
A mixed truck and robot delivery approach for the daily supply of
customers

Heimfarth, Andreas1, Ostermeier, Manuel ∗,1, Hübner, Alexander1

Technical University of Munich
Supply and Value Chain Management

Am Essigberg 3, 94315 Straubing, Germany

Abstract

Innovative last-mile logistics solutions are needed to reduce delivery costs, traffic congestion,
and pollution in cities. A promising concept in this context are truck-and-robot systems, as they
enable significant cost and traffic reduction compared to classic truck deliveries. The system relies
on small autonomous delivery robots to cover the last meters to a customer. Existing truck-and-
robot concepts to date consider home deliveries by robots, while trucks are only used to transport
robots and not for deliveries. This assumption disregards the fact that regular truck deliveries are
still needed for some delivery requests, such as for the delivery of bulky items, or for customers
who do not accept robots.

Our research addresses this issue and proposes a mixed truck and robot delivery concept in
which both robots and the delivery truck can visit customers. Our tailored solution approach is
based on a General Variable Neighborhood Search that efficiently solves the routing problem and
outperforms existing truck-and-robot routing algorithms. The numerical experiments show that
this approach enables cost reductions of up to 43% compared to classical truck deliveries and up
to 22% compared to a truck-and-robot system that does not allow deliveries by both truck and
robots on the same tour. Further analyses reveal additional benefits of such mixed tours and the
robustness of our approach for different problem settings.
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1. Introduction

Traffic congestion and pollution are growing problems in cities around the world. Home deliv-

eries are contributing to this problem due to the increasing volume of online orders [Ishfaq et al.,

2016; Wollenburg et al., 2018; Allen et al., 2018], particularly as usual deliveries are still conducted

by a diesel truck. New concepts are needed to enable the projected growth of delivery volumes

and prevent urban traffic from collapsing [Agatz et al., 2008; Orenstein et al., 2019; Hübner et al.,

2019]. While attended home deliveries are convenient for customers, they account for a large share

of logistics costs [Kuhn and Sternbeck, 2013; Hübner et al., 2016]. The complexity of planning

deliveries is growing with access restrictions in inner cities (e.g., diesel suspensions) and the grow-

ing application of time windows of attended home deliveries. This increases customer service and

reduces the number of failed deliveries, i.e., deliveries that are not accepted as customers are not at

home. In addition, the COVID-19 pandemic has not only increased the home deliveries, but also

created consumer preferences for deliveries without human interaction and challenged companies

to protect their workforce.

Delivery by truck and robots is a promising approach to address these issues as well as to flexibly

accommodate customers’ time window preferences. Autonomous delivery robots (e.g., by Starship

[2019] and Marble [2019]) can transport a single parcel or grocery bag to customers. They are

designed to travel short distances at pedestrian speed. Due to their lower speed and limited range,

delivery robots are combined with specialized trucks to enable a fast and efficient delivery process.

This means that a truck transports the corresponding goods for delivery together with robots and

releases the robots at dedicated drop-off locations for the actual home delivery. Daimler [2019]

has tested such a concept and has shown that it potentially decreases lead time and traffic. Baum

et al. [2019] predict that delivery robots will likely be introduced on a larger scale soon due to their

low production costs and limited legal obstacles. Recent routing literature shows the suitability

and cost efficiency of the combination of trucks and robots and provides methods for cost-optimal

routing [Boysen et al., 2018; Ostermeier et al., 2021].

Existing truck-and-robot (TnR) concepts exclusively consider robots for final delivery to cus-

tomers. In practice, however, there are multiple reasons for deliveries requiring human interaction

and therefore final delivery by a person. First, some customers may be unable or unwilling to inter-

act with the robot and to retrieve the goods from it, such as elderly or disabled persons. Second,

the delivery of some goods would be forbidden or risky via a robot. This includes valuables, drugs

and hazardous substances such as cleansing agents, paint, pesticides, etc. Third, individual orders

may be too bulky to fit into the robot compartment. This can be the case with some electron-
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ics, household and do-it-yourself products, and even groceries being delivered in bulk. According

to Forbes [2019], 10-25% of Amazon deliveries could not be handled by aerial drones, whose size

restrictions are similar to those of delivery robots. Up to one in four orders must therefore be

delivered without the use of robots and completed by conventional delivery by truck and human

driver. Moreover, even when an order is suitable for robot delivery, the possibility of choosing

between truck or robot increases routing flexibility and may yield cost reductions.

In the related routing approaches for attended home delivery, the prevailing literature deals

either with a vehicle routing problem (VRP) for truck delivery (e.g., Toth and Vigo [2001]; Laporte

[2009]) or a TnR routing problem with delivery by robots (see e.g., Boysen et al. [2018]; Ostermeier

et al. [2021]; Bakach et al. [2021]). This means that only truck or robot deliveries are considered,

ignoring requirements and the potential benefits of combining deliveries by robot and truck as

described above. A new approach that provides this additional flexibility is therefore needed. We

close this gap in literature by proposing the Mixed Truck and Robot (MTR) delivery concept,

leading to the Mixed Truck and Robot Routing Problem (MTR-RP). This is a generalization of

the TnR routing problem and determines which customers are supplied via truck, which customers

are approached via robots, and how these deliveries are integrated into the delivery tour. In this

application, the truck not only transports the robots to drop-off locations, but is also deployed

for direct customer deliveries. This additional option increases the complexity of routing. As

such, we solve the MTR-RP with a variant of General Variable Neighborhood Search (GVNS) that

incorporates problem-specific insights into the operators. Furthermore, the MTR-RP is different

from truck-and-drone concepts, as first a small number of drones are used during a tour, whereas

with MTR, the truck picks up multiple new robots during the tour and second, the drones return

to the truck, whereas robots return to a depot.

The delivery concept with robots is innovative and we therefore first outline the detailed problem

characteristics based on existing concepts and technology in Section 2. Section 3 discusses related

literature and highlights the differences versus other last-mile delivery concepts. Section 4 presents

the formal model of the MTR-RP. We detail our GVNS approach in Section 5. Section 6 presents

numerical experiments to compare our approach to existing routing frameworks and to analyze the

impact of the additional delivery mode by truck. Section 7 summarizes our findings and presents

opportunities for future research.
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2. Problem description

This section outlines how a truck and robots are combined for attended home deliveries with

time windows. Section 2.1 introduces the related technology, on which the problem is based. We

then describe the MTR delivery concept in Section 2.2.

2.1. Technical properties of robots and customized trucks

Delivery robots navigate autonomously on sidewalks and bike lanes but can be remote controlled

in the event of problems. To do so, most models rely on several cameras, map data and GPS. In

addition, many robots use lidar, ultrasound and radar. For communication, LTE and WiFi are

widely-used, at times also touch displays and speakers [Baum et al., 2019]. The sensors enable

autonomous driving and help prevent theft or vandalism. Recent studies show that robot technology

is ready for industry applications. Starship [2019] reports successful tests in more than 80 cities

worldwide, and Jaller et al. [2020] discuss robot models that are already in use in the US and

Europe. Baum et al. [2019] count 19 different models, of which the majority have already been

tested in the field. According to their overview, most robots operate at pedestrian speed, i.e., at

6 to 8 km/h. The maximum range lies between 6 and 77 km [Jennings and Figliozzi, 2019]. The

payload varies from one parcel and 10 kg to 20 parcels and 70 kg. When a robot arrives at the

delivery destination, customers are notified (e.g., via mobile phone) and can unlock the robot’s

compartment with a code to retrieve the order [Starship, 2019; Marble, 2019].

