

Rising rural body-mass index is the main driver of the global obesity epidemic in adults

Majid Ezzati, Christa Meisinger

Angaben zur Veröffentlichung / Publication details:

Ezzati, Majid, and Christa Meisinger. 2019. "Rising rural body-mass index is the main driver of the global obesity epidemic in adults." *Nature* 569 (7755): 260–64. https://doi.org/10.1038/s41586-019-1171-x.

Rising rural body-mass index is the main driver of the global obesity epidemic in adults

NCD Risk Factor Collaboration (NCD-RisC)*

Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities^{1,2}. This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity³⁻⁶. Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017—and more than 80% in some low- and middle-income regions—was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing—and in some countries reversal—of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.

Being underweight or overweight can lead to adverse health outcomes. BMI—a measure of underweight and overweight—is rising in most countries². It is commonly stated that urbanization is one of the most important drivers of the worldwide rise in BMI because diet and lifestyle in cities lead to adiposity³⁻⁶. However, such statements are typically based on cross-sectional comparisons in one or a small number of countries. Only a few studies have analysed how BMI is changing over time in rural and urban areas. The majority have been in one country,

over short durations, and/or in one sex and narrow age groups. The few studies that covered more than one country $^{7-12}$ used at most a few dozen data sources and hence could not systematically estimate trends, and focused primarily on women of child-bearing age.

Data on how BMI in rural and urban populations is changing are needed to plan interventions that address underweight and overweight. Here, we report on mean BMI in rural and urban areas of 200 countries and territories from 1985 to 2017. We used 2,009 population-based studies of human anthropometry conducted in 190 countries (Extended Data Fig. 1), with measurements of height and weight in more than 112 million adults aged 18 years and older. We excluded data based on self-reported height and weight because they are subject to bias. For each sex, we used a Bayesian hierarchical model to estimate mean BMI by year, country and rural or urban place of residence. As described in the Methods, the estimated trends in population mean BMI represent a combination of (1) the change in the health of individuals due to change in their economic status and environment, and (2) the change in the composition of individuals that make up the population (and their economic status and environment).

From 1985 to 2017, the proportion of the world's population who lived in urban areas 1 increased from 41% to 55%. Over the same period, global age-standardized mean BMI increased from 22.6 kg m $^{-2}$ (95% credible interval 22.4–22.9) to 24.7 kg m $^{-2}$ (24.5–24.9) in women, and from 22.2 kg m $^{-2}$ (22.0–22.4) to 24.4 kg m $^{-2}$ (24.2–24.5) in men. The increase in mean BMI was 2.09 kg m $^{-2}$ (1.73–2.44) and 2.10 kg m $^{-2}$ (1.79–2.41) among rural women and men, respectively, compared to 1.35 kg m $^{-2}$ (1.05–1.65) and 1.59 kg m $^{-2}$ (1.33–1.84) in urban women and men. Nationally, change in mean BMI ranged from small decreases among women in 12 countries in Europe and Asia Pacific, to a rise of >5 kg m $^{-2}$ among women in Egypt and Honduras. The lowest observed sex-specific mean BMI over these 33 years was that of rural women in Bangladesh of 17.7 kg m $^{-2}$ (16.3–19.2) and rural men in

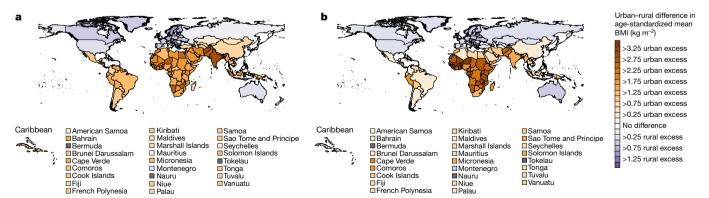


Fig. 1 | The difference between rural and urban age-standardized mean BMI in women. a, Difference in age-standardized mean BMI in 1985. b, Difference in age-standardized mean BMI in 2017. We did not estimate the difference between rural and urban areas for countries and territories in which the entire population live in areas classified as urban (Singapore,

Hong Kong, Bermuda and Nauru) or rural (Tokelau)—shown in grey. See Extended Data Fig. 2 for mean BMI at the national level and in rural and urban populations in 1985 and 2017. See Extended Data Fig. 6 for comparisons of the results between women and men.

