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Abstract. Embedded systems such as automotive systems are very com-
plex to specify. Since it is difficult to capture all their requirements or
their design in one single model, approaches working with several sys-
tem views are adopted. The main problem there is to keep these views
coherent; the issue is known as view reconciliation. This paper proposes
an algebraic solution. It uses sets of integration constraints that link
(families of) system features in one view to other (families of) features
in the same or a different view. Both families and constraints are for-
malized using a feature algebra. Besides presenting a constraint relation
and its mathematical properties, the paper shows in several examples
the suitability of this approach for a wide class of integration constraint
formulations.

1 Introduction

The adoption of the product family paradigm in software development aims at
recognising a reality in software development industry pointed to by Parnas [15]
decades ago. The research work about software product families aims at studying
the commonalities/variability occurring among the products in order to have a
better management of and processes for software production. Also, the family ap-
proach to software development proposes that, instead of focusing our attention
on a single software system to be built, we take into account predictable changes.
Thereby, the analysis and design of a family of software systems that share a
core part (commonalities among all the members) is considered. Software prod-
uct line engineering, which is a family-oriented software production process and
technique, seems to be adopted by both practitioners and researchers to deal
with changes in the requirements and thereby a reconsideration of the corre-
sponding designs. The idea behind product line engineering is to take advantage
of the commonality of systems that are developed for a specific domain. Weiss
and Lai [16, Preface, page xvii] report that applying family-based processes at
Lucent Technologies led to decreases in development time and costs for family
members by 60% to 70%.

Embedded systems such as automotive systems are very difficult to specify
using one single model that takes into consideration the software and the hard-
ware of the system. However, in engineering and in such a situation, it is common



to adopt a multi-view approach. For instance, at the construction of a building,
the specifiers elaborate many views of the building: structure view, plumbing
view, electrical wiring view, etc. These views need to be coherent. When we take
this view-approach to software product families, the complexity of the problem
increases: each member of the family of each view needs to be coherent with
some members of each of the other views.

Each view gives a partial description of the considered family. The descrip-
tion includes a mixture of incidental and required features/properties. Recon-
ciling these views when integrating them helps to eliminate the incidental fea-
tures/properties of the family, which leads to the convergence towards a speci-
fication of the family. It is worth noting that this specification might not be a
complete one; it depends on the domain coverage of the views.

There is a wide literature on the reconciliation of non-functional require-
ments such as security and performance [3]. For instance security requires care-
ful scrutinizing of data, which could affect system’s performance. Also, we find
approaches to resolve architectural mismatches resulting from integrating com-
mercial off-the-shelf (COTS) components. The mismatches are essentially be-
tween the services required and provided that might arise in the interaction of a
component and its environment. However these approaches do not directly relate
to the problem we are tackling in this paper. They tackle the reconciliation of
two architectural models: one that is forward engineered from the requirements
specification and a second that is reverse-engineered from the COTS-based sys-
tem implementation [2]. Also, a similar problem occurs when merging views of
a database and it is called view reconciliation problem [11]. The above cases
are considering the development of a single software system and not a software
family. The mismatches that we are concerned with are at the level of the fea-
ture model in the initial phase of the software development process before the
architectural design.

Also, the literature regarding the sequential completion method for the de-
velopment of software systems, proposes a variety of solutions to the view rec-
onciliation problem [4, 17]. However, they deal with the integration of partial
descriptions such as scenarios, use-cases, and viewpoints of requirements for a
single system. In this paper, we introduce a technique for an overall integra-
tion of descriptions of a product family from several views/perspectives. The
proposed formalism allows the integration of descriptions of a family from views
that can be either orthogonal (e.g. software and hardware) or may overlap. Some
views might impose constraints on others. We aim at integrating product fam-
ily descriptions to obtain a specification of the considered family that does not
include members violating the constraints of integration which relate features
from one view with others from the same or a different view. To perform such
an integration, mainly two problems need to be resolved. The first is how to
articulate the constraints of integration, and the second is to perform the inte-
gration of partial family descriptions taking into account these constraints and
leading to a coherent specification of the considered family. A review of the liter-
ature of product family based software development reveals a wide set of notions
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and terms used without formal definitions. However, in [6, 7] a clear and simple
mathematical setting for the usage of this paradigm is proposed. In the present
paper, we extend that approach to cover the view reconciliation problem.