Given the relatively low speed of robots, companies such as Daimler [2019] have developed

customized trucks to transport them. Otherwise robots would have to drive the complete distance

from the warehouse to the customer and back. In large delivery areas, this would imply long travel

times, issues with lead times and meeting short-term time windows, and low robot utilization. The

trucks transport robots to overcome larger distances (e.g., between the warehouse and city center)

and release them at dedicated drop-off locations. This enables the efficient use of delivery robots,

especially in urban areas. Trucks typically provide space for around eight robots on their floor and

enable autonomous pick-up and drop-off via automatic doors and ramps. A shelf system above the

floor can be used to carry goods for delivery. It is only driving the truck and loading robots that

remain manual tasks. Figure 1 shows a typical truck setup. For robot deliveries, the truck driver

enters the front part of the cargo bay, retrieves the goods from the shelf system, loads them into

robots, and these then leave the truck via a ramp to the side. Direct deliveries by the driver (i.e.,

without a robot) can therefore easily be included in this system. These orders could be loaded to

the rear of the shelf system, for instance, and when the driver arrives at the customer location,

(s)he picks up the order from the back door and walks to the customer.
4

                                                               



Figure 1: Specialized truck with freight containers and delivery robots [Mercedes-Benz Vans, 2016]

2.2. Concept of mixed truck and robot deliveries (MTR)

Conventional TnR. In line with Boysen et al. [2018] and Ostermeier et al. [2021], TnR is a system

in which the delivery robots are transported by truck and therefore the times and locations of both

vehicle types are coupled. The central element of this concept is that robots are carried by truck

and dropped off close to customers (see Figure 2). The distribution process therefore consists of

a truck tour, visiting different robot drop-off locations (i.e., a location where the truck can safely

stop and release robots onto the sidewalk, see solid arrows in Figure 2), and robot tours visiting

a single customer each (dotted arrows in Figure 2). Some of these drop-off locations are so-called

robot depots, where robots are stored and charged. Trucks can both pick up robots at robot depots

for later drop-off or load and release robots directly for delivery without transporting them. The

number of available robots per depot is limited. Each robot returns to a nearby robot depot after

it has delivered its parcel (not displayed in Figure 2 for sake of readability). At the depot (which

consists only of an outdoor charging station and parking space), it is again charged and waits

for the next delivery. Other drop-off points are spots where trucks can stop and release robots

for delivery, but no robots are stored. This concept reduces the truck mileage and increases the

driver’s productivity, which makes it attractive from a cost and environmental perspective [Boysen

et al., 2018; Ostermeier et al., 2021].

MTR concept. In the conventional TnR concept described above, the truck acts solely as a taxi for

robots and does not deliver parcels directly to customers. However, some deliveries are not suitable

for robot delivery and must be made by a delivery person. This is necessary for bulky goods that

do not fit into the robot’s compartment, and goods that must be handed over personally, such

as valuables and drugs. A customer could also choose not to receive robot deliveries based on

personal preferences or skills. In these cases, a delivery truck has to visit the customer within the

respective time window. This can be done by a separate delivery tour (as in prevailing truck-only
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concepts) or by employing the truck used for robot drop-off to directly approach those customers

(as shown in Figure 3). Using one truck for both delivery modes has the potential to reduce the

fleet needed and the costs and emissions caused for serving a set of customers. Besides customers

requiring truck delivery, there are customers who can be visited by either truck or robot. Visiting

those customers by truck can in some cases further decrease costs as it may lead to shorter tours or

reduce robot use and delays. Note that when the truck stops at a customer, it can launch robots

to other customers from there as well. As a consequence, we extend the existing TnR concept

to account for both delivery types. The stops for truck delivery have to be integrated into the

truck routes for dropping off robots (see solid arrows in Figure 3). This complicates the search

for optimal truck tours, since truck deliveries also have to take place within the designated time

windows. Early arrivals at customer locations cause waiting times for the truck and late arrivals

cause delay costs in the form of reduced future revenues (due to lower customer satisfaction) or the

granting of rebates. The admission of additional truck deliveries therefore causes new dependencies

and increases the problem complexity.
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Figure 2: TnR tour (with all deliveries by robots)

Truck route

Robot route

R d

t

Robot depot Drop-off point

Customer (truck delivery)

R

R

R

R

R

Goods storage/ start/ end

C
C

C

C

C

C

C t

C

t

C

C
Ct

C

d

d

d
d

d

d

d

d
d

d
d

d

d

Problem data: Routing result:

C Customer

C

Figure 3: MTR tour (incl. deliveries by truck)

Decision problem structure. MTR routing requires simultaneous decisions on different routing prob-

lem aspects. To illustrate this, Figure 4 shows the different vehicles’ actions in a truck-and-robot

tour over time. For the truck, it includes driving between the goods warehouse, robot depots and

drop-off points and customers, as well as potential waiting time at customers. For the robot, it

comprises travel time between drop-off points, customers and depots, and potential waiting time.

For the truck, there is a mileage-based cost (mainly for fuel) and a time-based cost (for the driver’s

salary). These have to be considered separately since the truck might have to wait if it reaches a

customer before the time window (see diamond in the truck lane of Figure 4). The robots start

from a depot or drop-off point visited by the truck, drive to a customer and must also wait for the

time window in the event of early arrival (see Robot 1 in Figure 4). After the delivery, the robots

return to the closest depot. A time-based robot fee applies during this entire time. If an order
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arrives late (see Robot 3 in Figure 4), a delay cost is incurred, consisting of a rebate granted to

the customer or that accounts for penalties for reduced customer satisfaction. A feasible solution

must ensure all customers are served after the start of their respective time window by truck or

robot, depending on the request. The decision problem at hand aims to minimize total delivery

costs. To achieve this, it is necessary to define (i) which customers are served via truck, which via

robot, (ii) which robot depot and drop-off locations are visited during the truck tour, (iii) in which

sequence these locations are visited, and (iv) from which stop on the tour each robot delivery is

started. The truck starts and ends at the goods warehouse, whereas a robot starts from either a

depot or a drop-off location and, after meeting the customer, returns to the closest depot. Besides

required travel times and synchronization of truck and robot actions, the decision is constrained

by the number of robots available on the truck and in each robot depot.

Robot 1

Truck

Robot 3

Robot 4

Robot 2

Goods warehouse
Robot depot/ drop-off point
Delivery to customer

Driving
Waiting

Time window of a 
specific customer

Delay

Figure 4: Gantt chart of an MTR tour (example)

3. Review of related literature

This section provides an overview of related routing approaches for robot-based deliveries. We

first highlight the similarities and differences of related concepts, namely truck-and-drone delivery

and delivery with covering options. These concepts share the idea of two vehicle types making

deliveries together. Next, we provide a summary of robot routing literature, separated into hub-

and-robot and TnR concepts. We conclude by highlighting the gap in existing literature.

(i) Truck-and-drone delivery. Truck delivery supported by drones has received a lot of attention in

recent publications (e.g., Ulmer and Thomas [2018], Sacramento et al. [2019], Agatz et al. [2018]).

A truck visits customers to make deliveries and a drone serves other customers not visited by the
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truck. Initially the truck transports the drone. While the truck stops to make a delivery, the drone

can start with a parcel, serve one customer and meet the truck again at a later customer on the

truck route. This can be repeated several times. Since every drone delivery starts at a customer

served by the truck, the highest possible share of drone deliveries is 50% [Murray and Chu, 2015;

Agatz et al., 2018; Ha et al., 2018; de Freitas and Penna, 2020]. Even for an extended scenario with

up to four drones on the truck, solved by Murray and Raj [2020], the share of truck deliveries must

remain above 20%. The authors further note that adding drones leads to diminishing marginal

improvements, since too many drones cause long take-off and landing queues at the truck. A key

difference between drone concepts and the robot concept considered is therefore the lower number

of autonomous vehicles (drones), and their return to the truck instead of dedicated depots. The

MTR concept has a higher potential to reduce truck mileage as a truck can launch multiple robots

at each stop. Furthermore, the truck picks up further robots during the tour from robot depots,

whereas the pertinent applications in truck-and-drone routing rely on a given number of drones on

the truck. A further difference is that the truck stops in the MTR concept are optional stops at

depots, drop-off points, and further customer locations. Routing approaches for truck-and-drone

are as such not directly applicable to MTR since they rely on the fact that many customers need

to be visited by truck and the truck does not have other (optional) locations to visit. Pertinent

heuristics improve the solution of the traveling salesman problem (TSP) by reassigning customers

to the drone [Murray and Chu, 2015; Agatz et al., 2018; Ha et al., 2018; de Freitas and Penna, 2020;

Kitjacharoenchai et al., 2019; Sacramento et al., 2019; Murray and Raj, 2020]. A detailed analysis

of the differences between truck-and-drone and TnR is performed by Ostermeier et al. [2021].

Alongside these differences, practical advantages of robots are their high safety level, robustness in

any weather conditions and fewer regulatory obstacles due to slow driving instead of flying. These

strengths could soon enable the large-scale practical application of delivery robots in cities [Baum

et al., 2019]. In summary, delivery robots and drones are used in different setups (based on their

strengths) and problem specifics. We refer to Otto et al. [2018] and Macrina et al. [2020] for a

detailed overview of the truck-and-drone concept and its challenges.