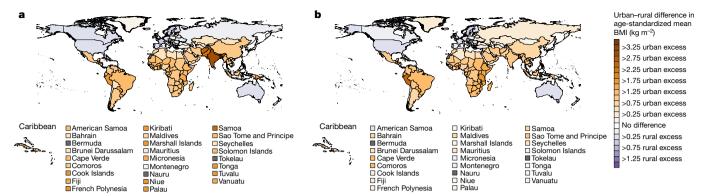


Fig. 2 | The difference between rural and urban age-standardized mean BMI in men. a, Difference in age-standardized mean BMI in 1985.
b, Difference in age-standardized mean BMI in 2017. We did not estimate the difference between rural and urban areas for countries and territories in which the entire population live in areas classified as urban (Singapore,

Hong Kong, Bermuda and Nauru) or rural (Tokelau)—shown in grey. See Extended Data Fig. 3 for mean BMI at the national level and in rural and urban populations in 1985 and 2017. See Extended Data Fig. 6 for comparison of results between women and men.

Ethiopia of 18.4 kg m^{-2} (17.0–19.9), both in 1985; the highest were 35.4 kg m⁻² (33.7–37.1) for urban women and 34.6 kg m⁻² (33.1–35.9) for rural men in American Samoa in 2017 (Extended Data Figs. 2, 3), representing a twofold difference.

In 1985, urban men and women in every country in east, south and southeast Asia, Oceania, Latin America and the Caribbean and a region that comprises central Asia, the Middle East and north Africa had a higher mean BMI than their rural peers (Figs. 1, 2). The urban–rural

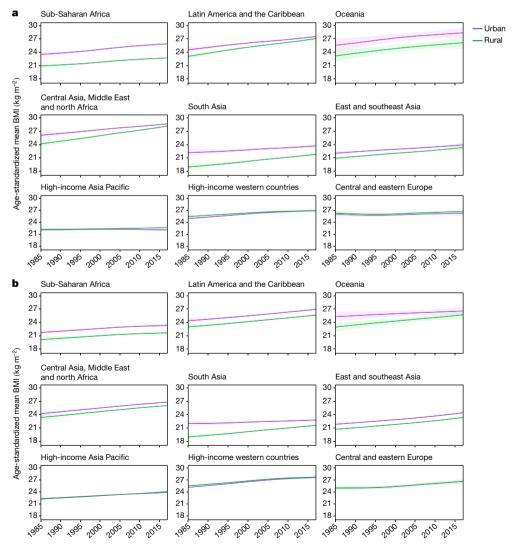


Fig. 3 | Trends in age-standardized mean BMI by rural and urban place of residence. a, Trends are shown for women in each region. b, Trends are shown for men in each region. The lines show the posterior mean estimates and the shaded areas show the 95% credible intervals.