In Section 2, we define feature algebra, products and features and present
a refinement relation. In Section 3, we introduce a requirement relation and
elaborate on its properties and its use to formally capture informal integration
constraints. In Section 4, we sketch the multi-view reconciliation problem. In
Section 5, we present a larger case study. We conclude and point to future
research in Section 6.

2 Feature Algebra

In this section, we introduce the algebraic structure of feature algebra. Since it
is based on semirings we will first present these. Afterwards, we will give an idea
on some notions defined within this mathematical structure.

Definition 2.1 A semiring is a quintuple (S, +, 0, ·, 1) such that (S, +, 0) is a
commutative monoid and (S, ·, 1) is a monoid such that · distributes over + and
0 is an annihilator, i.e., 0 · a = 0 = a · 0. The semiring is commutative if ·
is commutative and it is idempotent if + is idempotent, i.e., a + a = a. In the
latter case the relation a ≤ b ⇐⇒df a + b = b is a partial order, i.e., a reflexive,
antisymmetric and transitive relation, called the natural order on S. It has 0 as
its least element. Moreover, + and · are isotone with respect to ≤.

In our current context, + can be interpreted as a choice between options
of products and features and · as their composition or mandatory presence.
An important example of an idempotent (but not commutative) semiring is
REL, the algebra of binary relations over a set under relational composition.
More details about (idempotent) semirings and examples of their relevance to
computer science can be found,e.g., in [5].

In the literature, terms like product family and subfamily lack exact defini-
tions. Following [7, 6] we use the following algebraic definitions for these terms.

Definition 2.2 A feature algebra is an idempotent and commutative semiring.
Its elements are termed product families.

These elements can be considered as abstractly representing sets of products,
each of which is composed of a number of features. In the remainder let F =
(S, +, 0, ·, 1) be a feature algebra.

Definition 2.3 An element a is said to be a product if

∀ b : b ≤ a =⇒ b = 0 ∨ b = a ∧ ∀ b, c : a ≤ b + c =⇒ (a ≤ b ∨ a ≤ c) . (1)

Note that 0 is a product. A product a is proper if a 6= 0.
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Intuitively, this means that a product cannot be divided using the choice op-
erator +. Or in other terms, it does not offer optional or alternative features.
With this definition we deviate slightly from the one in [7, 6] to avoid tedious
case analyses.

Analogously to Definition 2.3, indecomposability can be required, but this
time w.r.t. multiplication rather than addition.

Definition 2.4 An element a is called feature if it is a proper product and

∀ b : b | a =⇒ b = 1 ∨ b = a ∧ ∀ b, c : a | (b · c) =⇒ (a | b ∨ a | c) , (2)

where the divisibility relation | is given by x | y ⇐⇒df ∃ z : y = x · z. The
algebra is feature-generated if every element is a finite sum of finite products of
features. In this case, the size of element a is the minimum number n such that
a =

∑
i<n

pi for suitable products pi.

From the mathematical point of view, the characteristics of products (1) and
features (2) are similar and well known. A uniform treatment of both notions
is given in the Appendix of [6], where also the order-theoretic background is
discussed. Other notions and similarity measures among families, like generated
products, refinement of families, k-near similarity of two families, weak zero, and
subfamily , are also defined and discussed. An important tool is the

Principle of Family Induction: Assume a feature-generated algebra A and
a predicate P on A. If P (p) holds for all products p ∈ A (induction base) and is
preserved by addition, i.e., satisfies P (b) ∧ P (c) =⇒ P (b + c) (induction step)
then P (a) holds for all a ∈ A. The soundness of this principle is shown by a
straightforward induction on the size of the elements of A.

A particular feature-generated algebra over a set of basic features can be
constructed in the following way. Take as products finite bags (or multisets)
of basic features and as elements finite sets of such bags. Use set union for +
and (essentially) bag union for · . This yields a feature algebra in which · is
not idempotent, since bags record the multiplicities of features. We will refer
to this algebra as the bag model . If one does not want to distinguish multiple
occurrences of features, one can use sets rather than bags of basic features; this
yields an algebra with idempotent · to which we will refer as the set model . In
both models the size of an element is its cardinality.