(ii) Delivery with covering options. Enthoven et al. [2020] introduce the two-echelon vehicle routing

problem with covering options (2E-VRP-CO). In this last-mile delivery application, the truck on

the first echelon can either deliver a parcel to a satellite location, from where cargo bikes bring it

to the customers, or to a covering location (i.e., a parcel locker) from which nearby customers can

pick up the parcel. Similar to the MTR-RP, the truck only needs to visit a subset of given potential

locations, and the delivery type which makes the last mile has to be defined. The proposed solution

8

                                                               



approach relies on an ALNS with tailored operators. Several aspects of our MTR-RP are more

complex, however, despite the similarities. First, robots can only be applied to attended home

delivery and thus have to meet time windows. Second, the robots move aboard the truck, which is

not the case in a two-echelon setup. In the two-echelon case, each potential truck stop has a fixed

number of bikes available and there are only a few of these stops. Finally, both vehicle types of

the MTR-RP can visit customers, whereas in the 2E-VRP-CO this is only possible for cargo bikes.

These differences add dependencies to the truck schedule, as robots can only launch from a location

while the truck is present and the truck must meet the customer’s time window. Similarly, other

two-echelon models fall short of characteristics required in the MTR-RP.

(iii) Hub-and-robot. The first concepts developed involving robots can be described as hub-and-

robot concepts. Their principle is that robots move between a fixed hub and customers. They

do so independently of other means of transportation. Consequently, hubs have the ability to

store goods and load the robots, which requires a more sophisticated infrastructure compared to

the robot depots (i.e., charging stations) in the TnR or MTR case. Bakach et al. [2021] propose

a mixed integer program (MIP) to allocate customers to hubs and robots. Their objective is to

minimize the number of hubs and robot mileage required, while respecting the robots‘ maximum

range. Poeting et al. [2019b] and Poeting et al. [2019a] optimally solve an MIP for truck tours

visiting hubs and customers and a schedule of pendulum robot tours from these hubs to customers.

Sonneberg et al. [2019] minimize the costs of tours for robots with several compartments applying

an MIP. Due to their nature, hub-and-robot systems do not consider mixed delivery but only robot

deliveries paired with an existing hub infrastructure.

(iv) TnR. The MTR-RP originates from TnR systems. These concepts constitute a more complex

routing problem than the hub-and-robot concept due to the coupling of truck and robot movements.

To date, three publications explicitly deal with TnR routing. In the seminal paper, Boysen et al.

[2018] introduce the idea of robot depots to eliminate truck waiting time and aim to minimize the

number of delayed deliveries. The system analyzed consists of 40 customers and several depots

and drop-off points. They solve the problem with a multi-start local search (LS) procedure and

show that a TnR system with one truck can replace several traditional delivery vehicles while

maintaining service quality. The authors do not incorporate truck deliveries in their approach nor

do they provide a quantification of financial and environmental benefits. Some simplifications are

assumed (e.g., unlimited robot availability at every depot). Alfandari et al. [2019] build on this

work by analyzing alternative delay measures and proposing a Branch-and-Benders-cut scheme for

faster computation. Ostermeier et al. [2021] have extended the problem to account for limitations in
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robot availability at every depot and minimize total logistics costs, including both truck- and robot-

specific costs. Again, the problem is restricted to robot delivery only, while direct truck deliveries

are not considered. The authors propose a local search to deal with the increased complexity. In

their experiments the concept reduces costs by up to 68% and truck mileage by up to 82% compared

to classical truck delivery.

Furthermore, Simoni et al. [2020] propose a delivery mode similar to truck-and-drone, in which

a robot leaves the truck at a customer location, makes one or two deliveries and meets the truck

again at a later customer on the truck route. Accordingly, their solution approach relies on finding

good TSP tours within a local search with adaptive perturbation and then optimally inserting robot

tours with dynamic programming. Due to the limited speed of robots, a large share of customers

is still served by truck and the reported savings potential of around 20% is lower than savings

achieved by the above TnR variants. Jennings and Figliozzi [2019] and similarly Figliozzi and

Jennings [2020], assess a TnR system based on continuous approximation and conclude that it has

the potential to reduce truck mileage. They do not solve a specific routing problem, but estimate

the system’s performance based on average distances and speeds.

Aspects considered in modeling and optimization

Delays Robot Costs Truck Truck/robot
Publication Objective Methodology availab. delivery selection

Boysen et al. [2018] Number of late
deliveries

Local search X - - - -

Alfandari et al.
[2019]

3 different delay
measures

Branch-and-
Benders-cut

X - - - -

Ostermeier et al.
[2021]

Total costs Local search X X X - -

This paper Total costs GVNS X X X X X

X: considered, -: not considered

Table 1: Summary of existing TnR routing literature

Research gap. In summary, the MTR concept leads to a routing problem that requires problem-

tailored solution approaches. Approaches for the concepts mentioned in paragraphs (i) to (iv) do

not yet include the necessary specifics of the MTR-RP, in particular time windows, a large fleet of

smaller vehicles transported by truck and a selection of alternative delivery modes to the customer.

For a more detailed review of last-mile delivery concepts we refer to Boysen et al. [2021].

There are only three publications on TnR routing and none of them enables mixed truck and

robot deliveries (see Table 1). All publications dealing with this innovative last-mile delivery

concept focus on robot deliveries, while the truck does not visit customers directly, but only stops

at given drop-off locations. However, in a practical application the combination of both delivery
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modes is needed to ensure that all types of orders can be processed on the same truck tour to

reduce costs. We therefore extend the existing literature by addressing the MTR-RP, in which

truck deliveries are incorporated when required and a decision between truck and robot delivery is

made if both modes are feasible. The corresponding decision model is presented in the next section.

4. Formulation of the MTR-RP

This section introduces the mathematical formulation of the MTR-RP. The notation used is

summarized in Table 2.

Index sets
C Set of all customers k ∈ C
Cm (Cr) Subset of customers requiring truck (robot) delivery, with Cm ∪ Cr ⊆ C
Co Subset of customers indifferent regarding truck or robot delivery, with Co ⊆ C
D (R) Set of distinct robot drop-off points (robot depots)
D̂ (R̂) Set of robot drop-off points (robot depots) including duplicates
L̂ Set of all (duplicate) locations reachable by truck: L̂ := Cm ∪ Co ∪ D̂ ∪ R̂
Ia Set of duplicate indices i, i ∈ D̂ ∪ R̂, of one distinct location a, a ∈ D ∪R
Im

a Set of elements i ∈ Ia with i ≤ m

Problem parameters
dk Deadline for customer k, k ∈ C
K Maximum robot capacity of a truck
ra Initial amount of available robots in location a, a ∈ R
γ (γ̄) Start (end) position of the truck, with γ, γ̄ < L̂
δ Initial number of robots aboard the truck
εk Length of time window of customer k
λi,j Distance between locations i and j, i, j ∈ L̂
ϑti,j Truck travel time from location i to location j, i, j ∈ L̂
ϑri,k Robot travel time from location i, i ∈ L̂, to customer k, k ∈ C
ϑbk Robot travel time from customer k back to the closest robot depot

Cost parameters
cl Cost of delay per time unit
cd Cost of truck per distance unit
ct (cr) Cost of truck (robot) per time unit

Decision variables
si,j Binary: 1, if truck travels from location i to location j; 0 otherwise
xi,k Binary: 1, if customer k is supplied by a robot from location i; 0 otherwise

Auxiliary variables
ti Arrival time of truck at location i
qi Number of robots aboard the truck after visiting location i
ei Number of robots taken out of depot location i, i ∈ R̂
vk Delay of delivery for customer k
wk Waiting time for robot at customer k

Table 2: Notation of the MTR-RP
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The following sets form the basis of the MTR-RP. The set of customers C consists of three

disjointed subsets: customers with mandatory truck delivery Cm, customers requiring robot delivery

Cr, and customers for which the delivery mode is optional Co (i.e., both truck and robot delivery

are possible), with C = Cm ∪ Cr ∪ Co. Every customer k ∈ Cr ∪ Co can be served by one robot,

every customer k ∈ Cm ∪ Co by the truck. The truck-and-robot infrastructure consists of a set of

robot drop-off locations D, where the truck can start robots, and a set of robot depots R, where

the truck can pick up and start robots. We further duplicate drop-off and depot locations to allow

multiple visits of the same depot or drop-off point. This results in the duplicate sets D̂ and R̂. For

clarity, we summarize all (duplicate) locations that can be visited by truck in L̂ := Cm∪Co∪D̂∪R̂.

For every distinct location a, a ∈ D ∪ R, we denote the set of its duplicates as Ia, Ia ⊂ L̂, and the

set of indices in Ia that are less or equal to m,m ∈ Ia, as Ima . The set Ima is required to keep track

of the order in which duplicates are visited and to enforce the constraint on available robots after

every visit.