Table 1 | Contributors to the rise in mean BMI from 1985 to 2017

		Rural component		Urban compo	nent	Urbanization component		
		Absolute contribution (kg m ⁻²)	Percentage contribution (%)	Absolute contribution (kg m ⁻²)	Percentage contribution (%)	Absolute contribution (kg m ⁻²)	Percentage contribution (%)	
Emerging economies								
Central Asia, Middle East and north Africa	Men	1.30 (0.96–1.64)	48 (41–54)	1.33 (1.02–1.65)	49 (44–54)	0.09 (0.06-0.12)	3 (2-5)	
	Women	1.96 (1.57–2.33)	59 (54–64)	1.31 (0.95–1.69)	39 (34–44)	0.06 (0.03-0.09)	2 (1-3)	
East and southeast Asia	Men	1.99 (1.62–2.37)	67 (63–71)	0.66 (0.53-0.80)	22 (20–24)	0.33 (0.26-0.39)	11 (9–14)	
	Women	1.81 (1.36–2.26)	73 (67–80)	0.47 (0.32-0.64)	19 (16–22)	0.18 (0.10-0.26)	7 (4–11)	
Latin America and the Caribbean	Men	0.86 (0.63-1.09)	31 (26–37)	1.73 (1.31–2.16)	63 (58–67)	0.17 (0.13-0.20)	6 (5–8)	
	Women	1.29 (1.07–1.51)	38 (34–43)	2.01 (1.56-2.49)	60 (55–63)	0.06 (0.03-0.10)	2 (1-3)	
Oceania	Men	2.24 (1.12-3.37)	90 (80–102)	0.24 (-0.03-0.51)	10 (-2-20)	0.00 (0.00-0.00)	0 (0-0)	
	Women	2.41 (0.89–3.98)	81 (69–90)	0.53 (0.18-0.89)	19 (10–31)	0.00 (0.00-0.00)	0 (0-0)	
South Asia	Men	1.99 (1.42-2.54)	86 (79–94)	0.20 (0.00-0.40)	8 (0-15)	0.12 (0.09-0.15)	5 (3-8)	
	Women	2.18 (1.46–2.87)	80 (73–87)	0.36 (0.13-0.60)	13 (6–19)	0.19 (0.16-0.23)	7 (5–11)	
Sub-Saharan Africa								
Sub-Saharan Africa	Men	1.14 (0.64–1.63)	64 (53–73)	0.39 (0.22-0.55)	22 (15–28)	0.23 (0.19-0.27)	14 (10–21)	
	Women	1.37 (0.90-1.83)	57 (49–63)	0.58 (0.42-0.74)	24 (21–28)	0.45 (0.42-0.49)	19 (15–25)	
ligh-income and other industrialized regio	ns							
Central and eastern Europe	Men	0.59 (0.35-0.82)	35 (26–44)	1.10 (0.70-1.50)	65 (57–73)	0.00 (-0.01-0.01)	0 (-1-1)	
	Women	0.14 (-0.19-0.45)	NR	0.13 (-0.45-0.69)	NR	-0.02 (-0.03-0.00)	NR	
High-income Asia Pacific	Men	0.48 (0.37-0.59)	31 (25–37)	1.15 (0.84–1.46)	72 (68–75)	-0.04 (-0.08-0.00)	-2 (-6-0)	
	Women	0.12 (-0.01-0.27)	NR	-0.02 (-0.38-0.36)	NR	-0.10 (-0.15 to -0.06)	NR	
High-income western countries	Men	0.58 (0.47-0.69)	24 (22–27)	1.80 (1.53-2.07)	76 (74–78)	-0.01 (-0.02-0.00)	0 (-1-0)	
	Women	0.39 (0.24-0.54)	21 (15–26)	1.44 (1.09-1.79)	79 (74–84)	0.00 (-0.02-0.01)	0 (-1-1)	
N orld								
World	Men	1.24 (1.06–1.43)	57 (53–60)	0.65 (0.54-0.75)	30 (27–32)	0.30 (0.28-0.32)	14 (12–16)	
	Women	1.22 (1.01-1.43)	60 (56-64)	0.56 (0.44-0.69)	28 (24–31)	0.25 (0.23-0.27)	13 (11–15)	

Contributions of the rise in mean BMI in rural and urban populations and of urbanization to the rise in mean BMI from 1985 to 2017, by region. Urbanization is defined as an increase in the proportion of the population who live in urban areas. Percentage contributions were calculated as described in the Methods. The reported values are the means and 95% credible intervals. The three percentages sum to 100%. When one component causes an increase in BMI in a region and another does the opposite, the components can be negative or greater than 100%. Urban and rural mean BMI and the percentage of the population who live in urban areas in 1985 and 2017 for each region are provided in Extended Data Table 1. NR, percentage contribution was not reported, because the regional change in mean BMI (which appears in the denominator of the percentage contribution) was small (<0.5 kg m⁻²), leading to unstable estimates.

gap was as large as $3.25 \, \mathrm{kg} \, \mathrm{m}^{-2}$ (2.57–3.96) in women and $3.05 \, \mathrm{kg} \, \mathrm{m}^{-2}$ (2.44–3.68) in men in India. Over time, the BMI gap between rural and urban women shrank in all of these regions by at least 40%, as BMI rose faster in rural areas than in cities (Fig. 3). In 14 countries in these regions, including Armenia, Chile, Jamaica, Jordan, Malaysia, Taiwan and Turkey, the ordering of rural and urban female BMI reversed over time and rural women had higher BMI than their urban peers in 2017 (Fig. 1 and Extended Data Fig. 4).