Example 2.5 We assume a small company which has a family of two product
lines: DVD Players and MP3 Players. All its members share a list of common
features (audio equaliser (a eq) and dolby surround (dbs)). Members can also
have some mandatory features and might have some optional features that an-
other member of the same product line lacks. For instance, we can have a DVD
Player able to play mp3-files (p mp3) while another does not have this feature.
However, all the DVD players must have the play DVD (p dvd) feature. Sim-
ilarily, some but not all MP3 players are able to record mp3-files (r mp3).
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Therefore we can characterise the product lines as

dvd player = p dvd · (1 + p mp3) · a eq · dbs ,
mp3 player = p mp3 · (1 + r mp3) · a eq · dbs .

The whole product family is the combination of both players via choice:

(p dvd · (1 + p mp3) + p mp3 · (1 + r mp3)) · a eq · dbs . ut

Now we return to general feature algebras. The refinement relation is defined
as a v b ⇐⇒df ∃ c : a ≤ b · c and forms a preorder, i.e., it is reflexive and
transitive. Informally, a v b means that every product in a has (at least) all the
features of some product in b, but possibly additional ones. It is easy to see that
divisibility implies refinement:

a | b =⇒ b v a . (3)

The reverse implication need not hold for the following reason: b v a allows that
some variants of b may be discarded, whereas a | b means that all variants of b
can be extented to have an a. However, since products are defined to be elements
with only one variant, refinement and divisibility coincide in particular feature
algebras if the refinee is a product:

Lemma 2.6 Let a, p be elements of a feature-generated algebra such that p is a
product. Then refinement and divisibility coincide, i.e., a v p ⇐⇒ p | a.

Because of this lemma, in such algebras we may pronounce b v p as “b has
p (as a subproduct)”. The representations of the elements in sum-of-products
form corresponds to or/and trees of features.

We list a few further useful properties of the refinement relation.

Lemma 2.7 Let a, b, c, p be elements of a feature algebra such that p is a product.

(a) a v a + b.
(b) a · b v a.
(c) a + b v c ⇐⇒ a v c ∧ b v c.
(d) p v a + b ⇐⇒ p v a ∨ p v b.

The paper [7] also gives some useful applications of feature algebras concern-
ing finding common features, building up product families, finding new products
and excluding special feature combinations.

Moreover, finding the commonalities of a given set of products is a very
relevant issue, since the identification of common artifacts within systems (e.g.
chips, software modules, etc.) enhances hardware/software reuse. Within feature
algebras like the set-based model and the bag-based model, this problem can
be formalised as finding “the greatest common divisor” or to factor out the
features common to all given products. It is a direct use of “classical” algorithms
which shows an advantage of using an algebraic approach. Solving gcd (greatest
common divisor) is well known and easy, whereas finding commonalities using
diagrams (e.g., FODA [12]) or trees (e.g., FORM [13]) is more complex. Other
properties such as
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“If a product has feature f1 it also must have feature f2”

can be modelled using feature algebra and are discussed in the next section. To
check the adequacy of the proposed definitions a prototype implementation of the
bag model3 has been written in the functional programming language Haskell.
Features are simply encoded as strings. Bags are represented as ordered lists
and · as bag union by merging. Sets of bags are implemented as repetition-free
ordered lists and + as repetition-removing merge. This prototype can normalise
algebraic expressions over features into a sum-of-products-form.

3 Requirements: Implications and Exclusions

When the specification of a product or that of a family of products is tackled
by adopting a multi-view approach, constraints on the integration of the views
are elicited as well. These constraints very often link the presence of a feature
in a partial description taken from one view to another feature in the same
or another view. They can link subproduct or subfamilies as well. A common
informal formulation of these constraints can be illustrated by the following:

“If a member of a product family has property p1 it also must have
property p2” or
“If a member of a product family has property p1 it must not have
property p2”.

Such integration constraints can easily be formulated in feature algebra. To
achieve this goal we introduce the following requirement relation.

