, E start is set such that a solution subsequently ob- 

ained is accepted with a probability of 0.5, i.e., E start = − g· f (S start ) 
ln 0 . 5 

, 

f its objective function value is g percent worse than the starting 

olution. 

Additional diversification. Apart from being used as operator 

ithin the ALNS, the Random Operator is deployed as an addi- 

ional tool of diversification. This is why we introduce a reset bor- 

er λ. If λ iterations are made without a new best solution being 

ound, the Random Operator is used, changing a high number of 

egment-store combinations and thereby destroying a large part of 

he current solution. 

Termination criterion. If the number of ALNS iterations without 

 new best solution found reaches a predefined limit, the search 

rocess is stopped. This limit is independent of the reset border λ
nd is never readjusted in the course of the solution approach. 

Adaptive operator selection. The final step of each ALNS itera- 

ion is the adaptation of operator weights used within the ALNS 

pproach. As stated above ( Section 5.2.1 ), the operator selection 

ithin the ALNS is based on individual weights for each opera- 

or. As proposed in Ropke and Pisinger (2006) , we use a roulette 

heel selection principle where the probability � of operator 
h 



M. Frank, M. Ostermeier, A. Holzapfel et al. European Journal of Operational Research 293 (2021) 495–510 

Table 3 

Overview of numerical experiments. 

Section Experiments and purpose Stores Segments Data set Number of 

instances 

6.1 Runtime analysis 25, 50, 100 3 Solomon (1987) 18 

6.2 Single segment benchmark 30, 40 1 Holzapfel et al. (2016) 120 

6.3 Value of MCV integration and 50 2–4 Simulated data, informed by 20 

joint deliveries for DP planning real-world data 

6.4 Case study 376 3 Real-world data 1 
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, h ∈ { 1 , 2 , . . . , 7 } (see Table 2 ) being selected for the current it-

ration is determined by its weight ρh and �h = 

ρh ∑ 

h ρh 
. In the be- 

inning of the search, the likelihood of selection is equal for all 

perators, i.e., the weights of all operators are set to 1. Later, the 

eights are adjusted depending on their performance in the pre- 

ious search leg. Note, a single search leg is defined by a specific 

umber of consecutive iterations. A score �h is introduced to mea- 

ure the performance of operator h during the last search leg. The 

erformance of the operators is measured by evaluating the over- 

ll solution obtained, i.e., the total costs according to Eq. (1) . �h is 

ncreased by θ1 if the operator results in a new best solution, by 

2 if the operator results in a new incumbent solution, and by θ3 

f the operator results in a new solution, but is not accepted. At 

he end of each search leg, the weights ρh for every operator h are 

pdated according the average scores achieved, 
�h 
�h 

using Eq. (23) . 

h denotes the number of times operator h is selected in the last 

earch leg. The magnitude of change for the weights is controlled 

y the smoothing factor τ ∈ ]0 ; 1[ . After all new weights have been

alculated, all �h are reset to zero for the next search leg. 

h = (1 − τ ) · ρh + τ · �h 

�h 

∀ h ∈ { 1 , . . . , 7 } (23)

Post-optimization of routing. After the stop criteria of the ALNS 

re met, we apply a post-optimization step to improve the final 

outing solutions, i.e., the MCVRPs for each period of | T | . We there-

ore apply an extended LNS to the routing problem of each period, 

ncreasing the LNS search limit of unsuccessful iterations signifi- 

antly. Please note that using a higher limit for the LNS is only 

easible at the end of the ALNS search, as the LNS is frequently 

pplied during the search (i.e., | T | times per ALNS iteration) and 

untimes would increase exponentially. 

. Numerical experiments 

Numerical experiments are applied to evaluate the performance 

f our solution approach and the interdependence between the 

lanning of DPs and MCVs. The runtime is analyzed in Section 6.1 . 

ection 6.2 compares our approach to the results of Holzapfel et al. 