The mean BMI of rural men also increased more than the mean BMI of urban men in south Asia and Oceania, shrinking the urban-rural BMI gap by more than half (Figs. 2, 3). In east and southeast Asia, Latin America and the Caribbean, and central Asia, the Middle East and north Africa, men in both rural and urban areas experienced a similar BMI increase and, therefore, the urban excess BMI did not change substantially over time.

In contrast to emerging economies, excess BMI among urban women became larger in sub-Saharan Africa (Fig. 3): from 2.59 kg m $^{-2}$ (2.21–2.98) in 1985 to 3.17 kg m $^{-2}$ (2.93–3.42) in 2017 (posterior probability of the observed increase being a true increase >0.999). This occurred because female BMI rose faster in cities than in rural areas in sub-Saharan Africa. This led to women in sub-Saharan African countries, especially those in west Africa, having the largest urban excess BMI of any country in 2017—for example, more than 3.35 kg m $^{-2}$ in Niger, Burkina Faso, Togo and Ghana (Fig. 1 and Extended Data Fig. 4). BMI increased at a similar rate in rural and urban men in sub-Saharan Africa, with the difference in 2017 (1.66 kg m $^{-2}$; 1.37–1.94) being similar to 1985 (1.60 kg m $^{-2}$; 1.13–2.07) (Fig. 2 and Extended Data Fig. 4).

BMI was previously lower in rural areas of low- and middle-income countries than in cities, both because rural residents had higher energy expenditure in their daily work—especially agriculture—and domestic activities, such as fuelwood and water collection ^{13,14}, and because lower incomes in rural areas restricted food consumption¹⁵. In middle-income countries, agriculture is increasingly mechanized, cars are used for rural transport as income increases and road infrastructure improves, service and administrative jobs have become more common in rural areas, and some household tasks are no longer needed—for example, because homes have a water connection and use commercial fuels¹⁶. Furthermore, higher incomes as a result of economic growth allow more spending on food and hence higher caloric intake, disproportionately more in rural areas, where a substantial share of income was previously spent on food. Additionally, the consumption of processed carbohydrates may have increased disproportionately in rural areas where such foods have become more readily available through national and transnational companies^{9,17–21}. These changes, referred to as 'urbanization of rural life' by some researchers⁶, have contributed to a larger increase in rural BMI^{22,23}.

In contrast to other regions, urbanization in sub-Saharan Africa preceded significant economic growth²⁴. Subsistence farming remains common in Africa, and agriculture remains mostly manual; fuelwood—usually collected by women—is still the dominant fuel in rural Africa; and the use of cars for transportation is limited by poor infrastructure and poverty. In African cities, many people have service and office jobs, and mobility has become less energy-intensive owing to shorter travel distances and the use of cars and buses. Furthermore, urban markets where fresh produce is sold are increasingly replaced by commercially prepared and processed

foods from transnational and local industries and street vendors^{25–27}. These effects are exacerbated by limited time and space for cooking healthy meals and possibly perceptions of large weight as a sign of affluence^{28,29}.

In contrast to low- and middle-income regions, urban women in high-income western and Asia Pacific regions, and in central and eastern Europe, had slightly lower mean BMI than their rural peers in 2017 (Fig. 3). The rural excess BMI for women in these regions changed little from 1985 to 2017. Nationally, the excess BMI of rural women was largest in central and eastern European countries (for example, around 1 kg m⁻² or more in Belarus, Latvia and Czech Republic; Fig. 1 and Extended Data Fig. 4). Rural men in high-income western countries also had an excess BMI compared to urban men throughout the analysis period. The largest rural excess BMI for men in 2017 was seen in Sweden, Czech Republic, Ireland, Australia, Austria and the United States, which all had an excess BMI of 0.35 kg m⁻² or larger. In the high-income Asia Pacific region and in central and eastern Europe, rural and urban men had almost identical BMI throughout these three decades (Fig. 2 and Extended Data Fig. 4).

