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Bringing together cancer genomes from different projects increases power and allows the

investigation of pan-cancer, molecular mechanisms. However, working with whole genomes

sequenced over several years in different sequencing centres requires a framework to

compare the quality of these sequences. We used the Pan-Cancer Analysis of Whole Gen-

omes cohort as a test case to construct such a framework. This cohort contains whole cancer

genomes of 2832 donors from 18 sequencing centres. We developed a non-redundant set of

five quality control (QC) measurements to establish a star rating system. These QC mea-

sures reflect known differences in sequencing protocol and provide a guide to downstream

analyses and allow for exclusion of samples of poor quality. We have found that this is an

effective framework of quality measures. The implementation of the framework is available

at: https://dockstore.org/containers/quay.io/jwerner_dkfz/pancanqc:1.2.2.
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Combining whole-genome sequencing data from individual
projects has many advantages: increased statistical power,
the ability to extend hypotheses across several projects and

the possibility of asking biological questions covering a wider
range of phenomena1,2. Many new methods for investigating
cancers are making use of the increased availability of cancer
sequencing data to better train their methods3. However, when
the sequencing data comes from different centres, sequenced over
a period of several years and under different protocols, great care
must be taken to ensure that the sequencing data is of comparable
quality, to avoid drawing false conclusions.

There are several quality control (QC) methods that are being
used for whole-genome and exome sequencing data. The Cancer
Genome Atlas (TCGA) marker papers for single tumour types
(see refs. 4–6 for examples from 2014 to 2016) all calculate QC
measures such as depth of coverage, batch effects and con-
tamination levels, as part of the Firehose analysis infrastructure7.
Likewise work8 from the International Cancer Genome Con-
sortium (ICGC) with samples sequenced at three different centres
relied on similar QC measures computed by the Picard toolkit9.
Another tool used in the quality assessment of cancer genomes is
qProfiler10 by providing summary statistics on the sequenced
data. Combing sequencing data from different projects, but based
on exome sequencing, Lu et al.2, carried out meta-analysis of
exome data available from the TCGA for 12 cancer types. Their
inclusion criteria were based on coverage depth and percentage of
exome coverage for both the normal and tumour samples. Other
cancer studies have also pointed to the importance of the per-
centage of the genome covered11,12 as well as error rates for each
of the paired reads13 as QC measures. Although many useful QC
measurements are available, to our knowledge there is no con-
sistent framework for which QC measures to use, or how to
combine the QC measures, to report on the quality of a whole-
genome sequence.

To assemble and test a framework to determine the quality of
samples and provide a score, we analysed the 2959 normal-tumour
genome pairs from 2832 donors of the Pan-Cancer Analysis of
Whole Genomes (PCAWG) project1. The PCAWG cohort consists
of 48 projects encompassed in ICGC14 and TCGA15. The size of
this dataset and the diversity of the samples, representing many
different cancers from varied populations, make it a perfect testing
ground for a QC framework. Variation in quality is to be expected
as there were 18 different sequencing centres involved and
sequencing was performed over a 5-year time-span (2009–2014), in
which the sequencing methodology was still evolving rapidly. Even
though there were inclusion criteria based on the sequencing plat-
form (Illumina) and minimum sequencing depth, the quality of the
sequencing data and how samples from different centres compared
to each other remained an open question.

Based on the PCAWG data we selected measures covering five
important features to assess the quality of cancer genome
sequences: mean coverage, evenness of coverage, somatic muta-
tion calling coverage, paired reads mapping to different chro-
mosomes and the ratio of difference in edits between paired
reads. Here an edit is a base in the read which is different to the
reference genome. These measurements we computed for both
the normal and tumour samples. To summarise the five QC
measures, we established a star rating system to cover the range of
the highest quality normal-tumour genome pairs, passing the
thresholds set for each measurement, to those that had many
sequencing quality issues.

Results
Quality control measures. Three of the QC measures are linked
to different aspects of the coverage of the genomic sequence;

mean coverage, evenness of coverage and somatic mutation
calling coverage. The other two measures indicate discrepancies
between the paired reads: mapping to different chromosomes and
the ratio of edits between the paired reads compared to the
reference genome. We summarise these five measures into a star
rating, for easy comparison of each of the sample pair’s quality
across the dataset. All our analyses are based on the aligned
sequences from the PCAWG core pipeline1. We did not use
duplicate reads, reads with a mapping quality of zero and sup-
plementary alignments (reads that map to more than one place in
the genome).