Definition 3.1 Assume a feature-generated algebra. For elements a, b and prod-
uct p we define, in a family-induction style,

a
p→ b ⇐⇒df (p v a =⇒ p v b) ,

a
c+d→ b ⇐⇒df a

c→ b ∧ a
d→ b .

Now a
e→ b is well defined for all e, since by assumption e can be written as

a finite sum of products. Informally a
e→ b means that if e has a then it also

has b. From a mathematical point of view, if a and b are products then a
e→ b

coincides with a
e→ l where l is the least common multiple of a and b. In the

bag model the least common multiple of two bags p and q is the “smallest” bag
refined by p and q. For example, assume the features wheel and axis. Then the
least common multiple of wheel4 ·axis and wheel3 ·axis2 is wheel4 ·axis2. The
requirement that in a product line a two wheels need an axis is expressed by
wheel2 a→ axis. Later on we present more examples of the requirement relation.

Lemma 3.2 Let a, b, c, d be elements of a feature-generated algebra.
3 The program and a short description can be found at:

http://www.informatik.uni-augsburg.de/∼hoefnepe/featurealgebra .
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(a) a→ is a preorder.
(b) Let b v c, then c

a→ d =⇒ b
a→ d and (d a→ b) =⇒ (d a→ c).

In particular, b v c =⇒ b
a→ c.

(c) Let b ≤ c, then c
a→ d =⇒ b

a→ d and d
a→ b =⇒ d

a→ c.
In particular, p ≤ q =⇒ p

a→ q.

Since variants of semirings are already successfully combined with automated
theorem provers [9, 10], we implemented feature algebra axiomatically in the
first-order theorem prover Prover9 and the counterexample generator Mace4 [14].
Using this encoding we can prove all the theorems and lemmas presented fully
automatically. For the sake of readability we do not display the input/output
files and machine proofs. They all can be found at a web-site [1]. Proofs by hand
can be found in Appendix A.

Lemma 3.3 Let a, b, c, d, p be elements of a feature-generated algebra.

(a) b
a→ b + c.

(b) b · c a→ b.
(c) b

a→ c =⇒ b
a→ c + d.

(d) b
a→ d =⇒ b · c a→ d.

(e) If p is a product, then b
p→ c =⇒ b + d

p→ c + d.
(f) a

e→ b ∧ c
e→ d =⇒ a · c e→ b ∧ a · c e→ d.

(g) a + b
e→ c ⇐⇒ a

e→ c ∧ b
e→ c.

Before looking at the multi-view reconciliation problem we will give some
small examples of how the above relation can be used.

Example 3.4 In the sequel we assume that a vehicle is built up from the follow-
ing components (features): wheel, axis, steering−wheel, speed indicator,
engine, standard transmission and automatic transmission.

– engine
car−→ speed indicator guarantees that every motor vehicle of the

family a has also a speed indicator.
– wheel

car−→ steering−wheel and engine
car−→ steering−wheel means that

there is at least one steering-wheel if the vehicle has at least one wheel or
one engine.

– To exclude more than one steering-wheel, one can use the requirement
(steering−wheel) · (steering−wheel) car−→ 0.

– (wheel · wheel)n car−→ axisn (for all n ∈ IN) guarantees that each pair of
wheels can be connected by a single axis.

– To express that a car has to have an even number of wheels we can use
wheel2n+1 car−→ wheel2n+2.

So far we have used only requirements for products. However, our requirement
relation can also be used more generally. For instance, we may wish to express
the following:
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“If a member of a product family has feature p1 it also needs to have
feature p2 or feature p3”.

For this we may simply write p1
car−→ (p2 + p3).

– Thus, by engine
car−→ standard transmission + automatic transmission

we require that if a car has an engine it also needs to have a standard
transmission or an automatic one.

An application of such an integration contraint occurs when sensors are used,
because then very often several technologies are adopted. We can have require-
ments demanding that either of the technologies be used. Last, but not least, one
can use the product family 1 consisting just of the empty product to guarantee
the existence of other elements.