The truck starts in γ (e.g., a goods warehouse, γ < L̂) with δ robots on board and has a

maximum capacity of K robots (δ ≤ K). It is already loaded with the goods to be delivered. In

every robot depot a, a ∈ R, there are an initial number of robots ra available. Every customer

k, k ∈ C, has a delivery time window defined by a deadline dk and the time window length εk. The

delivery cannot take place before the customers’ time window starts (i.e., not before dk − εk). In

this case truck or robot waiting time applies. If it occurs after the deadline, delay costs at the rate

of cl are incurred. The distance between locations i and j is denoted by λi,j , the resulting travel

times by ϑt
i,j for the truck and ϑr

i,k for the robots. We further denote the robot travel time from

customer k, back to the closest depot as ϑb
k. Note that the costs of the robots’ return to the closest

depot is a parameter for each customer supplied by robot as the closest depot is known in advance.

Any processing time for loading and unloading is added to these times. We introduce the dummy

end location γ̄ (typically equal to the starting location, γ̄ < L̂) to track total truck time. This is

necessary since the truck may have to wait to meet a time window for delivery. The total truck

time that is needed to assess truck usage costs is thus the arrival time at the end node γ̄, indicated

by tγ̄ . The time-based cost rate of the truck is denoted as ct and the distance-based cost rate cd. A

time-based machine rate cr is assumed for the use of robots. It is incurred while loading the robot,

its travel to the customer, waiting for the beginning of the time window (if necessary), unloading

by the customer, and the return to the closest depot.

In the course of minimizing total costs, we further define the following decision variables. The

binary variable si,j indicates whether the truck travels from location i to location j or not. The

binary variable xi,k defines whether customer k is supplied by robot from location i, i.e., whether a
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robot travels from i to k. To track feasibility and costs of a solution, the following auxiliary decision

variables are needed. The variable ti defines the arrival time of the truck at location i, i ∈ L̂, and

qi the quantity of robots aboard the truck when leaving the location. The quantity of robots taken

out of depot i, i ∈ R̂ (i.e., loaded on the truck or directly started towards a customer) is defined by

ei. For every customer k, vk indicates the duration of delay (in the event of late arrival) and wk
the robot waiting time (in the event of early arrival). We then formulate the MTR-RP as follows.

minF (S,X, T, V, L,E,W ) =

= cttγ̄ +
∑

i∈L̂∪{γ}

∑
j∈L̂∪{γ̄}

cdλi,jsi,j +
∑
i∈L̂

∑
k∈Cr∪Co

cr(ϑr
i,k + ϑb

k)xi,k +
∑
k∈C

(clvk + crwk) (1)

subject to

∑
i∈L̂

xi,k +
∑

i∈L̂∪{γ}

si,k = 1 ∀k ∈ Co ∪ Cm (2)

∑
i∈L̂

xi,k = 1 ∀k ∈ Cr (3)

∑
k∈C

xj,k ≤M
∑

i∈L̂∪{γ}

si,j ∀j ∈ L̂ (4)

∑
j∈L̂

sγ,j ≤ 1 (5)

∑
i∈L̂∪{γ}

si,j =
∑

i∈L̂∪{γ̄}

sj,i ∀j ∈ L̂ (6)

tγ = 0 (7)

tj ≥ ti + ϑt
i,j −M(1− si,j) ∀j ∈ L̂ ∪ {γ̄}; i ∈ L̂ ∪ {γ} (8)

tk ≥ dk − ε ∀k ∈ Cm (9)

tk ≥ dk − ε−M(1−
∑

i∈L̂∪{γ}

si,k) ∀k ∈ Co (10)

qγ = δ (11)

qj ≤ qi + ej −
∑
k∈C

xj,k +M(1− si,j) ∀i ∈ L̂ ∪ {γ}; j ∈ R̂ (12)

qj ≤ qi −
∑
k∈C

xj,k +M(1− si,j) ∀i ∈ L̂ ∪ {γ}; j ∈ D̂ ∪ Cm ∪ Co (13)

vk ≥ tk − dk ∀k ∈ Cm ∪ Co (14)
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vk ≥ tj + ϑr
j,k − dk −M(1− xj,k) ∀k ∈ Cr ∪ Co, j ∈ L̂ (15)

wk ≥ (dk − ε)− tj − ϑrj,k −M(1− xj,k) ∀k ∈ Cr ∪ Co, j ∈ L̂ (16)

ti ≤ tj ∀a ∈ R; i, j ∈ Ia : i ≤ j (17)∑
h∈L̂∪{γ}

sh,i ≥
∑

h∈L̂∪{γ}

sh,j ∀a ∈ R; i, j ∈ Ia : i ≤ j (18)

ra −
∑
i∈Im

a

ei ≥ 0 ∀a ∈ R;m ∈ Ia (19)

si,j ∈ {0, 1} ∀i ∈ L̂ ∪ {γ}; j ∈ L̂ ∪ {γ̄} : i , j (20)

si,i = 0 ∀i ∈ L̂ (21)

xi,k ∈ {0, 1} ∀i ∈ L̂; k ∈ Cr ∪ Co (22)

xi,k = 0 ∀i ∈ L̂; k ∈ Cm (23)

ei ∈ Z ∀i ∈ R̂ (24)

ti ≥ 0 ∀i ∈ L̂ ∪ {γ̄} (25)

qi ∈ {0, ...,K} ∀i ∈ L̂ (26)

vk, wk ≥ 0 ∀k ∈ C (27)

The objective function (1) minimizes total costs. The first term considers the cost of truck time

(at cost rate ct). It compromises the total truck time including travel time between locations and

potential waiting time if customers are approached too early. The second term covers the truck’s

distance costs (at cost rate cd). The third term comprises the robot costs dependent on associated

travel times to the customer and back to the closest depot (at cost rate cr). The last term of the

objective function sums up the cost of possible delayed deliveries (cost rate cl) and robot waiting

times across all customers. Constraint (2) ensures exactly one visit by either truck or robot for

every customer k ∈ Co ∪ Cm. Similarly, constraint (3) ensures that each customer who requires

a robot delivery is visited by exactly one robot. Constraint (4) states that robots can only be

launched from stops that are actually visited by truck. Constraint (5) defines that the truck only

leaves once from the starting point, and (6) ensures that if the truck reaches a location, it must

also leave it. Constraints (7) and (8) determine the truck arrival time at every stop based on travel

times. This also prevents a second visit to the same (duplicate) stop. Constraint (9) ensures that a

required truck delivery is not made before the respective time window and (10) does so for optional

truck deliveries in case they are made by truck (and not by robot). The following constraints (11),

(12) and (13) handle the number of robots aboard the truck when leaving the starting point, a

depot or any other location, respectively. Constraint (14) defines the delay for customers receiving
14

                                                               



truck delivery. Constraints (15) and (16) define the delay and waiting time for customers receiving

robot deliveries. Constraints (17) and (18) ensure without loss of generality that duplicates of the

same location are visited in ascending order of their index. This fact is then used by constraint (19)

to track the robot stock in every depot and to ensure that the stock is ≥ 0. Finally, the variable

domains are defined by constraints (20) to (27).

The MTR-RP extends the classical TnR problem, i.e., without truck deliveries, in several ways:

Some customers must be served by truck, others can be. This means that the total number of

robots started (tracked by (11), (12) and (13)) is not predetermined but part of the decision

problem. Moreover, total truck time is no longer based merely on the legs si,j traveled since the

truck may have to wait for the beginning of a time window ((9) and (10)). We need to determine

the usage time of a truck instead by using the return time to the warehouse tγ̄ , and add the term

tγ̄c
t to the objective function. Since the optimal tγ̄ is determined via the recursive constraints (8),

(9) and (10), this is computationally expensive even for small instances.

5. Solution approach

The MTR-RP generalizes the NP-hard TnR routing problem and therefore constitutes an NP-

hard optimization problem by itself (see Boysen et al. [2018]). Since even small instances cannot be

solved exactly, we propose a tailored solution approach, denoted as MTR heuristic, that is based

on a GVNS framework (see Mladenović and Hansen [1997]; Hansen and Mladenović [2001]). VNS

formulations have been used successfully for many variants of routing problems (e.g., Kovacs et al.

[2014]; Henke et al. [2015]; Ostermeier et al. [2020]) as they provide a high degree of flexibility

and can be tailored to the given problem specifics. The key benefit of GVNS for this application

(compared to the local search previously used for TnR, e.g., in Boysen et al. [2018] and Ostermeier

et al. [2021]) is that complete neighborhoods are evaluated in a defined order. This is necessary for

finding improvements as the objective function is sensitive to small changes in the truck route, which

can lead to long waiting times or delays. Furthermore, defining an order of assessed neighborhoods

enables us to incorporate problem-specific knowledge, such as truck distance as a key cost driver

[Ostermeier et al., 2021]. An overview of our solution framework is shown in Figure 5.