Mean coverage. When deciding on what depth to sequence
normal-tumour genome pairs to, a trade off has to be made
between the advantages of having a high coverage and the cost of
sequencing. The deeper the cancer genome is sequenced the
greater the confidence in calling somatic events (see Alioto et al.16

for a comparison of somatic mutation calling at depths up to
300× sequence coverage). A precondition for the inclusion of a
donor in the PCAWG study was the availability of a whole-
genome sequence of the normal and tumour with 25× coverage or
greater. However, the projects submitting these genomes had
calculated coverage differently. For standardisation we defined
mean coverage as the mean number of reads covering each
position in the genome, where the base is known, after low quality
and duplicate reads were excluded as to not inflate the number of
reads. For the PCAWG cohort, we did not consider overlapping
paired reads, as the samples sequenced tended to have large insert
sizes coupled with small read lengths (Supplementary Fig. 1).
However, projects with protocols that could lead to overlapping
paired reads, should consider removing these to not inflate cov-
erage statistics.

The minimum coverage for inclusion to PCAWG was 30×.
However, being more stringent in measuring mean coverage
through removing low quality and duplicate reads for the normal
samples, we found 25× to be a better minimum for normal
samples. The tumour samples tended to be sequenced to a deeper
depth, hence we decided to keep the threshold at 30×. These
minimum criteria were not met by 0.4% of the normal samples
and 2.2% of the tumour samples (Supplementary Fig. 2). We
believe for future projects these thresholds represent a minimum
level. However, for projects that aim for deeper sequencing, these
thresholds could be increased to better reflect the quality of the
samples.

Evenness of coverage. To confidently identify germline variants
and somatic mutations, an even coverage across the target area17,
in this case the entire genome, is ideal. For this QC measure, we
used two methods to determine whether the genome is evenly
covered. One method is to calculate the ratio of the median
coverage over the mean coverage (MoM). An evenly covered
sequence should have a ratio of one, with the mean value the
same as the median value, not skewed by very low or high cov-
erage in certain regions. To decide within what range of values a
sample should fall to be regarded as evenly covered, we used the
first quartile (Q1), the third quartile (Q3) and the interquartile
range (IQR): Q1− (1.5 × IQR) and Q3+ (1.5 × IQR) for the
values for this measurement. For the PCAWG cohort this cor-
responds to a range of 0.99–1.06 for a normal sample and the
wider range of 0.92–1.09 for the tumour samples (Supplementary
Fig. 3). Given these thresholds were calculated on 2959 whole
normal-tumour genome pairs (from 2830 donors), we suggest
these thresholds could be just as representative for evenness of
coverage for whole-genome samples sequenced for other cancer
projects. Though it should be noted that it is possible that if the
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coverage distribution follows a normal distribution, the ratio
suggested here will be very close to one regardless of the variance
in the coverage, hence the need for more than one measurement
for evenness of coverage.

The second measure of evenness looks at the variation of the
normalized coverage in ten kilobase genomic windows, after
correction for GC-dependent coverage bias (as both GC-rich
reads and AT-rich reads are underrepresented in the sequencing
results18) using the somatic copy number variant (CNV) calling
algorithm ACEseq19. The main cloud, which corresponds to the
main copy number state of the sample, is determined (as shown
by the red dots in Fig. 1). The remaining coverage variation is
measured as full width at half maximum (FWHM) of the main
cloud. This measure is insensitive to copy number aberrations
and GC-dependent coverage bias. To determine the thresholds,
1000 whole-genome sequencing samples from different tumour
types were used. We chose the thresholds based on clustering
of these samples and subsequent visual inspection of the samples
that exceeded the threshold to see whether they are valid. Using
these results, the thresholds chosen are 0.20 for the normal
and the more lenient 0.34 for the tumour, above which the sample
would be regarded as having an uneven coverage (Supplementary
Fig. 4). These thresholds worked well with the PCAWG project
and could be used in other projects.