– For example 1 car−→ engine enforces that each car has (at least) one engine.
ut

The third item above shows how to describe exclusion using a→. While a
global mutual exclusion of products p and q can be expressed by the additional
axiom p · q = 0, practically, expressing exclusion using a→ is more suitable. Very
often we exclude combination of features only within a particular product (or
family) a. The exclusion using a→ has scope a, whereas p · q = 0 does not have
an explicit scope. Therefore our requirement relation fits well with the exclusion
concept of [7].

Finally, to express global product implication, one might define

b
∗→ c ⇐⇒df ∀ a : b

a→ c . (4)

However, this relation is uninteresting by the following result.

Lemma 3.5 Let b, c be elements of a feature-generated algebra.
Then b

∗→ c ⇐⇒ b v c. In particular, b
∗→ 0 ⇐⇒ b v 0 ⇐⇒ b = 0.

Since the proof only uses reflexivity and transitivity of v, it generalises to
arbitrary preorders. In fact, we have the following result.

Lemma 3.6 For an arbitrary binary relation Q define the relation RQ by

x RQ y ⇐⇒df (∀x : xQy =⇒ xQz) .

(a) RQ is a preorder.
(b) A relation � is a preorder iff it satisfies the principle of indirect inequality,

i.e., coincides with R�.

8



4 Multi-View Reconciliation Problem

In this section we sketch the multi-view reconciliation problem. Later on, we
illustrate the problem with a small example. In Section 5 we will present a
larger case study.

When we approach the specification of a product family from different per-
spectives, we can easily show that these perspectives are somehow interdepen-
dent. When this interdependence is known, how can we integrate them taking
into account their interdependence, which can be captured by a set of integration
constraints?

We will show that simple multiplication, i.e., the Cartesian product, of fam-
ilies combined with the requirement relation yields the desired behaviour. On
the basis of our algebra we can tackle the feature reconciliation problem in the
following way:

– Take two product lines a and b and a set of implication clauses of the form
c

a·b−→ d.
– Write a and b in sum-of-products form.
– Now form a ·b, multiplying out and removing all products from the resulting

sum that do not respect the implication clauses.

A a simple example we assume a company which produces computers. In
particular, it builds machines with a harddisk and a screen. Additionally, a
second screen, a printer or a scanner can be ordered. Of course, it is possible to
have more than one extension for the basic computer. Using the abbreviations
hd, scr, prn and scn this yields the following element in feature algebra4:

hw = hd .*. scr .*. opt[scr , prn , scn]

where opt[...] describes the optional features. In fact the company produces
exactly 8 different machines. Next to the company producing hardware, we as-
sume a software company implementing drivers. At the moment it offers only
two different software packages.

sw = hd_drv .*. scr_drv .*. prn_drv

.+. hd_drv .*. scr_drv .*. scn_drv

The first one contains drivers for harddisks, screens and printers; the second for
harddisks, screens and scanners. The Multi-View Reconciliation Problem asks
for all products that satisfy the following requirements:

hd
hw.∗.sw
−−−→ hd drv

scr
hw.∗.sw
−−−→ scr drv

prn
hw.∗.sw
−−−→ prn drv

scn
hw.∗.sw
−−−→ scn drv

4 We are using the Haskell notation of our implementation, i.e., .*. and .+. denote
multiplication and addition, resp.
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These requirements guarantee that each hardware component has an appropriate
driver. For this we use the function reconc that takes two product families a

and b and a list of pairs (c, d) that represent requirements c
a·b−→ d and solves the

multi-view reconciliation problem by the procedure described above. Therefore
the call

reconc hw sw

[(hd,hd_drv), (scr,scr_drv), (prn,prn_drv), (scn,scn_drv)]

determines all desired products, 8 in number:

---------------------------------------------------------------------

harddisk, harddisk driver

printer, printer driver

screen (2x), screen driver

---------------------------------------------------------------------

harddisk, harddisk driver

printer, printer driver

screen, screen driver

---------------------------------------------------------------------

harddisk, harddisk driver

printer driver

screen (2x), screen driver

---------------------------------------------------------------------

harddisk, harddisk driver

printer driver

screen, screen driver

---------------------------------------------------------------------

harddisk, harddisk driver

scanner, scanner driver

screen (2x), screen driver

---------------------------------------------------------------------

harddisk, harddisk driver

scanner, scanner driver

screen, screen driver

---------------------------------------------------------------------

harddisk, harddisk driver

scanner driver

screen (2x), screen driver

---------------------------------------------------------------------

harddisk, harddisk driver

scanner driver

screen, screen driver
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---------------------------------------------------------------------

Let us have a closer look at the result set. First, there is no machine with scanner
and printer. This is due to the fact that there is no software package having
drivers for both components. Furthermore, there are two different versions of
the hardware product consisting of harddisk and screen(s) only. The versions
offer software for scanners and printers , respectively. Such products can be seen
as hardware with an upgrade option. That means that the customer can add a
hardware component without changing the software.