2016) to provide a benchmark with regard to solution quality. The 

mpact of using MCVs instead of SCVs for the determination of DPs 
Table 4 

Algorithm parameters used. 

Parameter Value Function 

α 6 Degree of randomization 

β, γ 0.8, 0.2 Weights of proximity operato

δ, ε 0.3, 0.7 Weights of segment bundle o

μ, ν, ξ 0.6, 0.2, 0.2 Weights at LNS 

k 2 Regret insertion parameter at

D 0.003 Deviation allowed at LNS 

d 0.99975 Simulated annealing cooling r

g 0.03 Start temperature control par

λ 200 Reset border 

θ1 , θ2 , θ3 33, 9, 11 Operator score increase for ne

r 0.1 Reaction factor for operator w

505 
nd the overall solution structure is assessed in Section 6.3 . Finally, 

e apply our approach to a real-world case at a major German re- 

ailer in Section 6.4 . Table 3 gives an overview of the numerical 

xperiments and the data sets used. 

Data applied. Each test instance is defined by the number of 

tores (and their spatial distribution), number of segments (and 

he number of their products) as well as the planning horizon, 

hich in turn determines the number of possible DPs. If not stated 

therwise, we consider five days ( | T | = 5 ) as planning horizon with

ll possible DPs (i.e., 2 5 − 1 = 31 combinations). The number of 

ossible DPs may, however, be reduced due to non-feasible com- 

inations, i.e., we check if a DP violates vehicle or store capaci- 

ies ( Q 

v ed and Q 

recmax 
i 

) for all given segment-store combinations. 

e apply a daily demand for each segment-store combination 

nd specify the ranges for each data set. The daily demand for 

he specific weekdays depends on the weekly seasonality obtained 

rom data of a benchmark case (see Section 6.2 ) and a real case 

tudy (see Section 6.4 ). The shelf capacity for each product was 

et equally for all stores in all tests. It was determined using the 

atio of average weekly product demand to product shelf capacity 

s given in Holzapfel et al. (2016) . Vehicle capacity is set to 2,700 

ransportation units (TU). Also, we adopt the empirical cost pa- 

ameter setting by Holzapfel et al. (2016) for store- and DC-related 

osts as well as MCV-related loading and unloading cost parame- 

ers from Hübner and Ostermeier (2019) . The exact values of case 

tudy related data are subject to non-disclosure agreements. 

Implementation details. The algorithm-specific parameter setting 

sed for our experiments is summarized in Table 4 . We adopted 

he corresponding values reported in literature (see Table 4 ) for 

he majority of parameters as these yield excellent results for our 

etting. The weights δ and ε in the bundle operator segment have 

een tuned within our tests. The cooling rate ( d) was adjusted 

ompared to values reported in Ropke and Pisinger (2006) due 

o a differing number of iterations and different objective value 

atios. The number of segment-store combinations ( c) was cho- 

en depending on the corresponding problem size as depicted in 

able 5 . All experiments were executed with a limit of 3,0 0 0 iter-

tions without a new best solution found. The adaptive weights 

ere adjusted after every search segment of 50 iterations. The 

NS for the evaluation of the MCVRPs terminates after 100 unsuc- 
Origin 

Ropke and Pisinger (2006) 

r at ALNS Derigs et al. (2011) 

perator at ALNS Own experiments 

Hübner and Ostermeier (2019) 

 LNS Hübner and Ostermeier (2019) 

Hübner and Ostermeier (2019) 

ate Own experiments 

ameter Ropke and Pisinger (2006) 

Derigs et al. (2011) 

w solutions Ropke and Pisinger (2006) 

eight adjustment Ropke and Pisinger (2006) 
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Table 5 

Setting of parameter c. 