We generate an initial truck tour with one of two possible start procedures, depending on the

given problem instance (see Section 5.1). This truck tour is then evaluated and complemented to a

full solution by finding the optimal robot schedule using an MIP (see Section 5.2). Next, a GVNS

is used to improve truck tours with respect to depots visited, drop-off locations and direct truck

deliveries (see Section 5.3). It consists of a shaking step and a subsequent Variable Neighborhood

15

                                                               



Initial truck tour 
generation

Based on either 
VRP for required 
truck deliveries or 

priority rule

Initialization 
Section 5.1

General Variable Neighborhood Search (GVNS)
Section 5.3

Shaking

Pick random tour from 
neighborhood

Neighborhood 
generation

Shaking 
neighborhoods

Termination check

Terminate if all 
shaking 

neighborhoods have 
been applied without 

improvements in 
subsequent VND

Variable Neighborhood Descent (VND)

Search multiple neighborhoods in deterministic 
order

Tour evaluation, 
robot scheduling

Based on an MIP

Iterate

Neighborhood 
generation

Improvement 
neighborhoods

Tour evaluation, 
robot scheduling

Based on an MIP

Tour evaluation
Section 5.2

Figure 5: Structure of the MTR heuristic proposed

Descent (VND). Within the GVNS, tours are again assessed by the robot scheduling MIP from

Section 5.2.

5.1. Initial truck tour generation

There are start heuristics for classical VRPs (i.e., truck delivery only) and TnR routing (i.e.,

robot delivery only) available in current literature. Our approach combines these two modes and

thus chooses between truck and robot delivery based on efficiency. We found in our numerical

experiments that above a certain number of mandatory truck deliveries, the order of these deliveries

is crucial for solution quality. Below a certain number of truck deliveries, the robot deliveries have a

greater impact on the solution and total costs. Leveraging these insights, we propose two alternative

principles for generating start solutions, depending on the number of truck deliveries required. They

differ in terms of which deliveries are considered and in which order.

Robot deliveries first, truck deliveries second. In the event of less than σ mandatory truck deliveries,

we generate a tour that includes both robot and truck deliveries in a two-step approach. First,

stops at drop-off and depot locations are sequentially appended to the tour based on the priority

rule (PR) “go to the location from which most robot deliveries can be started such that they reach

customers on time”. Truck delivery customers are ignored in the first step. As soon as robot

customers are assigned to a stop, they are not considered for later stops. This rule results in a

sequence of depot and drop-off points, which could be non-feasible since robot availability is not

yet considered. In the second step, the truck deliveries required are inserted sequentially, each

customer at the position of the tour where the smallest deviation is caused. We therefore obtain a

complete tour consisting of drop-off locations and stops at truck delivery customers.

Only truck deliveries. In the event of at least σ truck deliveries, we solve a VRP with time windows

(see model provided in Appendix A) for truck delivery customers, thus ignoring robot deliveries
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completely. The corresponding VRP can be solved optimally for small problem sizes, while for

larger problem sizes the best solution found within a given time limit τ is used. This results in a

truck tour that visits all customers requiring truck delivery, starting from the start location. This

route then serves as starting solution for the GVNS. Despite lacking the consideration of robot

drop-off locations, this enables us to obtain an efficient basis for the truck routing as the direct

truck deliveries are decisive for the final tour, including drop-off and depot locations.

5.2. Tour evaluation and robot scheduling

Feasibility of truck tours. All solutions obtained (including the start solution) need to be assessed

with respect to robot availability to prevent non-feasible tours. A truck tour is only feasible if the

total number of available robots (initial number of robots on the truck δ plus all robots at depots

visited on the tour ra, a ∈ R) is equal to or larger than the number of customers not visited by

truck (i.e., customers that are not on the truck route). We append the closest unvisited depot to

the end of the tour as long as the number of available robots is not sufficient.

Robot scheduling for given truck route. Once feasibility is ensured, the corresponding robot move-

ments for the truck route in question must be defined, i.e., all remaining customers must be assigned

to a truck stop, from which the corresponding robot will start. This transforms the truck tour into

a full solution. We apply an MIP proposed by Boysen et al. [2018] and enhanced by Ostermeier

et al. [2021] to assign customers to the truck stops on the route. This is necessary to evaluate the

quality of a route that has been found. In contrast to the MIP from Section 4, which included the

decision on truck movements, we do not need duplicates of robot drop-off (D) and depot locations

(R). This leads to L := Cm ∪ Co ∪ D ∪ R being the set of all locations potentially reachable

by truck. We assume the truck tour to be given as a tuple Y , where y(u) is the location of the

u-th stop, y(u) ∈ L. Note that we exclude all customers who are served by direct truck delivery

from the assignment. We denote the set of remaining customers to be served by robot as C̃, with

C̃ ⊆ Co ∪ Cr. Table 3 summarizes the notation of truck tour parameters and decision variables.

Truck tour parameters
U Index set of stops on the truck tour u ∈ {1, 2, ...}
Y Tuple of truck stops, where element y(u) is the u-th stop of the truck tour, y(u) ∈ L
C̃ Set of customers not visited by truck (i.e., not in Y)
tu Arrival time at truck stop u, u ∈ U
cTu,k Cost of serving customer k, k ∈ C̃, from stop u, u ∈ U
Decision and auxiliary variables

xu,k Binary: 1, if customer k, k ∈ C̃, is supplied from stop u, u ∈ U ; 0 otherwise
qu Number of robots aboard the truck at departure from stop u, u ∈ U
ra,u Number of available robots in location a, a ∈ L, after the u-th truck stop

Table 3: Additional parameters and variables for robot scheduling
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The actual arrival time at each truck stop tu, u ∈ U for a given tour Y can be calculated

using Equations (28)–(30). Equation (28) states that the truck tour starts at time zero. For

drop-off and depot locations, only truck travel times determine the arrival time (Equation (29)).

For customer locations, the beginning of the respective time window also has to be considered to

prevent premature deliveries (Equation (30)).

t1 = 0 (28)

tu = tu−1 + ϑty(u),y(u−1) ∀u : y(u) ∈ D ∪R (29)

tu = max(tu−1 + ϑty(u),y(u−1), dy(u) − εk) ∀u : y(u) ∈ C (30)

Based on arrival times, the total cost cTu,k of supplying a customer k from stop u is denoted by

Equation (31). It comprises the robot usage cost (at rate cr) for travel time, waiting time at the

customer (in the event the robot arrives before the time window) and the time to return to the

closest depot ϑb
k. Finally, delay costs are added.

cTu,k := cr(ϑry(u),k + (dk − εk − tu − ϑry(u),k)+ + ϑbk)

+ cl(tu + ϑry(u),k − dk)+ ∀u ∈ U, k ∈ C̃ (31)

The variables xu,k, ra,u and qu define where each customer’s robot is started, how many robots

are available in each location and on the truck after every stop. The robot scheduling MIP can

then be formulated as follows.

min F (Q,X,R) =
∑
u∈U

∑
k∈C̃

xu,k · cTu,k (32)

subject to

∑
u∈U

xu,k = 1 ∀k ∈ C̃ (33)

ra,u = ra,u−1 ∀a ∈ R, u ∈ U : a , y(u) (34)

ra,u ≤ ra,u−1 + qu−1 − qu −
∑
k∈C̃

xu,k ∀a ∈ L, u ∈ U : a = y(u) (35)

q0 = δ (36)

ra,0 = ra ∀a ∈ R (37)
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ra,u = 0 ∀a ∈ L \R, u ∈ U (38)

xu,k ∈ {0, 1} ∀u ∈ U, k ∈ C̃ (39)

ra,u ≥ 0 ∀a ∈ R, u ∈ U (40)

0 ≤ qu ≤ K ∀u ∈ U (41)

The objective function (32) minimizes total robot and delay costs. Constraint (33) ensures that

exactly one robot is sent to each remaining customer. Constraint (34) states that if a depot is

not visited, the number of available robots remains the same. Constraint (35) keeps track of the

number of robots in locations visited and aboard the truck after every stop. Equations (36) and

(37) define the initial number of robots in the depots and on the truck. Constraint (38) ensures

that robots cannot be stored at drop-off locations or customers. Constraints (39)–(41) define the

variable domains.

5.3. General Variable Neighborhood Search

For improving the truck tour, we apply a GVNS as described by Hansen and Mladenović

[2018], which tries to improve the initial routing solution by exploiting problem-specific knowledge.

It conducts several cycles of shaking and subsequent VND. Both the shaking and the VND rely on

neighborhoods. These are defined by operators, such that every neighborhood contains all truck

tours that can be generated by applying the respective operator to the incumbent truck tour.