Finally, it should be mentioned that, symmetrically to the combination of
product lines, one can extract views of product families by simple projection on
the respective feature sets.

5 Illustrative Case Study of the Multi-View
Reconciliation Problem

Due to lack of space we only point out the interesting bits of the case study. The
whole specification and the corresponding Haskell code can be found in [8].

We consider a family of Driver Assisting Systems described from a functional
perspective and from a sensor perspective. The latter perspective includes only
the sensors needed by the products.

The functional description is built up from the following basic components:

“Road sign recognition and indication” (rd sgn rcg),
“Far Infra-Red detection” (fir),
“Thermal imaging detection” (tid),
“Line departure warning” (ldw),
“Blind spot monitoring” (bsm),
“Adaptive Cruise Control following control” (acc f c),
“Emergency braking” (e braking),
“Urban Adaptive Cruise Control (stop & go)” (u acc),
“Automatic steering and braking” (aut str brk),
“Automatic line keeping” (aut lane),
“Obstacle avoidance” (obst avd) and
“Obstacle warning” (obst wrng).

More advanced products are combinations of other components. For example,
the functional description of night vision consists of far infra-red technology
(fir) or a simple thermal infra-red imaging technology (tid). The component
for driver information and warning (driver i w) is the combination of the three
mandatory basic features rd sgn rcg, ldw and bsm, and the ability of night
vision.

n_vision = fir .+. tid .+. (fir .*. tid)

driver_i_w = rd_sgn_rcg .*. ldw .*. n_vision .*. bsm

To describe the complete product line for the driver assisting system from the
functional perspective we use further components for automatic longitude control
(aut long ctrl) and automatic lateral control (aut ltrl ctrl). The details are
described in [8]. The whole product line is then characterized by

11



p_line_driver_assist_sys = obst_wrng .*. opt[obst_avd, driver_i_w]

.*. opt[aut_long_ctrl, aut_ltrl_ctrl]

where opt[...] describes again optional features. It is easy to see that this
product family contains products with both far and thermal infra-red technology.
From an industrial point of view one of the both technologies is just redundant
if both occur and yields to extra costs. Therefore we use the requirement

fir. ∗ .tid
p line driver assist sys

−−−−−−−−−−−−−−−−→ 0 .

The restricted result res p line driver assist sys yields a size reduction
of 25%. In real life this would lead to an immense decrease of costs. Moreover,
by simple algebraic calculations done automatically by our prototype, we can
list its common features.

printfeat (common res_p_line_driver_assist_sys)

shows that obstacle warning (obst wrng) is the only common feature. This result
shows that (a) every product of the driver assisting system must have such a
warning system and (b) that the company can produce one single version of such
a system for all its products.

In the sequel we focus on another view. Instead of discussing functional de-
scriptions of our system we now focus on sensors and actuators. In particular,
this view describes the kind of sensors needed by the family to gather the infor-
mation necessary for the above functional features.

Similar to the functional view, we first list the basic features for the actuator
and sensor view:

“Acceleration pulsator” (acclrt pulsator),
“Acceleration of the wheel sensor” (acclrt wheel),
“Acceleration of the body of the vehicle sensor” (acclrt body),
“Displacement of the wheel sensor” (dis wheel),
“Displacement of the body of the vehicle sensor” (dis body),
“Brake temperature sensor” (brk temp),
“CO2 sensor” (co snsr),
“Position sensor” (position),
“Load data sensor” (load),
“Adaptive Cruise Control radar” (acc radar),
“Adaptive Cruise Control laser” (acc laser),
“Adaptive Cruise Control video camera” (acc v cam),
“Adaptive Cruise Control Infra-red camera” (acc ir cam) and
“Adaptive Cruise Control Far-Infra-red camera” (acc far ir).