Instance size No. of segment-store combinations 

# stores Minimum Maximum 

25 5 15 

50 5 20 

100 5 30 

> 200 5 50 
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essful iterations. The extended LNS, which is applied only in the 

ost-optimization when the ALNS is terminated, stops after 2,0 0 0 

nsuccessful iterations. Our algorithm is also built on a stochas- 

ic search procedure. To balance this out, we apply the same in- 

tance multiple times, depending on the data set used. The fre- 

uency is denoted in the respective tests. The algorithm described 

n Section 5 was implemented in Java 8 and used for all following 

xperiments. 

.1. Runtime analysis 

Runtime data. We use the VRPTW data sets provided by 

olomon (1987) to analyze the computation times of our solution 

pproach. The data set comprises instances with 25, 50 and 100 

ustomers and is subdivided into three categories: (C) clustered 

tores, (R) uniformly random distributed stores and a (RC) mix- 

ure of both. Solomon (1987) provides two different spatial distri- 

utions of stores for each category, resulting in six instances for 

ach of the classes with 25, 50 and 100 stores. We use the num- 

er and the spatial distribution of customers from these data sets. 

he actual distances are multiplied such that the delivery area re- 

embles a realistic distribution area in retail practice, similar to our 

ase study (see Section 6.4 ). This allows maintenance of the gen- 

ral cost parameter setting as otherwise the share of travel costs 

ould be underestimated. We set up three product segments for a 

ve-day week. 

Runtime comparison. The runtime analysis is summarized by 

ach instance class in Table 6 . As the definition of DPs is a tac-

ical planning problem, the runtimes are still within an acceptable 

ange, considering DPs are not defined on a weekly but monthly 

r yearly basis. The runtime strongly increases with the increase of 

roblem sizes. This is due to the increase in segment-store combi- 

ations and the resulting complexity for pattern and routing deci- 

ions. More than 90% of computational time is consumed by the 

egret- k -Insertion heuristic within the LNS for the daily routing. 

owever, the Regret- k -Insertion is substantial to obtain good rout- 

ng solutions as it significantly improves the solution quality of the 

earch (see also Derigs et al. (2011) ). The regret value has to be re-

alculated for each insertion and each possible position on trucks 

nd therefore consumes significant computation time. Several pa- 

ameters impact the runtime of the Regret- k -Insertion heuristic. 

he number of orders to be removed, the degree of regret ( k ), and

he overall number of orders on each day are the most important 

rivers. In our problem, the number of orders per day changes dy- 

amically and also the corresponding delivery volume. In contrast 
Table 6 

Total computation times for different problem sizes, in hours

No. of stores 25 

No. of segment-store combinations 75 

Type of spatial store distribution C R RC 

Runtime, min 0.13 0.21 0.16

Runtime, average 0.36 0.65 0.57

Runtime, max 0.74 1.07 0.84

506 
o other PVRPs, both delivery frequency and days are permanently 

hanged within our approach. 

.2. Comparison with single segment benchmark 

Benchmark approach. The effectiveness of our approach is shown 

y a comparison with Holzapfel et al. (2016) . This approach is a 

pecial variant of our problem (multi-period, single segment and 

CVs), and the only available benchmark for our setting. The au- 

hors solve the allocation of DPs by an optimally solved general as- 

ignment problem (GAP) while approximating the resulting trans- 

ortation costs using the approach of Fisher and Jaikumar (1981) . 

ontrary to our approach, day-to-day vehicle routing is not part of 

heir solution procedure. They assume stable base tours, i.e., as- 

ignments of store orders to vehicles for each day of the planning 

orizon. In order to make a fair comparison, we re-evaluated the 

P assignment from Holzapfel et al. (2016) using our general ap- 

roach to solve the VRPs on each day of the planning horizon. This 

eans, we also apply the LNS approach proposed in the present 

aper for each instance derived from Holzapfel et al. (2016) to fur- 

her improve the results presented there. In doing so, we apply 

he extended LNS for each delivery day five times and keep the 

est daily solution found. This procedure entirely corresponds to 

he assumptions and the implementation of our overall modeling 

nd solution approach. 