For MoM and FWHM, there is a greater range of values for the
tumour samples than normal samples, potentially due to
biologically reasons valid for tumours. For example, large copy
number variants could lead to a more unevenly covered sample,
distorting the coverage in that region, misleading the evenness of

coverage calculations. However, if the normal sample is unevenly
covered, it is more likely due to a sequencing artefact. Hence, we
are more stringent for the normal than the tumour samples. The
two evenness measures identify different samples as having
uneven coverage (Fig. 1). Spearman’s rank correlation coefficient
for the two measures suggests that these measures are not
correlated for the normal (ρ= 0.24) and tumour (ρ=−0.06)
samples. FWHM is insensitive to GC bias, as the CNV caller
corrects for this, while MoM identifies other evenness outliers.

The samples need to be in the respective ranges of the MoM
and below the thresholds for FWHM for the normal and the
tumour to pass the evenness quality measure, of which is not the
case for 6.3% and 5.8%, respectively of the PCAWG samples.

Somatic mutation calling coverage. Having the depth and
evenness of coverage measured, our next QC measure looks at the
effect of these at each base in the cancer genome (both the normal
and the tumour sample). This measure gives a summary of how
much of the cancer genome is sufficiently covered to call a
somatic mutation event. The somatic mutation caller MuTect20

calculates for each base in the genome if it has sufficient coverage
in both the normal and tumour sample, that is at least fourteen
reads are present in the tumour and eight reads in the matched
normal sample. Based on those requirements, we had to establish
the number of bases to consider the sample sufficiently covered.
Ideally, the threshold should be high enough to penalise the less
well-sequenced samples, while not unduly penalising tumour
samples that have had large deletions in the genome resulting in
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Fig. 1 Measuring evenness of coverage. FWHM looks at the GC content versus the normalized coverage for a an evenly covered sample and b an unevenly
covered sample. The main copy number state of the samples, is indicated in red. The yellow cloud represents a different copy number state of a copy
number aberrant region. FWHM is calculated on the main copy number state. FWHM is compared to MoM using density scatter plots showing the two
measures for c normal samples (n= 2832) and d tumour samples (n= 2959). The number of samples overlapping is reflected by the colour at that point
as shown by the legend. The dashed lines reflect the thresholds for the evenness measures. These graphs show that while there are certain samples both
methods pick out as being unevenly covered, there are also samples picked out by one of the two.
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fewer bases to sequence. Taking into account the largest unam-
biguous mapping for a female donor (so not including the Y
chromosome), which would be 2,835,690,481 bases21, 2.6 giga-
bases best suits these two needs and should be valid for other
whole genome cancer sequences. This results in 6.0% of the
normal-tumour pairs in the PCAWG cohort with fewer bases
sufficiently covered than this threshold (Supplementary Fig. 4).
Though this metric may bear similarity to mean coverage, using
Pearson’s correlation coefficient, we find that ρ= 0.17 for normal
samples and ρ= 0.46 for tumour samples.

Paired reads mapping to different chromosomes. The two reads
from a read pair should represent the ends of a contiguous DNA
sequence that depending on the insert size should be a given
distance apart (for PCAWG between 200 and 800 bases, see
Supplementary Fig. 1). Paired reads mapping to different chro-
mosomes can be due to a rearrangement of genome sequence
either as natural variation or somatic mutation. In deciding a
threshold based on percentage of paired reads mapping to dif-
ferent chromosomes, we should not penalise sequences with
biological causes (such as chromothripsis22, or more generally,
interchromosomal rearrangements). However, an excess of reads
mapping to different chromosomes points to a technical artefact.
Samples with confirmed high levels of rearrangements and
chromothripsis, in our experience, do not have more than 1% of
paired reads mapping to different chromosomes. Indeed within
the PCAWG cohort, there were 94,674 inter-chromosomal
somatic structural mutations called for 2428 tumour-normal
pairs23, which suggests an even smaller proportion of reads
mapping to different chromosomes for biological reasons in this
cohort. To have a large safety margin, we set the threshold to 3%.
Samples with a higher percentage may contain technical artefacts,
which will also be true of whole genome, cancer sequences in
other projects. Of the normal sequences 14.5% exceed the
threshold, as do 13.0% tumour sequences (Supplementary Fig. 5).
Interestingly, there are more normal samples failing this measure,
which cannot be explained by biological processes. A possible
explanation may be that for lower quality samples, the PCR
amplification used in preparing libraries causes an increase in two
fragments of DNA from different parts of the genome being fused
together, as has previously been noted24. Consequently, this
translates to an increase in percentage of paired reads mapping to
different chromosomes.