The lower urban BMI in high-income and industrialized countries reflects a growing rural economic and social disadvantage, including lower education and income, lower availability and higher price of healthy and fresh foods^{30,31}, less access to, and use of, public transport and walking than in cities^{32,33}, and limited availability of facilities for sports and recreational activity³⁴, which account for a significant share of overall physical activity in high-income and industrialized countries.

We also estimated how much of the overall rise in mean BMI since 1985 has been due to increases in BMI of rural and urban populations versus those attributable to urbanization (defined as an increase in the proportion of the population who live in urban areas), in each region and in the world as a whole. At the global level, 60% (56–64) of the rise in mean BMI from 1985 to 2017 in women and 57% (53–60) in men was due to increases in the BMI of rural populations; 28% (24–31) in women and 30% (27–32) in men due to the rise in BMI in urban populations; and 13% (11–15) and 14% (12–16) due to urbanization (Table 1). The contribution of the rise in rural BMI ranged from around 60% to 90% in the mostly rural regions of sub-Saharan Africa, east, south and southeast Asia and Oceania. The contribution of urbanization was small in all regions of the world, with maximum values of 19% (15–25) among women and 14% (10–21) among men in sub-Saharan Africa.

Our results show that, contrary to the prevailing view³⁻⁶, BMI is rising at the same rate or faster in rural areas compared to cities, particularly in low- and middle-income countries except among women in sub-Saharan Africa. These trends have resulted in a rural-urban convergence in BMI in most low- and middle-income countries, especially for women. This convergence mirrors the experience of high-income and industrialized countries, where we found a persistently higher BMI in rural areas. The rising rural BMI is the largest contributor to the BMI rise in low- and middle-income regions and in the world as a whole over the last 33 years, which challenges the current paradigm of urban living and urbanization as the key driver of the global epidemic of obesity.

In poor societies, urban areas historically had lower levels of undernutrition 35,36, possibly because infrastructure such as roads and electricity facilitate food trade, transport and storage in cities, which can in turn reduce the impacts of agricultural shocks and seasonality. As economic growth and rural nutrition programmes reduce rural caloric deficiency, the rural undernutrition disadvantage may be replaced with a more general and complex malnutrition that entails excessive consumption of low-quality calories. To avoid such an unhealthy transition, the fragmented national and international responses to undernutrition and obesity should be integrated, and the narrow focus of international aid on undernutrition should be broadened, to enhance access to healthier foods in poor rural and urban communities.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, statements of data availability and associated accession codes are available at https://doi.org/10.1038/s41586-019-1171-x.

Received: 29 October 2018; Accepted: 30 March 2019; Published online 8 May 2019.