Benchmark data. Holzapfel et al. (2016) apply scenarios for a sin- 

le segment across six delivery days with 10, 20, 30 and 40 stores 

nd three different delivery area sizes. The stores are randomly lo- 

ated within a delivery area of 50 km × 50 km (“Metropolitan”), 

00 km × 200 km (“District”) or 400 km × 400 km (“State”). All de- 

and, store and cost parameters in Holzapfel et al. (2016) are set 

ccording to empirical data of a partner company as well as to data 

ollected by Kuhn and Sternbeck (2013) and Sternbeck and Kuhn 

2014) . In the benchmark data, not all of the 2 6 − 1 = 63 DPs are

easible for all stores due to vehicle ( Q 

v ec ) or receiving capacities 

t stores ( Q 

recmax 
i 

). Consequently, around one-third of DPs can be 

xcluded upfront with respect to individual segment-store combi- 

ations. Since smaller problem classes are not relevant for our ap- 

lication, we focus on instances with 30 and 40 stores, totaling 120 

nstances, for the benchmark calculations. 

Benchmark comparison. The overall approach suggested in the 

resent paper achieved costs savings in all instances but one (see 

ig. 5 ) compared to the adapted Holzapfel et al. (2016) approach. 

In detail, two effects can be observed. First, the larger the de- 

ivery area, the greater are the improvements achieved. With in- 

reasing delivery area size and thus higher travel costs, routing be- 

omes more important. Since Holzapfel et al. (2016) approximate 

he travel costs, actually solving the VRP gains importance. Sec- 

ndly, it can be observed that the average improvement for in- 

tances with 40 stores is slightly lower than with 30 stores. This 

an be attributed to the increasing impact of DP selection. As more 

ustomers are involved, it is more important to find the optimal 

P assignment in order to exploit the bundling effects in trans- 

ortation. As Holzapfel et al. (2016) solve the allocation of DPs op- 

imally using approximations for the resulting travel costs, it be- 
. 

50 100 

150 300 

C R RC C R RC 

 0.35 0.57 0.34 1.83 1.30 1.09 

 1.50 1.60 0.93 4.77 4.72 3.93 

 3.33 2.80 1.94 15.48 10.17 9.28 
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Table 7 

Cost savings in comparison to the adapted benchmark of Holzapfel et al. (2016) (best of 5 runs). 

Delivery area Metropolitan District State Average 

Number of stores 30 40 30 40 30 40 

Total cost savings 0 . 56% 0 . 44% 2 . 05% 1 . 55% 3 . 71% 2 . 81% 1 . 85% 

Savings share of a 

Travel costs 0 . 50% 0 . 36% 1 . 93% 1 . 46% 3 . 58% 2 . 73% 1 . 76% 

Unloading costs 0 . 03% −0 . 06% −0 . 06% −0 . 05% −0 . 03% −0 . 06% −0 . 04% 

Pattern-dependent costs 0 . 03% 0 . 13% 0 . 18% 0 . 14% 0 . 16% 0 . 13% 0 . 13% 

a Relative share of savings in relation to total costs of Holzapfel et al. (2016) . 

Fig. 5. Distribution of total cost savings depending on delivery area and number of 

stores in comparison to the adapted benchmark of Holzapfel et al. (2016) (best of 5 

runs). 
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Table 8 

(Mean) segment share of total order volume. 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Segment 1 80% 50% 33 . 3 % 54 . 4 % 

Segment 2 10% 30% 33 . 3 % 24 . 4 % 

Segment 3 10% 20% 33 . 3 % 21 . 1 % 
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omes more difficult for our approach to generate additional im- 

rovements via delivery pattern assignment. Table 7 shows the 

ost savings in percent of total costs obtained by Holzapfel et al. 

2016) . Our results show that total cost savings originate almost 

ntirely from travel costs, whereas the relative pattern-dependent 

ost savings are on average only around 0.13%. 

Concerning computation times, Holzapfel et al. (2016) report 

n average of 2.7 minutes in addition to a pre-processing time of 

bout 5 minutes for instances with 40 customers, while the com- 

utation times of our approach amount to an average of 5.23 min- 

tes per single run for the same instances. 