Ratio of difference in edits between paired reads. Damage in
sequencing runs has been linked to a global imbalance in edits
(where the base sequenced is different to the reference) between
read 1 and read 2 in paired end sequencing25. The ratio of the
edits between paired reads, calculated by finding the ratio
between the total number of mismatches on read 1 and read 2
across the whole dataset, for a well-sequenced sample should be
close to one. We adjudged samples with a two-fold ratio of edits
between the paired reads, or greater, as having something gone
wrong in the sequencing cycle resulting in lower data quality.
Based on this threshold 4.7% and 4.5% normal and tumour
samples fail respectively (Supplementary Fig. 6). This two-fold
threshold should translate very well to adjudging quality of other
whole-genome sequenced cancer samples.

Choosing of thresholds. Across the quality measures, we have
used several different methods for choosing the thresholds, with a
tendency for leniency. For the mean coverage, we chose the
minimum we could do, based on the requirements to be part of
the PCAWG cohort. While for evenness of coverage, the inter-
quartile range was used for MoM to identify outliers, hence these

thresholds can change with a more consistent dataset. For the
other evenness of coverage method, FWHM, the thresholds were
set after looking in depth at a subset of the data. In contrast to
MoM, these thresholds are constant for this and any other
dataset. Somatic mutation calling coverage is limited by how
much of the genome we can cover with short reads. As sequen-
cing technologies improve, covering more of the genome, this
threshold should be increased to take this into account. For both
paired reads mapping to different chromosomes and ratio of
difference in edits between paired reads we had to make a value
judgement over the best thresholds. For both we erred on the side
of caution with higher thresholds to not unnecessarily penalise
biological phenomena as opposed to technical artefact from
sequencing. Even so, for both we ended up with a higher per-
centage of normal samples failing than tumour samples, sug-
gesting we are not penalising the mutative properties of tumours
(which we are not expecting to see in normal samples), but are
picking up on the quality of the sequencing. It is evident that a
different study may want to use different thresholds, though for
ours it provides coherence across a heterogeneous dataset. Indeed
the heterogeneity provided by looking at sequencing for 48 cancer
projects from 18 different sequencing centres, provides some
robustness to our quality measures and their thresholds for a wide
range of cancer, whole-genome sequencing.

Summary of the five quality measures. The five quality measures
were selected to provide minimal redundancy in flagging quality
issues in normal/tumour paired genome sequences. Each measure
reflects a facet of sequencing quality that other measures do not.
Fig. 2 shows there is some overlap between certain measures, for
example, 75 sample pairs are penalised by both having a high
percentage paired reads mapping to different chromosomes and
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uneven coverage. However, a much higher number of samples is
penalised by one of these measures and not the other.

Star rating system. We used the five quality measures to con-
struct a star rating for each normal-tumour genome pair. For
each QC measure a star is awarded if both the normal and
tumour sample pass the threshold. Half a star is awarded if only
the normal passes the threshold for the respective QC measures.
If only the tumour sample passes and not the normal sample no
star is awarded. For somatic mutation calling coverage, a whole
star is awarded for passing, none otherwise. The reasons for the
extra weighting of the normal sample for the other four measures
are that there is no biological reason for not passing the thresh-
olds in the normal sequence and a well-sequenced normal sample
is important for calling somatic mutations.