Algorithm 1 summarizes the GVNS applied. The inner while loop constitutes the VND (with its

improvement neighborhood ki), the outer one conducts the shaking (with shaking neighborhood

ks) and stores the best known solution. The parameter α in the for loop determines the number

of VND iterations for every shaking neighborhood. To evaluate truck tours, the GVNS repeatedly

uses the robot scheduling MIP.

Shaking. The shaking phase of the GVNS is used to diversify the search. Neighborhoods are

obtained by varying the truck tour of a previously generated solution and reoptimizing the robot

movements. The neighborhoods are applied in the given order, one in each shaking phase, and used

to generate α new solutions. For each of these solutions we apply a separate VND in the next step.

When a shaking step has led to an improvement, the process restarts from the first neighborhood.

The search is complete after all shaking neighborhoods have been used without improvements.

• Depot insertion. Inserts a new robot depot into the tour. Since robot availability is crucial

for finding an efficient robot schedule, selecting different depots can enable tour improvements.
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Algorithm 1 GVNS procedure (adapted from Hansen and Mladenović [2018])
Input: Starting solution πs

πbest = πs; // best solution found
ks = 1 // shaking neighborhood
while ks ≤ number of shaking neighborhoods do

improvement = false
// perform several VND runs with same shaking neighborhood:
for j = 1 to α do
ki = 1
πcurrent = random(shakeneighborhood(πbest, ks)) // shaking neighborhood ks

while ki ≤ number of VND neighborhoods do
πki = best(improveneighborhood(πcurrent, ki) // improvement neighborhood ki

if Z(πki ) <Z(πbest) then
πbest = πki

ki = 1
improvement = true

else
ki+ = 1; // next neighborhood

end if
end while
if improvement = true then
ks = 1
break

end if
end for
ks+ = 1

end while
return πbest

• Detour insertion. This operator inserts a drop-off point or a customer with optional truck

delivery into the truck tour that leads to a detour of half the delivery area’s side length or

above. It is used to diversify the search by causing a large change in the current truck tour.

• Swap stop. This operator swaps two random stops (of which each can be a drop-off point,

robot depot or customer) of a truck tour. This may again lead to large detours and thus

widens the search space.

• Stop relocation. This operator shifts a stop to a later or earlier point on the tour.

• Customer reshuffling. This operator instigates the most extensive tour change. It first

removes all non-customer stops and then reshuffles the visits at customers according to their

original arrival times (i.e., before stop removal). This means that every truck delivery cus-

tomer supplied late is shifted to earlier positions on the tour such that the deadline is met.

The resulting new tour is added to the neighborhood for every combination of late customer

and possible earlier position on the tour. In the event that this results in more than nshuffle

tours, only the option that minimizes the tour distance is added for each late customer.

The following VND will then construct a new solution around the reshuffled truck deliveries.

This operator makes use of the fact that particularly the order of truck deliveries required
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defines the solution quality. The complete procedure of customer reshuffling is presented in

Algorithm 2.

Algorithm 2 Customer reshuffling
Input: Current tour Y
save original arrival times tk of every customer k supplied by truck
remove non-customer stops from Y
for u = 1 to umax do
k = y(u);
if tk > dk then

// customer was delivered late
poolk = {}
poolk.add(shift(Y, k, 1)) // shift customer to first stop after starting point
for i = 2 to u− 1 do
k̂ = y(i− 1)
if tk̂ < dk then

// time at previous stop is before deadline
poolk.add(shift(Y, k, i)) // shift customer to stop i

end if
end for

end if
end for
if no. of tours in all pools > nshuffle then
poolfinal =

⋃
{shortest tour from every pool}

else
poolfinal =

⋃
{all pools}

end if
return poolfinal

VND. The VND is used to improve the truck tour. It relies on multiple neighborhoods of the

incumbent solution that are searched sequentially. The VND restarts from the first neighborhood

when a better solution is found. This continues until all neighborhoods of the incumbent solution

have been searched and no improvement has been found. Each neighborhood contains all tours

that can result from applying its operator to the incumbent tour.

• Remove a non-depot. Removes a drop-off point or a customer with optional truck delivery

from the current truck tour. Since truck distance is a main cost driver, this often leads to

improvements. Required truck deliveries cannot be removed in this step.

• Remove a depot. Removes a depot from the current truck tour. The removal of a depot

may lead to non-feasible solutions. In this case additional depots will be appended within

the feasibility check.

• Add depot. Adds a new depot to the existing truck tour. Additional depots can increase

robot availability on parts of the tour and lead to better robot schedules at reduced costs.

• Add a non-depot. Adds a drop-off point to the existing truck tour. This may reduce robot

travel times by bringing the truck closer to nearby customers.
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• Swap two stops. By changing the order of stops, truck distance can be reduced or delays

at the later stop can be avoided.

• Relocate a stop. This operator primarily aims at improving arrival times at customers. In

particular when the truck arrives at a customer too early and is forced to wait for the time

window, shifting this customer to a later point of the tour can reduce total time and delays.

The order of improvement neighborhoods ensures that tours are kept short, and that we start

with the smallest neighborhoods. This reduces the computational effort by limiting the number and

complexity of the robot scheduling MIP (equations (32)-(41)) that has to be solved to evaluate the

tours. Since in neighborhoods “add depot” and “add non-depot”, several hundreds of combinations

of inserted location and insertion position of the tour exist, neighborhoods are limited to the nmax

shortest tours. This again reduces computational effort based on known problem characteristics.

6. Numerical examples

This section analyzes the performance of our MTR heuristic. First, we describe the instances

and parameters used in our experiments (Section 6.1). Next, we compare our approach to a

benchmark (Section 6.2) to assess the performance of our algorithm. Further experiments assess

the impact of both required and optional truck deliveries. We compare different fulfillment concepts

for home delivery depending on the share of truck deliveries required (Section 6.3) and analyze the

impact of time windows on the routing (Section 6.4). Finally, we discuss the impact of customer

distribution (Section 6.5), and cost rates for the truck and delays (Section 6.6). Our approach was

implemented in Python (using PyCharm 2018.3.5 Professional Edition) with Gurobi (version 8.0.1)

as MIP solver and executed on a 64-bit PC with an Intel Core i7-8650U CPU (4 × 1.9 GHz), 16

GB RAM, and Windows 10 Enterprise.

6.1. Instance and parameter setting

In our numerical experiments we aim at analyzing the performance of our MTR heuristic in

comparison to related approaches. To enable a fair comparison and to evaluate the impact of direct

deliveries we leverage the test data provided by Ostermeier et al. [2021] (http://www.vrp-rep.

org/datasets/item/2020-0005.html). The data set comprises 160 instances for TnR routing and

resembles the general setting of our problem but ignores the possibility of direct truck deliveries.

The data setting is as follows. Customer locations are picked randomly from all buildings in a

4 km2 area in northern Munich (Germany), using OpenStreetMap [OpenStreetMap Foundation,

2019] to create instances with |C| = 50 customers. To account for direct truck deliveries, we assume
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that the first 12% of customers (which the instances list in random order) require truck delivery

(|Cm|/|C|=0.12). The remaining customers require robot delivery (Cr = C \ Cm). This means

there are no optional truck deliveries in the default case (Co = ∅). The impact of optional truck

deliveries will be analyzed separately. Note that our assumption for |Cm|/|C| is in line with the

estimate reported by Forbes [2019], that technically 75 to 90% of Amazon deliveries could be made

by autonomous vehicles, and will be subject to a sensitivity analysis in the following. There are

|R|=25 evenly distributed robot depots, and |D| = 48 uniform-randomly distributed drop-off points

in the area. All delivery time windows have the same length ε = 10 min. The end of a customer‘s

time window is generated based on the direct travel time of the truck from its random starting

position to the customer. This travel time is multiplied by a uniform-randomly distributed factor

from the interval [ρmin, ρmax] = [5, 8]. This procedure simulates an assignment of customers to

vehicles such that reasonable tours are made possible. The initial number of robots is ra = 10 for

every depot a, a ∈ R. The capacity of the truck is K = 8 robots and it is fully loaded at the start

(δ = 8). The average speed of the truck is 30 km/h and the average speed of the robots 5 km/h.

A handling time per truck stop of µ = 40 sec is assumed in addition to travel times. There are 20

instances generated for each setup. All results presented show the average of the corresponding 20

solutions. We further apply the cost rates empirically quantified by Ostermeier et al. [2021]. These

are cd = 0.20 e /km and ct = 30 e /h for the truck, cr = 0.50 e /h for robot use and cl = 5 e /h

for delivery delays.

Lastly, we allow α = 4 VND iterations per shaking neighborhood (executed in parallel), a

maximum of nshuffle = 4 for the customer reshuffling shaking neighborhood and a maximum VND

neighborhood size of nmax = 90 tours. The threshold for the selection of the start heuristic is set

to σ = 2 and its time limit τ to 3 minutes.