In conclusion, we observe that our solution approach is able to 

olve the related benchmark problem effectively. It improves the 

enchmark solutions by around 1.85% on average across all prob- 

em classes when applying the best solution of five runs. The aver- 

ge of all five runs still improves the results by around 1.25% across 

ll problem classes. Moreover, we would like to note that our ap- 

roach aims at problems with multiple segments and the corre- 

ponding cost savings when segments are jointly delivered. This 

ffect is not taken into account within the benchmark comparison 

s only a single segment is considered. 

.3. Planning of delivery patterns across segments with 

ulti-compartment vehicles 

A core aspect of our work is the use of MCVs for distribution 

nd the corresponding impact on determining DPs. The different 

roduct flows and consequently joint deliveries are only possible 

ith MCVs. In line with this, we compare the results of our solu- 

ion approach with MCVs to a solution using SCVs only where the 

roduct segments are distributed separately. In the SCV scenario 
507 
e apply our solution approach for each product segment sepa- 

ately, thus generating independent single segment solutions. The 

cenario with joint planning and delivery is denoted as “MCV” and 

he separate one as “SCV”. 

Test data. For the following analysis we use simulated data sets. 

t compromises four scenarios with five instances for each, total- 

ng 20 data sets. The generation of these data sets is informed by 

he real-world data from our case study. All instances comprise 50 

tores, which are randomly located around a DC within a delivery 

rea of 230 km × 180 km. Demands are simulated for three prod- 

ct segments. The total demand across the delivery week follows a 

ormal distribution with μ = 1 , 400 and σ = 800 . Stores generally 

eature – depending on their size – different sales volumes across 

egments. The weekly demand is therefore randomly multiplied by 

 factor of 0.5 (low), 1.0 (medium) or 1.5 (high) to simulate differ- 

nt store sizes. The daily demand is subject to weekly seasonality 

ith the distribution factors { 0 . 149 , 0 . 233 , 0 . 205 , 0 . 211 , 0 . 202 } for a

ve-day week. The shelf capacity for each product is set equally for 

ll stores, but randomly across products, according to the ratios of 

emand to shelf capacity reported by Holzapfel et al. (2016) . Based 

n the medium store size, this results in normally distributed shelf 

apacity with μ = 1 , 0 0 0 and σ = 40 0 . As the available real-world

ata lacks information on picking and store receiving capacities, 

hese are set as unconstrained. We apply our heuristic five times 

o each instance and compare the best results achieved. 

The segment share of the total order volume may have a major 

mpact. One could expect that the more segments are available, the 

igher the potential for cost savings through the joint delivery of 

egments. We therefore apply four different scenarios. The demand 

hare of each segment for each scenario is given in Table 8 . In Sce-

arios 1 to 3, each store follows the segment shares indicated. In 

cenario 1 for example, Segments 1, 2 and 3 comprise 80%, 10% 

nd 10% of the total order volume, respectively. Scenario 4 com- 

ines Scenarios 1 to 3 by randomly assigning one of the given sce- 

arios to each store. 

Results. We first analyze the overall cost structure for all sce- 

arios. Table 9 illustrates the share of cost components of the total 

osts across the different scenarios. 

The cost structure of the MCV and SCV scenarios identify 

attern-dependent costs as main cost driver of the PMCVRP. 

attern-dependent costs account for almost two-thirds of total 

osts with an average of 63% (MCV) and 61% (SCV). The share 

f travel costs on the other hand is only half as high with 27% 

MCV) and 31% (SCV). This underlines the importance of DP selec- 

ion for a low cost solution. We further compare potential cost sav- 
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Table 9 

Share of costs components of total costs. 