Summing the stars earned for each of the five QC measure
results in 66.4% of the normal/tumour sample pairs of the
PCAWG being rated as 5 stars. Looking specifically at the
different projects (Fig. 3) the quality does not seem to be biased
by tissue type (Supplementary Fig. 7) based on detailed molecular
subtypes of the tumours in PCAWG1. The difference seems to be
more at the project level. Unfortunately, there is only limited
project metadata on when and which protocol was used to
sequence the samples. Detailed metadata was available for 95
donors of the CLLE-ES project26 (concerning Chronic Lympho-
cytic Leukaemia), so it could be used as an example. Changes in
protocol had an effect on the quality of the sequencing over the 4
years in which CLLE-ES samples were sequenced. For the CLLE-
ES project, most notable was the change to a no PCR protocol in
2012, which resulted in improvements to the measures of paired
reads mapping to different chromosomes and evenness of
coverage. This, in turn, resulted in a measurable change in
somatic mutation calling coverage and improvement in star
ratings (Supplementary Fig. 8). We found similar results for a

subset of 348 samples sequenced at the Broad Institute
(Supplementary Fig. 9), which had metadata recorded in
CGHub27 about the time and instruments used to sequence.
We hypothesise that this will be true for other projects as well.

After calculating the star rating for the sequences, we related
our QC measures to the calling of somatic single base mutations
(SSM), somatic insertion/deletion mutations (SIM) and somatic
structural mutations (SStM)1 in PCAWG (which was done for
2777 samples for SSM and SIMs, and 2712 samples for SStMs).
An advantage of using PCAWG is that four callers were used for
each set of variants. Looking at the proportion of calls, which all
four callers supported, gives us a good idea how the quality of
sequencing influences the identification of unambiguous somatic
mutations. While the proportion of calls supporting the four
callers varies greatly by sample, we find that the samples with four
stars or more tended to have higher proportions than samples
with less than four stars for SSM, SIM and SStM (with adjusted p-
values of 3.94 × 10−4, 4.86 × 10−4 and 1.16 × 10−17, respectively,
using the Mann–Whitney-U test, adjusted using the Bonferroni
correction, also see Fig. 4 and Supplementary Table 1).

Taking this analysis further, we used linear regression models
to analyse the relation between the proportion of calls supported
by four callers and the QC measures (Supplementary Tables 2–4).
Though the model only explains a small amount of variance in
the data, the results show that an increasing percentage of paired
reads mapping to different chromosomes in tumour samples, has
a significant negative effect on the proportion of calls supported
by four callers for SSM, SIM and SStM. For SSM an increasing
mean coverage in tumours has a significant positive effect on the
proportion of calls supported by four callers. While for SIM there
is a significant negative effect if evenness (as measured by
FWHM) decreases in tumours. As for SIM, the unevenness effect
is also true in SStM as well as significant negative effects when
there is an increase of percentage of paired reads mapping to
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different chromosomes in normal samples and ratio of difference
in edits between paired reads in tumour samples.

The results from this analysis suggest quality of sequencing,
measured by our star rating, does have a measurable effect on the
downstream analyses. As our QC measures reflect different
aspects of sequencing quality, they also have varying levels of
importance in using these sequences in the calling of SSM, SIM
and SStM.

Discussion
The established star rating system allows grading the normal and
tumour sample sequences by quality in absence of information on
how sequencing was carried out, what protocols were used and
what problems may have occurred during the sequencing process.
The system is not designed to be all encompassing, instead using
a small amount of computational resources and time (compared
to the actual aligning of the sequences and calling of somatic
mutations), we get a good snapshot of the quality of the normal-
tumour sample pair sequences on which to call somatic muta-
tions. Likewise having graded the normal-tumour genome pairs
with our five-star system, we do not intend researchers to
necessarily exclude the lower ranked normal-tumour genome
pairs, just to be wary of any conclusions based solely on the lower
scoring genomes.

With our star rating system, we sent several samples in
PCAWG to the exclusion list due to their poor performance in
one of the QC measures. Due to the timing, this did not prevent
the downstream analyses being performed. Though anecdotally it
would have saved 55 days computational runtime for the one star
sample. For all samples that remained, the QC star rating was
embedded in the header of the variant call format files. For those
projects in PCAWG for which we had metadata, we found that
sequencing quality has definitely improved over the time period
2009–2014 in which the samples sequenced. Our results for
the CLLE-ES project suggest that in part a protocol change to

PCR-free methods improved sequencing, as in line with best
practices from a recent benchmarking exercise16. Our data would
suggest that when pre-amplification of DNA is needed for whole-
genome sequencing, for example in the case DNA is isolated from
formalin fixed, paraffin embedded tissue, the star rating system
will be helpful when the somatic mutations are interpreted.