To describe the complete on-board sensor configuration we use the following
combined features (for details see again [8]):

“Acceleration Sensors” (acclrt sensors),
“Displacement Sensors” (dis sensors) and
“Adaptive Cruise Control Sensors” (acc sensors).
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The complete description of all on-board sensors then becomes

on_board = opt[co_snsr] .*. opt[brk_temp .^. 4] .*. acclrt_sensors

.*. dis_sensors .*. acc_sensors .*. opt[position .^. 8]

where a.^.n = a.*. ... .*.a denotes the standard power function. Similar
to the requirement constaint of the functional description view, we have the
following exclusion constraints:

acc radar. ∗ .acc laser
on board
−−−−−→ 0 ,

acc far ir. ∗ .acc ir cam
on board
−−−−−→ 0 .

The restricted set of possible sensor configurations res on board is about
76% smaller than the unrestricted version. Therefore adding simple restriction
constraints can yield an immense and useful decrease of the variety of products.

The functional and the sensor view now form the basis for the multi-view
reconciliation problem. To link these two perspectives we set up the following
requirements:

driver i w
x→ acclrt pulsator. + .co snsr. + .position ,

e braking
x→ brk temp. ∗ .position ,

aut str brk. + .aut lane
x→ dis wheel. ∗ .acclrt body. ∗ .load ,

where x = res p line driver assist sys. ∗ .res on board. Due to lack of space
we cannot explain these requirements in detail; we only sketch the idea of the
second one. In the case of an emergency break, the sensors have to control the
temperature of the break and at the same time the current position has to be
checked to react if there is an obstacle in front.

Now we can use the described algorithm to solve the multi-view reconciliation
problem. This yields a general product family of 30240 different models.

6 Conclusion and Future Work

We have presented an algebraic framework for solving the multiview reconcili-
ation problem. The main ingredient is a set of integration constraints that link
features or more generally subfamilies in one view description to other features
or sub-families in the same or another view description. The integration process
leads to a more accurate specification of a product family by excluding the mem-
bers that do not satisfy the integration constraints. The description of a family
as well as the integration constraints are given within the same mathematical
framework of feature algebra. We have presented the mathematical properties of
a requirement relation that we use to express the view integration constraints.
Several examples have shown the capabilities of this approach for dealing with
a wide class of integration constraint formulations.

The main characteristics of the proposed approach are the following:
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– The conflict resolution among views is performed without modification on
the initial views. It is a direct application of the principle of separation of con-
cerns. Each specifier can concentrate on capturing a description of a product
family from his view without being constrained to conform to some other
specifier’s view. In a second step one can focus the attention on the con-
straints that govern the integration of the considered views. The global view
of the product family is then obtained by simple algebraic manipulations.
This approach is suitable for graceful aging and evolution of product family
specifications: each time a view changes the global view can be automatically
re-generated.

– The mathematical background needed to specify product family views as
well as the integration constraints involve only simple concepts that we can
realistically expect all stakeholders to understand and relate to.

– Due to the simplicity of the mathematical framework, the reasoning on prod-
uct families as well as on view integration can be automated in provers such
as Prover9 [14] and prototypically implemented over some useful models of
feature algebra in Haskell.

The algebraic model of features is at very high level of abstraction. From
a software perspective, a feature could be a requirement scenario/use-case or a
partial description of the functionality. Our future research aims at investigating
the derivation of the specifications of members of a family from its abstract fea-
ture algebra specification and the specifications of each of its features. This step
would joint the ongoing research efforts for formal model driven software devel-
opment techniques. The feature algebra model of a family and the specifications
of the family’s features would be the initial models of the sought transformation.
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5. J. Desharnais, B. Möller, and G. Struth. Modal Kleene algebra and applications
– A survey. Journal on Relational Methods in Computer Science, 1:93–131, 2004.
http://www.cosc.brocku.ca/Faculty/Winter/JoRMiCS/.
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8. P. Höfner, R. Khedri, and B. Möller. Algebraic view reconciliation. Technical
Report Report 2007-XX, Institut für Informatik, Universität Augsburg, 2007. (to
appear).