Scenario 1 2 3 4 

MCV SCV MCV SCV MCV SCV MCV SCV 

Loading costs 5.6% 1.7% 5.7% 1.7% 5.7% 1.6% 5.3% 1.6% 

Travel costs 26.5% 28.9% 26.7% 30.9% 27.4% 34.3% 27.7% 30.2% 

Unloading costs 4.3% 5.5% 4.2% 6.3% 4.1% 6.5% 4.6% 5.7% 

Pattern-dependent costs 63.6% 63.8% 63.4% 61.0% 62.8% 57.6% 62.2% 62.4% 

Table 10 

Cost savings of MCV compared to SCV. 

Scenario 1 2 3 4 

Total costs saving 8.28% 13.12% 15.15% 10.60% 

Savings share of a 

Loading costs −3 . 43% −3 . 30% −3 . 20% −3 . 12% 

Travel costs 4 . 67% 7 . 73% 11 . 14% 5 . 44% 

Unloading costs 1 . 60% 2 . 69% 2 . 98% 1 . 58% 

Pattern-dependent costs 5 . 44% 6 . 00% 4 . 23% 6 . 69% 

a Relative share of savings in relation to total SCV costs 
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ngs and other performance indicators across all scenarios when all 

egments are jointly planned and MCVs instead of SCVs are used. 

ables 10 and 11 summarize our findings. In all of our scenarios, 

he joint planning and usage of MCVs results in significant cost re- 

uctions, with up to 15% of total cost savings (Scenario 3). 

As expected, loading costs increase in all scenarios when MCVs 

nstead of SCVs are used. They occur for each segment loaded on 

 vehicle. The loading costs for MCV vs. SCV are approximately 

wo times higher. This shows that on nearly all tours three seg- 

ents are combined when MCVs are available. The main savings 

re achieved by lower pattern and travel costs. They originate in 

he joint delivery of segments and are therefore dependent on the 

emand scenario considered. Pattern-dependent savings are high- 

st when the segment demand structure is most heterogeneous 

Scenarios 2 and 4). DPs across the different segments are aligned 

nd thus costs decrease. Travel cost savings are higher in scenarios 

here the segment volumes are equally spread across segments as 

hown in Scenario 3. With equally spread volumes, it is very likely 

hat different segments are supplied together, whereas in Scenario 

 ( 80% / 10% / 10% volume shares) bundling effects across segments 

re limited. The same can be observed with respect to unloading 

osts: most stops at stores can be avoided in Scenario 3 (306 (SCV) 

s. 164 (MCV) stops). 

The corresponding solution structure for each scenario is fur- 

her depicted in Table 11 . The total number of deliveries differs as 

e determine the delivery frequency and therefore the split of to- 

al demand across weekdays. The most striking impact of MCVs on 

he solution structure is increasing delivery frequency and there- 

ore more deliveries in total. For instance, the average number of 

eliveries rises in Scenario 1 from around 251 to 412 deliveries, 

n increase of over 64% . The average number of tours remains 

elatively stable in all scenarios, and consequently the number 

f orders delivered per tour increases. Interestingly, a greater in- 

rease in delivery frequency does not lead to a greater decrease in 

attern-dependent costs. Considering Scenario 1, the frequency in- 

reases from 1.67 to 2.75 and pattern-dependent costs are reduced 

y 5 . 44% . In contrast, Scenario 4 reveals a reduction of 6 . 69% ,

hile the increase in delivery frequency is lower when MCVs are 

sed (1.83 to 2.60 deliveries). This can be attributed to the fact 

hat the store-individual optimal delivery frequencies are not gen- 

rally chosen when using SCVs or MCVs. Instead, a different DP 

nd frequency is chosen as another option enables a higher total 

ost saving (e.g., due to reduced transportation costs). Also, the 

verage capacity utilization per tour improves by about 1 . 27% on 
508 
verage when using MCVs, as there are more deliveries, and thus 

ore possible loading combinations. 