6.2. Performance comparison

There are no existing solution approaches to MTR and only a couple of publications on TnR

(see literature analysis). To the best of our knowledge, Boysen et al. [2018] and Ostermeier et al.

[2021] provide the currently most developed approaches in this research area. As we provide a

generalization of the problem, we will use a special case of our problem that is equivalent to the

problems in the benchmark. We compare our MTR heuristic to the LS approach by Ostermeier

et al. [2021], as the authors study the TnR concept a with total cost objective, i.e., without the

possibility of truck deliveries. Their numerical studies show that their LS approach outperforms

the approach by Boysen et al. [2018] in finding cost-optimal tours. However, due to its structure,

the LS is not suitable for incorporating truck deliveries and all customers must be visited by robot.
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We consequently apply our MTR heuristic to solve both instances without truck deliveries and

additionally instances with the restriction of 12% truck deliveries required. In the special case

of our setting without truck deliveries, the problem is identical to the one solved by Ostermeier

et al. [2021]. The MTR heuristic reaches a solution quality differing only 0.3 to 2.0% from the

LS in these cases. The computation times for different problem sizes are shown in Figure 6. The

scenario with 12% truck deliveries is labeled ‘MTR 0.12‘ and the one without truck deliveries ‘MTR

0.0‘. We see that the MTR approach outperforms the LS when only robot deliveries are required,

reducing the computation time by up to 94% (25 customers). This shows that despite the focus of

our MTR approach on a mixed delivery structure, it works efficiently and effectively for a related

problem without direct truck deliveries. When truck deliveries are required, the computation effort

increases, but remains at a level acceptable for an application in practice.
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Figure 6: Comparison of our MTR approach to the benchmark (i.e., LS approach by Ostermeier et al. [2021])
for a share of 0% and 12% of truck deliveries

Additionally, we found that the MIP for the entire MTR-RP ((1)–(27)) could not be solved

exactly within three hours for six customers, even if stops are not duplicated, branching is supported

by a relaxed MIP version and a feasible start solution is provided to the solver. An average MIP

gap of 52% remained.

6.3. Comparison of delivery concepts

This section compares the delivery concepts given in Table 4 for a varying share of truck

deliveries required.

Figure 7 shows the total costs, computation times, average delay and total truck distance for the

concepts analyzed. We henceforth highlight the default setting described in Section 6.1 with a bold

x-label. Note that TD was solved without consideration of the earliest delivery time, i.e., delivery

can occur before the time window to reduce computational complexity. This leads to an advantage

for TD and an underestimation of the improvements due to MTR. Despite this simplification,
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Concept Description Rationale Solution
approach

TD: Truck-only
delivery

Only deliveries by truck to all customers Benchmark to assess
MTR benefits

MIP from
Appendix A

MTR: Mixed
truck and robot
delivery

Tour with mandatory truck deliveries and
all other deliveries by robot
(Cr = C \ Cm)

Approach of this paper MTR heuristic

MTR OT:
MTR with
optional truck
deliveries

MTR extended by optional truck
deliveries, i.e., in addition to mandatory
truck deliveries, all other deliveries can be
made by truck (Co = C \ Cm)

Approach of this paper
and assessing optional
truck delivery

MTR heuristic

STR: Separate
truck and robot
tours

Separate planning of one TD tour for
truck deliveries and one TnR tour for
robot deliveries (i.e., two simultaneous
tours)

Serves as benchmark to
assess benefits of MTR
heuristic vs. existing TnR
heuristics

TD tour by MIP
from Appendix A;
TnR tour by MTR
heuristic

Table 4: Overview of delivery concepts

optimality could not be proved within the computation time limit of three hours. We therefore

report properties of the best solutions found and the lower bound of the objective value (‘TD LB‘).

Further, MTR and STR are identical for 0% of truck deliveries.
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Figure 7: Comparison of different delivery modes for a varying share of required truck deliveries

Computation time. Runtime increases significantly for a mixed planning (i.e., MTR and MTR OT)

as soon as truck deliveries are required. The actual locations of individual customers are the main
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driver of computation times. Single customers can significantly increase the problem complexity

and the respective runtimes if they require truck delivery and cause a large detour for the truck. For

example, for MTR, the standard deviation across the 20 instances relative to the average objective

value increases by 25% when the share of truck deliveries increases from 0 to 12%. In line with this,

runtimes for MTR OT are higher due to the potential additional truck stops. STR on the other

hand reveals a decrease in runtime as more truck deliveries are outsourced to a separate routing

problem.

Total costs. All robot concepts outperform a solution with truck deliveries only (TD). This is inline

with current literature (see Ostermeier et al. [2021]). MTR OT is the option with the lowest total

costs in all examples. Total costs increase significantly for all concepts involving robots as soon as

truck deliveries are required (i.e., comparing 0 and 4% truck deliveries required). In the STR case,

this is due to the truck delivery tour needed in addition to the robot delivery tour. In the MTR

and MTR OT cases, it can be attributed to reduced flexibility given the stops required for truck

delivery.

A further increase in the share of truck deliveries leads to a moderate increase in total costs.

Comparing a combined truck and robot delivery to a separate delivery (i.e., MTR vs. STR) of

more than 4% truck deliveries results in cost savings of between 20 and 24% in favor of a mixed

delivery. This highlights the advantage of our MTR heuristic’s ability to combine truck and robot

deliveries into one tour. The cost advantage of additional optional truck deliveries (i.e., MTR OT

vs. MTR) is lower with up to 2% savings. Compared to TD, MTR reduces costs by 43% in the

default case with 12% truck deliveries. This highlights the attractiveness of delivery by trucks and

robots even for situations in which not all deliveries can be made by robot.

Delay and truck distance. The logistical performance with respect to delays is comparable for all

robot concepts. This shows that all deliveries can be made by a single tour without compromising

on delivery performance. MTR and MTR OT show a minimum delay when 8% of truck deliveries

are considered. The reason for this is that including additional stops at truck delivery customers

(and thus forcing the truck to make a longer tour) can improve punctuality as less distance needs to

be covered by robots. A further increase in truck deliveries then leads to additional delays caused

by longer truck tours and a later launch of robots at the last drop-off points. The latter effect

also leads to a decreasing advantage of MTR OT when more than 8% of deliveries are required

by truck. The truck is already overwhelmed serving the customers who require truck deliveries

such that optional truck deliveries are hardly made in addition. The development of covered truck

distance is similar across the three concepts using robots. It shows a flattening increase for an
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increasing number of truck deliveries. In the default case, MTR reduces truck mileage by 45%

compared to TD, showing that it is able to reduce pollution and traffic even when truck deliveries

are necessary. The steady increase in mileage can be reasoned by the tight time windows considered.

The truck in the MTR scenario must go on a criss-cross route to satisfy all the time windows at

customer stops. We therefore analyze a changing time window structure in the following.

6.4. Analysis of the time window structure

Time windows limit the degree of freedom for the routing. This section analyzes the impact

of the time window length for both truck and robot deliveries. We analyze both customer groups

separately since the impact of a customer’s time window on the overall solution is higher when the

truck needs to visit the customer and meet the time window. This can lead to detours or waiting

time affecting all other deliveries as well, while a robot delivery has little effect on other deliveries.

As the cost advantage of MTR OT compared to MTR is only around 2% in our tests, we restrict

our remaining analyses to the comparison of MTR vs. STR for better readability.

Time window length for truck deliveries. Figure 8 shows the performance of MTR vs. STR de-

pending on the change in time window length for truck deliveries. Every time window change is

made symmetrically, i.e., in the case of a 10 min change, start and end of the time windows are

shifted by 5 min each. 0 corresponds to the default case.
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Figure 8: Comparison of MTR vs. STR for varying length of truck delivery time windows
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Cost and computation time are reduced if time windows become wider due to increased flex-

ibility. The cost decrease runs in parallel for MTR and STR such that MTR‘s cost advantage is

stable at 21 to 23%. The driver of the cost decrease is reduced truck usage both for MTR and

STR. STR achieves only a moderate truck distance reduction, but at the same time reduces delays

and keeps robot use stable since the separate robot delivery tour is not affected. MTR achieves a

larger distance reduction at the cost of increasing delays and robot use. This means that although

the time windows become wider, MTR uses this opportunity to further reduce truck distance and

allow longer robot travel, resulting in a very small increase in delays. Additionally, we considered

a scenario without time windows for truck deliveries. Even in this scenario, a cost saving of 19%

is achieved by MTR compared to STR. This is possible as truck deliveries can be added freely at

beneficial points of the route such that deviations are minimized.