Another advantage of our QC is the link to the downstream
analyses. In aggregate, sequences with four or more stars have a
higher proportion of mutations (SSM, SIM and SStM) identified
by all callers. These results suggest overall that higher quality
sequence will identify the true positive somatic mutations with
higher likelihood.

We believe that our method can be adapted for similar projects
that look to use whole-genome sequences from a variety of
sources. The thresholds we used based on our experience and
applied to this dataset of 2959 normal-tumour genome pairs can
also be used to judge the quality of other whole normal-tumour
genome pairs. It is worth noting that they represent a trade-off of
being severe enough to penalise poor quality while not dis-
criminating against samples with valid biological causes. We also
would recommend using our methods to ascertain the quality
before downstream analyses. To enable others to use our
approach, there is a Docker container, which can be accessed at
https://dockstore.org/containers/quay.io/jwerner_dkfz/pancanqc:
1.2.2.

In conclusion, we provide a framework for quality assessment,
which opens the door to do large-scale meta-analysis in a more
robust setting.

Methods
Quality control data. The individual QC measures and the star rating for each of
these normal-tumour sample pairs in PCAWG is provided in Supplementary
Data 1: 2959 normal-tumour genome pairs from 2832 donors. Included in our
analysis were samples that were later placed on the exclusion or grey list by the
PCAWG consortium. Some due quality measures we highlighted, others due to
incomplete metadata or other issues like contamination.
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Mean coverage. The number of reads covering each base of the genome was
determined and the mean was calculated:

Mean coverage ¼ 1
n

Xn

i¼1

xi

xi= the number of reads at position i.
n= the total number of positions where the base is known.

Eveness of coverage. The full width half maximum (FWHM) is estimated during
the GC-bias estimation and correction performed by ACEseq19 (software used to
estimate allele-specific copy number from sequencing). ACEseq determines read
counts for 10 kb bins and normalizes them for total coverage of the sample. Then a
two-step lowess fit procedure is performed to parametrize GC bias and correct for
it. An initial lowess curve is fitted to all data points (normalized coverage over the
GC content of each 10 kb window) to identify 10 kb windows which belong to the
main copy number state (i.e. the copy number state covering the largest fraction of
the genome). A second lowess fit using only data points assigned to the main copy
number state is then used for parameter assessment and GC bias correction. This
two-step fitting procedure prevents influences of copy number aberrations (which
might have a different GC content distribution than the whole genome) on the
correction function. The coverage values of the 10kb windows are then GC bias
corrected by dividing their coverage-normalized read counts by the correction
function. The density of the corrected main copy number state coverage is cal-
culated and the FWHM derived from the density curve (Fig. 1).

The median over mean coverage is estimated by using the 10 kb coverage
windows used in FWHM, as wells as 261 windows of 5 MB size. The median and
mean are calculated and the final result is the median coverage divided by the mean
coverage for that sample.

Somatic mutation calling coverage. This QC measure was calculated as part of
the MuTect mutation calling pipeline20. The pipeline counts the number of bases in
the genome of the normal sample with at least 8 reads supporting it and the
tumour with at least 14 reads supporting it. For our Docker container instead of
running the MuTect pipeline, which would be computationally expensive as this
will also call SSMs, we use SAMtools28 for this calculation in the Docker container.

Paired reads mapping to different chromosomes. This measures counts the
percentage of paired reads that map to different chromosomes. As with the other
measurements, reads with a mapping quality of zero, duplicate reads, and sup-
plementary alignments (when reads map to more than one location) were not
included. Furthermore, only reads that map to the human autosomes and sex
chromosomes are included.

Ratio of difference in edits between paired reads. To calculate this ratio of
difference in edits between paired reads the following formula was used:

Ratio ¼ maxfPn
k¼1 r1edits;

Pn
k¼1 r2editsg

minfPn
k¼1 r1edits;

Pn
k¼1 r2editsg

for n reads where r1edits is the number of edits for read one and r2edits is the
number of edits for read two.

The software to calculate this is Bamstats29 and is included in both our Docker
container and the PCAWG Core Pipeline.