.4. Case study 

Case study data. To conclude our numerical analysis, we present 

 case study with a major German retailer. Our partner company 

ses MCVs for distribution but had not considered the impact of 

CVs on the determination of DPs. We therefore apply our ap- 

roach to the given problem data to compare the selection of 

Ps when the benefits of MCVs are taken into account during the 

ecision process. The case study covers a representative five-day 

eek with orders of 376 stores to be delivered from a single de- 

ot. Most stores have a relatively small demand such that most 

f them are only served once a week. The order structure is het- 

rogeneous, with about 50% of stores ordering one segment, about 

0% ordering two segments, and about 30% ordering all three seg- 

ents. Moreover, the most frequently ordered segment accounts 

or around 80% of the total order volume. The other two segments 

ccount for roughly half of the remaining volume each. Conse- 

uently, this order structure resembles Scenario 1 above. The or- 

er volumes of the three segments follow a weekly seasonality. 

egarding store sizes, the 10% of stores with the highest sales also 

ccount for more than 40% of the order volume. This means that 

he majority of stores have a small demand volume. As in the pre- 

ious data sets, the shelf space data was supplemented based on 

n average-sized store demand assuming the same ratio between 

roduct demand and shelf capacity as in Holzapfel et al. (2016) . 

In the following we analyze the potential cost savings if the 

etailer coordinates DP and MCV planning. In doing so, we com- 

are the retailer’s approach denoted as “status quo approach” with 

ur approach denoted as “integrated approach”. The status quo ap- 

roach equals our approach, but assumes the DPs currently applied 

y the retailer. We therefore assume that the retailer already ap- 

lies the same MCVRP solution approach as we do. This means 

e only evaluate the effect of planning DPs across segments and 

o not mix this with potential effects resulting from different ap- 

roaches used to solve the MCVRP. We apply both approaches ten 

imes and compare the respective best solution. 

Results. Table 12 presents the resulting cost savings in % of the 

tatus quo total costs; and Table 13 displays some performance 

ndicators and reveals insights into the respective solution struc- 

ure achieved. The runtime of our integrated solution approach 

mounts to an average of 2.89 hours. 

The integrated approach that jointly determines DPs across seg- 

ents results in total cost savings of 7.68% compared to the sta- 

us quo approach. The savings mainly result from improved pattern 

nd travel costs, which are facilitated by improved DP assignment. 

nly the segment-store combinations with very high demand are 

upplied twice a week. Almost all other combinations are delivered 

nce a week. The number of stops and tours required are there- 

ore reduced, resulting in higher vehicle capacity utilization. The 

eduction of delivery tours is an essential driver of cost reduction 

s it leads to personnel cost savings. This means that at our case 

ompany the number of delivery tours should be further decreased 

s the savings outweigh the increase of instore logistics costs al- 
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Table 11 

Solution structure of MCV compared to SCV, entire planning period. 

Scenario 1 2 3 4 

MCV SCV MCV SCV MCV SCV MCV SCV 

∅ number of orders delivered 412.8 251.2 463.2 313.0 411.8 306.0 389.4 274.2 

∅ number of tours 29.0 29.0 30.2 30.6 27.8 28.0 28.2 29.0 

∅ number of orders/tour 14.2 8.7 15.3 10.2 14.8 10.9 13.8 9.5 

∅ number of stops 178.4 251.2 180.2 313.0 164.8 306.0 198.2 274.4 

∅ capacity utilization 89.9% 88.5% 89.3% 88.3% 88.9% 88.7% 90.5% 87.9% 

∅ delivery frequency 2.75 1.67 3.09 2.09 2.74 2.04 2.60 1.83 

Table 12 

Cost savings of the integrated approach 

compared to status quo. 

Total cost savings 7 . 68% 

Savings share of a 

Loading costs 0 . 36% 

Travel costs 4 . 08% 

Unloading costs 0 . 97% 

Pattern-dependent costs 2 . 27% 

a Relative share of savings in relation to 

total costs of status quo 

Table 13 

Solution structure resulting from the integrated approach compared to the status 

quo approach. 