Time window length for robot deliveries. We further analyze the impact of robot delivery time

windows. The results for the corresponding changes are shown in Figure 9.
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Figure 9: Comparison of MTR vs. STR for varying length of robot delivery time windows

As could be expected, costs of the MTR are hardly affected by these changes since truck tours

are dominated by truck deliveries. The only effect of wider time windows is reduction in delays.

For STR, the TnR route changes slightly. The distance becomes longer, while robot cost and delays

decrease. This leads to a minor cost reduction as robot deliveries only account for 38% of total
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costs and truck deliveries are not affected. In practice, this means both approaches can fulfill tight

time windows for robot deliveries at little additional cost. The MTR approach outperforms the

STR concept with separate planning of truck and robot deliveries across all scenarios.

6.5. Impact of customer distribution

The spatial distribution of customers can have a strong impact on a concept‘s performance.

We therefore analyze total costs of MTR vs. STR for different distribution types. The uniform

distribution of our default setting is compared to two alternatives: a concentrated distribution,

where customers are located centrally in a 2×2 km2 square area, and a clustered distribution,

where two customer clusters a considered, one in the lower left and one in the upper right quadrant

of the original 4×4 km2 square area. The distribution of depots and drop-off points remains

unchanged. The number of customers is varied from 25 to 100 (where our default case corresponds

to the uniform distribution of 50 customers). The MIP used to solve the truck delivery tour part

of STR could not be solved to proven optimality within three hours in the 100-customer case. The

best-known solutions are reported. The results are summarized in Figure 10.
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Figure 10: Cost comparison of MTR vs. STR for varying customer distributions

Total costs show a near linear increase for both concepts. The MTR approach is able to sustain

or even expand its cost advantage for an increasing number of customers when customers are dis-

tributed uniformly or clustered. MTR‘s savings decrease in the concentrated distribution scenario,

culminating in almost equal results for 100 customers. Concentrated customers are beneficial for

both MTR and STR as long as the robot depot density is high enough. For 25 and 50 customers,

depots in customer proximity provide enough robots to serve all customers (10 robots per depot).

In the case of 100 customers (of which 88 receive robot delivery), the truck is forced to leave the

customer area to pick up robots from remote depots. Both STR and MTR suffer from this effect

such that the cost difference decreases. Despite this effect we can state that combining truck and

robot deliveries within our MTR approach leads to significant savings in most cases, and to equal

costs in the worst-case scenario.
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6.6. Impact of costs

Impact of truck costs. The hourly cost rate of the truck is mostly driven by the driver‘s salary. We

therefore provide a sensitivity analysis on the truck cost rate ct, which corresponds to a Western

European salary level in our default case. Figure 11 displays our findings. Total costs increase

proportionally for both approaches, leading to stable cost savings of 22 to 24% through MTR. STR

is more sensitive to changing costs. The higher the truck costs, the higher the delays. The increase

in delays goes along with a decrease in truck distance. The MTR solution on the other hand is

not sensitive to changing costs with respect to delays and truck distance. In the 10 e /h scenario,

the MTR approach therefore results in 10% less mileage at a cost of a 50% higher average delay

compared to STR.
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Figure 11: Comparison of MTR vs. STR for varying hourly truck cost rates

Impact of delay costs. We have shown that increasing truck costs may lead to increasing delays

within the MTR approach. In our final test we therefore assess how MTR performs for varying

delay costs cl. The results are summarized in Figure 12. The cost curves show that MTR savings

slightly decrease as the importance of delays increases. However, MTR achieves cost savings of 15%

even for a 100 e /h delay cost rate. Since the applied instances are chosen to be challenging with

respect to delivery times, neither of the two approaches can eliminate delays completely. STR is

able to reduce delays more as it uses two vehicles instead of one. The price of this is an increasing
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truck distance, while MTR‘s truck distance is stable. In summary, the STR concept minimizes

delays compared to our MTR approach, but at the cost of longer truck tours. From a total cost

perspective, MTR enables significant cost savings even if the costs of delays are high.
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Figure 12: Comparison of MTR vs. STR for varying delay cost rates

7. Conclusion

Our work shows that the MTR concept is a valuable extension of the existing TnR concept to

enable further applications in the retail industry. It combines autonomous robot deliveries with

classical truck deliveries (e.g., for bulky orders). We present a comprehensive model formulation

for this home delivery concept and solve it using a tailored GVNS solution framework. The GVNS

is competitive compared to existing TnR routing algorithms as it outperforms the prevailing LS

approach in terms of runtime and equals its solution quality for a robot-only delivery. The extension

presented enables practitioners to assess and operate an MTR system that can completely replace

classical truck tours.

Our analyses show that the MTR concept reduces costs and truck mileage by more than 40%

compared to classical truck delivery, even when a share of customers has to be supplied by truck. To

give some further detail, the experiments show that (i) direct truck deliveries have a large impact

on costs and solution structure (e.g., 46% higher costs and 119% higher mileage due to 4% of truck
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deliveries with MTR), (ii) by including direct truck deliveries in the tour, our approach leads to

savings of up to 24% compared to a separation of truck and robot deliveries, and (iii) adapting the

time windows for truck deliveries can help to further reduce costs and travel distance. Additional

analyses highlight the benefits of a mixed delivery concept and show that the MTR results are

robust across different settings.

While we address an important extension for TnR delivery, there are several other aspects that

can be assessed in future research. Our model could test technical additions and infrastructure

specifics such as faster robot travel on bike lanes. Robot movements between depots may further

help to increase robot availability in depots visited by truck. The exchange of robots between depots

might therefore be a next step. In line with this, our model could be extended to include the pickup

of robots at drop-off points on the tour. This means that robots could be sent to locations other

than robot depots. Stochastic travel times and pickups from customers could be considered to

generalize the problem. Other innovative last-mile delivery concepts could be compared to MTR

to derive guidance on which concept and fleet mix to implement in which setting. To date, the

TnR and MTR routing approaches have focused on a single truck tour. The use of multiple tours

and the corresponding allocation of customers to different tours is required in settings with higher

order volumes. Ultimately, the problem presented demonstrates situations of high complexity and

unique structure for which alternative solution approaches can be tested. Those could assist in

accelerating computation, dealing with larger problem sizes or evidencing optimality.
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Appendix A. A MIP model for the VRP with time windows

For solving the VRP with time windows, we introduce the following MIP model, which we

adapted from Ostermeier et al. [2021] to incorporate time windows instead of only deadlines. It

minimizes the cost of traditional truck delivery assuming the same cost factors as in the MTR case.

We further assume the same processing time of 40 sec. for every customer k (included in ϑtik). We

introduce the set of available vehicles F , which contains only one vehicle in our case. The binary

decision variable sfij is 1 if vehicle f travels from location i to location j and 0 otherwise. Finally,

auxiliary decision variable tk denotes the arrival time at customer k and tTf the total tour time of

vehicle f . This leads to the objective function (A.1), which incorporates the cost of truck distance,

truck time and delays. Constraints (A.2) ensure every customer is visited exactly once. (A.3) and

(A.4) keep track of the earliest possible arrival times at customers. Constraints (A.5) ensure no

customer is served before his/ her time window and Constraints (A.6) derive the delays from the
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arrival times. (A.7) define the total operating time of each truck. (A.8) and (A.9) establish flow

constraints for the trucks at every stop. Constraints (A.10) to (A.12) define the solution space.

min
∑
f∈F

∑
i∈C∪{γ}

∑
j∈C∪{γ}

cdλijsfij +
∑
f∈F

cttTf +
∑
k∈C

clvk (A.1)

subject to

∑
i∈C∪{γ}

∑
f∈F

sfik = 1 ∀k ∈ C (A.2)

tk ≥ ϑtγk −M · (1− sfγk) ∀k ∈ C, f ∈ F (A.3)

tj ≥ ti + ϑtij −M · (1− sfij) ∀i, j ∈ C, f ∈ F (A.4)

tk ≥ dk − ε ∀k ∈ C (A.5)

vk ≥ tk − dk ∀k ∈ C (A.6)

tTf ≥ tk + ϑtkγ −M · (1− sfkγ) ∀k ∈ C, f ∈ F (A.7)∑
i∈C∪{γ}

sfik =
∑

i∈C∪{γ}
sfki ∀k ∈ C, f ∈ F (A.8)

∑
k∈C

sfγk ≤ 1 ∀f ∈ F (A.9)

sfij ∈ {0, 1} ∀i, j ∈ C, f ∈ F (A.10)

tk ≥ 0; vk ≥ 0 ∀k ∈ C (A.11)

tTf ≥ 0 ∀f ∈ F (A.12)
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