Calculating the star rating. We used a custom made Python script to determine
for each QC measure described above, whether a star, half star or no star should be
awarded. The star rating and all the QC measures were saved in tab separated
variable file (Supplementary Data 1). The star rating was calculated, and the plots
used to illustrate the QC measures of PCAWG here were made, using Python
version 2.7.6 and the code uploaded to github: https://github.com/jpwhalley/
PCAWG-QC_Graphs.

Software to calculate the QC measures. We have collected the custom made
scripts and published software together in a Docker container, which can be found
at: https://dockstore.org/containers/quay.io/jwerner_dkfz/pancanqc:1.2.2.

The input is an aligned sequence of the normal sample and an aligned sequence
of the tumour sample, both files in bam format. In our case we used bams, which
can be found in the PCAWG portal: https://dcc.icgc.org/pcawg, all were aligned
with bwa-mem 0.7.8-r455 with all alignment scores output and using the default
alignment algorithm options against human reference hs37d5.

Metadata. The metadata was collected from CGHub for the samples from TCGA,
as well as pancancer.info, which has metadata for all samples in PCAWG. Specific
metadata concerning the sequencing for the CLLE-ES project was collected
internally from the CNAG laboratory information management system. We have
included a customised table (Supplementary Data 2) linking the projects to the
tumour type. The reason for the customisation is that we have grouped the liver

and biliary samples together, as project LIRI-JP contains samples from both of
these tumour types.

Statistical tests and correlations. Calculating Spearman’s correlation coefficient
between the ratio of the MoM coverage and FWHM was done in Python version
2.7.6 (using stats.spearmanr function in the scipy package version 0.18.1).

To test whether the somatic mutation callers were in greater agreement for
cancer genome sequences with 4 stars or more we used a two-sided
Mann–Whitney-U test and corrected the 3 tests (from SSM, SIM and SStMs) using
the Benjamini/Hochberg method with false discovery rate of 0.05 in Python version
2.7.6 (with the stats.mannwhitneyu function and stats.multicomp.multipletests
function in the scipy package version 0.18.1) with the results are shown in
Supplementary Table 1.

Linear regression models. To construct linear regression models to see the
relationship between the proportion of calls supported by four callers, we used the
lm function of R version 3.3.2. The linear regression model is of the form:

Yi ¼ β0 þ β1ðXi1Þ þ � � � þ βnðXi9Þ þ ϵi

where i= 1, ⋯ , n samples for the proportion of calls supported by four callers Y.
For SSMs and SIMs we had 2657 donors for which we had a normal and tumour
sample pair and for which the mutation calls were available (i.e. the samples were
not on the exclusion list). For SStMs, there were 2524 samples, as the calling
pipeline was not completed on all samples.

Xi1,⋯,9 are the nine QC measures (mean coverage for normal and tumour
samples, FWHM measures for normal and tumour samples, somatic mutation
calling coverage, paired reads mapping to different chromosomes for normal and
tumour samples, and the ratio of difference in edits between paired reads for
normal and tumour samples) for sample i. The median coverage over the mean
coverage was not included in the model as this measure is not monotonic
increasing or decreasing with respect to the increasing evenness of the coverage.

β0,⋯,n are the coefficients we look to estimate, if they are positive, an increasing
QC measure has a positive effect on the proportion of calls supported by four
callers, and the reverse if negative.

ϵi represents the errors in the relationship.
All the p-values from these linear regression models have been corrected using

the Benjamini/Hochberg method with false discovery rate of 0.05.
The results are shown in Supplementary Tables 2–4.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data is from donors involved in PCAWG were recruited by local centres following
local protocol including obtaining informed consent. PCAWG was overseen by both the
TCGA and ICGC. The whole-genome sequences of the normal and the tumour sample
used in this paper can be downloaded from the PCAWG page in the ICGC Data Portal:
https://dcc.icgc.org/pcawg. No accession codes are needed, as only data from the
PCAWG project is provided on this page in the portal. From the aligned reads
downloaded from here, and using our Docker package it will be possible to recalculate
our QC measures. We have also included the QC measures and star rating in
Supplementary Data 1. Figure 1a, b are plotted by ACESeq19 during a real time reading
of the input coverage files. Source data are provided with this paper.
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