Status quo approach Integrated approach 

Number of orders delivered 

per week 

709 630 

Number of tours per week 24 22 

Number of stops per week 418 381 

∅ capacity utilization 86 . 7% 94 . 6% 
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hough the company’s solution already reveals a low average de- 

ivery frequency. In conclusion, we can state that an integrated so- 

ution approach enables better evaluation of the complete planning 

roblem. When delivery options with MCVs are taken into account, 

Ps can be adjusted to align deliveries across the complete plan- 

ing horizon and to ultimately reduce total costs. This can result in 

oth increasing (see Section 6.3 ) or decreasing frequency, as shown 

n the case study. 

. Conclusion 

In this paper we introduced a new MCVRP variant, the PMCVRP, 

hat addresses the selection of delivery patterns when MCVs are 

sed for distribution. The PMCVRP is a multi-period MCVRP ap- 

lied for grocery distribution. However, the practical relevance is 

ot limited to this application as it can easily be adapted to other 

pplication areas in which periodicity of deliveries is relevant (e.g., 

uel distribution or agricultural problems). The problem presented 

ombines the research on DP planning with an MCVRP and con- 

equently closes an existing gap in literature by identifying new 

ptions for delivery planning. More precisely, the objective of our 

ork is to highlight the impact on DP planning when the deliver- 

es of different product segments can be combined across the plan- 

ing horizon when using MCVs. This paper identifies the decision- 

elevant processes and corresponding costs for both the choice of 

atterns and the use of MCVs, and presents a formal model de- 

cription. The resulting problem is solved using an ALNS approach 

or assigning patterns and an LNS for solving the routing. It is tai- 

ored to the given problem specifics. The performance of the algo- 

ithm proposed is compared to an existing approach in literature 

o show its efficiency and effectiveness. This revealed that our ap- 

roach is able to improve given solutions for DP planning. In sub- 
509 
equent numerical experiments we analyze the interdependencies 

etween routing with MCVs and DP planning. We show that, de- 

ending on the given problem characteristics, the PMCVRP leads 

o a different solution structure (i.e., altered delivery frequencies) 

nd reduces total costs compared to the prevailing planning with 

CVs as it combines different product flows and adjusts the corre- 

ponding patterns of stores accordingly. Finally, we consider a case 

tudy with a major German retailer for the supply of stores with 

mall order volumes. The case study shows the practical relevance 

f our approach and improves the planning solution of the retailer 

y around 8% if DP planning is solved using MCVs. 

The research on MCVRPs has steadily grown over the past years 

nd our work further contributes to this field by closing another 

xisting gap in literature. However, there are still numerous possi- 

ilities for future research. First, we consider an MCVRP for master 

oute planning and assume given demands for an average week. In 

his context, the consideration of stochastic demand could further 

mprove the planning as a more realistic evaluation of costs would 

e possible considering realistic demand fluctuations. In general, 

he consideration of stochastic demands is still neglected in most 

CVRP applications (see Ostermeier et al. (2020) ). Second, our co- 

peration with industry shows that due to given economic devel- 

pments and changed conditions, the existing delivery fleet usu- 

lly consists of heterogeneous vehicles for different purposes, in- 

luding both MCVs and SCVs. Consequently, the consideration of a 

eterogeneous fleet within the PMCVRP would be a valuable next 

tep. Third, the PMCVRP aims at minimizing total costs, consist- 

ng of pattern- and routing-dependent cost factors. The considera- 

ion of further impacts on profits (e.g., service level agreements, 

ardy deliveries) as well as ecological aspects (energy consump- 

ion, joint vs. split delivery) would be a valuable avenue for future 

esearch directions. Lastly, the ALNS and LNS approaches perform 

ell when solving the PMCVRP and MCVRP, respectively. Recently, 

ther solution approaches are suggested that show promising re- 

ults in related application areas, such as population-based search 

lgorithms relating to waste collection (see Rabbani, Farrokhi-asl, 

 Rafiei (2016) ). 
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