- United Nations Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: the 2014 Revision. https://esa.un.org/unpd/wup/publications/files/wup2014-report.pdf (United Nations, 2015).
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128-9 million children, adolescents, and adults. *Lancet* 390, 2627–2642 (2017).
- WHO. Global Report on Urban Health: Equitable Healthier Cities for Sustainable Development. Report No. 9241565276. https://apps.who.int/iris/ handle/10665/204715 (World Health Organization, 2016).
- Yusuf, S., Reddy, S., Ôunpuu, S. & Anand, S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. *Circulation* 104, 2746–2753 (2001).
- Wagner, K. H. & Brath, H. A global view on the development of non communicable diseases. Prev. Med. 54, S38–S41 (2012).
- Popkin, B. M. Global nutrition dynamics: the world is shifting rapidly toward a diet linked with noncommunicable diseases. *Am. J. Clin. Nutr.* 84, 289–298 (2006).
- Abubakari, A. R. et al. Prevalence and time trends in obesity among adult West African populations: a meta-analysis. Obes. Rev. 9, 297–311 (2008).
- Filozof, C., Gonzalez, C., Sereday, M., Mazza, C. & Braguinsky, J. Obesity prevalence and trends in Latin-American countries. *Obes. Rev.* 2, 99–106 (2001).
- Jaacks, L. M., Slining, M. M. & Popkin, B. M. Recent underweight and overweight trends by rural-urban residence among women in low- and middle-income countries. J. Nutr. 145, 352–357 (2015).
- Mamun, A. A. & Finlay, J. E. Shifting of undernutrition to overnutrition and its determinants among women of reproductive ages in the 36 low to medium income countries. Obes. Res. Clin. Pract. 9, 75–86 (2015).
- Neuman, M., Kawachi, I., Gortmaker, S. & Subramanian, S. V. Urban–rural differences in BMI in low- and middle-income countries: the role of socioeconomic status. Am. J. Clin. Nutr. 97, 428–436 (2013).
- Popkin, B. M., Adair, L. S. & Ng, S. W. Global nutrition transition and the pandemic of obesity in developing countries. *Nutr. Rev.* 70, 3–21 (2012).
- Assah, F. K., Ekelund, U., Brage, S., Mbanya, J. C. & Wareham, N. J. Urbanization, physical activity, and metabolic health in sub-Saharan Africa. *Diabetes Care* 34, 491–496 (2011).
- 14. Levine, J. A. et al. The work burden of women. Science 294, 812 (2001)
- Subramanian, S. & Deaton, A. The demand for food and calories. J. Polit. Econ. 104, 133–162 (1996).
- Ng, S. W. & Popkin, B. M. Time use and physical activity: a shift away from movement across the globe. Obes. Rev. 13, 659–680 (2012).
- 17. Popkin, B. M. Nutrition, agriculture and the global food system in low and middle income countries. *Food Policy* **47**, 91–96 (2014).
- Reardon, T., Timmer, C. P. & Minten, B. Supermarket revolution in Asia and emerging development strategies to include small farmers. *Proc. Natl Acad. Sci.* USA 109, 12332–12337 (2012).
- Mahajan, V. How Unilever reaches rural consumers in emerging markets. Harv. Bus. Rev. https://hbr.org/2016/12/how-unilever-reaches-rural-consumers-inemerging-markets (2016).
- Jacobs, A. & Richtel, M. How big business got Brazil hooked on junk food. The New York Times. https://www.nytimes.com/interactive/2017/09/16/health/ brazil-obesity-nestle.html (2017).
- Reardon, T., Timmer, C., Barrett, C. & Berdegué, J. The rise of supermarkets in Africa, Asia and Latin America. Am. J. Agric. Econ. 85, 1140–1146 (2003).
- Ng, S. W., Norton, E. C. & Popkin, B. M. Why have physical activity levels declined among Chinese adults? Findings from the 1991–2006 China Health and Nutrition Surveys. Soc. Sci. Med. 68, 1305–1314 (2009).
- Monda, K. L., Adair, L. S., Zhai, F. & Popkin, B. M. Longitudinal relationships between occupational and domestic physical activity patterns and body weight in China. Eur. J. Clin. Nutr. 62, 1318–1325 (2008).
- Fay, M. & Opal, C. Urbanization without Growth: A Not-So-Uncommon Phenomenon. Policy Research Working Paper No. 241. https://openknowledge worldbank.org/bitstream/handle/10986/21373/wps2412. pdf?sequence=1&isAllowed=y (World Bank, 2000).
- FAO. Street Food in Urban Ghana. http://www.fao.org/3/a-i5804e.pdf (Food and Agriculture Organization of the United Nations, 2016).
- Chilanga, E., Riley, L., Ngwira, J., Chalinda, C. & Masitala, L. Food Insecurity in Informal Settlements in Lilongwe, Malawi. https://www.afsun.org/wp-content/ uploads/2017/09/AFSUN25.pdf (African Food Security Network, 2017).
- Tschirley, D., Reardon, T., Dolislager, M. & Snyder, J. The rise of a middle class in east and southern Africa: implications for food system transformation. J. Int. Dev. 27, 628–646 (2015).
- Holdsworth, M., Gartner, A., Landais, E., Maire, B. & Delpeuch, F. Perceptions of healthy and desirable body size in urban Senegalese women. *Int. J. Obes.* 28, 1561–1568 (2004).
- Ettarh, R., Van de Vijver, S., Oti, S. & Kyobutungi, C. Overweight, obesity, and perception of body image among slum residents in Nairobi, Kenya, 2008–2009. Prev. Chronic Dis. 10, 130198 (2013).
- Liese, A. D., Weis, K. E., Pluto, D., Smith, E. & Lawson, A. Food store types, availability, and cost of foods in a rural environment. J. Am. Diet. Assoc. 107, 1916–1923 (2007).
- Lenardson, J. D., Hansen, A. Y. & Hartley, D. Rural and remote food environments and obesity. *Curr. Obes. Rep.* 4, 46–53 (2015).