14
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A Omitted Proofs

Proof of Lemma 2.6. Assume a ≤ c·p for some element c =
∑
i∈I

qi with finite index

set I and products qi. By distributivity, a ≤
∑
i∈I

qi · p. This means a =
∑
i∈J

qi · p

for some subset J ⊆ I. Again, by distributivity, a = (
∑
i∈J

qi) · p, showing p|a. ut

Proof of Lemma 2.7.
(a) a ≤ a + b = (a + b) · 1.
(b) Choose c = b in the definition of refinement.
(c) See Lemma 4.6 of [7].
(d) (⇐) follows by (a) and transitivity of v.

(⇐) Assume p ≤ (a + b) · c = a · c + b·. Since p is a product, we have
p ≤ a · c ∨ p ≤ b · c, which shows the claim. ut

Proof of Lemma 3.2. The claims are shown by family induction. We only give
the induction base cases; the induction steps are straightforward predicate logic.
(a) Reflexivity follows immediately from the definition. Transitivity holds by

transitivity of implication.
(b) Let p be a product. First we show c

p→ d =⇒ b
p→ d. Therefore we assume

b v c, c
p→ d and p v b. Then by transitivity of v we get p v c and hence

also p v d. The second claim is proved similarly.
For the third claim set d = c in the first claim or d = b in the second claim
and use reflexivity of a→.

(c) Immediate from (b) using b ≤ c =⇒ b v c. ut
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Proof of Lemma 3.3. Again the claims are shown by family induction for which
we only do the base cases.
(a) By Lemma 2.7(a) q v b implies q v b + c by b v b + c and transitivity of v.
(b) Assume q v b · c, i.e., ∃ f.q ≤ b · c · f . Setting c′ =df c · f shows q v b.
(c) Immediate from Lemma 3.2(b) by c v b + c.
(d) Immediate from Lemma 3.2(b) by b · c v b.
(e) Assume p v b + d. Since p is a product, this implies p v b or p v d. In the

first case, p v c v c + d by b
p→ c and Lemma 2.7(b). In the second case

p v d v c + d.
Note that this property cannot be lifted to arbitrary elements using the sum
of products form, since we use a special property of products.

(f) Immediate from Part (c).
(g) By definition of

p→, Lemma 2.7(d), predicate logic and definition of
p→ again,

(e + f
p→ c) ⇐⇒ (p v e + f =⇒ p v c)

⇐⇒ ((p v e =⇒ p v c) ∧ (p v f =⇒ p v c))
⇐⇒ (e

p→ c ∧ f
p→ c)

ut

Proof of Lemma 3.5. (⇐) We assume b v c. Then, by Lemma 3.2(b), b
a→ c for

all a. By definition this is the same as b
∗→ c.

(⇒) We use family induction on b.
Induction base, i.e., b a product: Spelling out the definition yields b

∗→ c ⇐⇒
(∀ a : b

a→ c). Choosing a = b implies b
b→ c which is equivalent to b v b =⇒

b v c, since b is a product. This immediately yields the claim.
Induction step, i.e., b = e + f . We again set a = b and reason as follows, using
the definition of

e+f→ , Lemma 3.3(g), predicate logic, the induction hypothesis
and Lemma 2.7(d),

e + f
e+f→ c ⇐⇒ e + f

e→ c ∧ e + f
f→ c

⇐⇒ e
e→ c ∧ f

e→ c ∧ e
f→ c ∧ f

f→ c

=⇒ e
e→ c ∧ f

f→ c =⇒ e v c ∧ f v c ⇐⇒ e + f v c .

ut

Proof of Lemma 3.6.
(a) Reflexivity: By definition, y RQ y ⇐⇒ (∀x : x Qy =⇒ x Qy) which is

true by predicate logic.
Transitivity: Assume y RQ z ∧ z RQ u and, for arbitrary x, that x Qy. Then,
by the first assumption, also x Qz and hence, by the second assumption,
also x Qu, as required.

(b) (⇒) is shown as in the proof of Lemma 3.5.
(⇐) is immediate from (a). ut
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