- Ihara, M. et al. A cross-sectional study of the association between city scale and daily steps in Japan: Data from the National Health and Nutrition Survey Japan (NHNS-J) 2006–2010 (in Japanese). Nippon Koshu Eisei Zasshi 63, 549–559 (2016).
- Scheiner, J. A century of motorisation in urban and rural contexts: paths of motorisation in German cities. Erdkunde 66, 313–328 (2012).
- Seguin, R., Connor, L., Nelson, M., LaCroix, A. & Eldridge, G. Understanding barriers and facilitators to healthy eating and active living in rural communities. J. Nutr. Metab. 2014, 146502 (2014).
- 35. Paciorek, C. J., Stevens, G. A., Finucane, M. M. & Ezzati, M. Children's height and weight in rural and urban populations in low-income and middle-income countries: a systematic analysis of population-representative data. *Lancet Glob. Health* 1, e300–e309 (2013).
- Krumdiek, C. L. The rural-to-urban malnutrition gradient. A key factor in the pathogenesis of urban slums. J. Am. Med. Assoc. 215, 1652–1654 (1971).

Acknowledgements This study was funded by the Wellcome Trust. H.B. was supported by a Medical Research Council Doctoral Training Partnership Studentship, J.B. by a Royal Society Research Grant, and M.D.C. by an Academy of Medical Sciences Springboard Award. We thank L. Jaacks, B. Popkin, S. Sundberg and W. Willett for recommendations of relevant citations. The authors are responsible for the views expressed in this Letter and they do not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated.

Reviewer information *Nature* thanks Miguel A. Martinez Beneito, Barry M. Popkin and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author contributions M.E. designed the study and oversaw research. H.B. led the data collection and statistical analysis, and prepared results. The other authors contributed to study design; collected, reanalysed, pooled and checked

data; analysed pooled data; and prepared results. M.E. and H.B. wrote the first draft of the manuscript with input from the other authors.

Competing interests M.E. reports a charitable grant from the AstraZeneca Young Health Programme, and personal fees from Prudential, Scor and Third Bridge, outside the submitted work. The other authors declare no competing interests.

Additional information

Extended data is available for this paper at https://doi.org/10.1038/s41586-019-1171-x

Supplementary information is available for this paper at https://doi.org/10.1038/s41586-019-1171-x.

Reprints and permissions information is available at http://www.nature.com/reprints

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019

NCD Risk Factor Collaboration (NCD-RisC)

Honor Bixby¹, James Bentham², Bin Zhou¹, Mariachiara Di Cesare³, Christopher J. Paciorek⁴, James E. Bennett¹, Cristina Taddei¹, Gretchen A. Stevens⁵, Andrea Rodriguez-Martinez¹, Rodrigo M. Carrillo-Larco¹, Young-Ho Khang⁶, Maroje Sorić⁷, Edward W. Gregg⁸, J. Jaime Miranda⁹, Zulfigar A. Bhutta^{10,11}, Stefan Savin⁵, Marisa K. Sophiea¹, Maria L. C. Iurilli¹, Bethlehem D. Solomon¹, Melanie J. Cowan⁵, Leanne M. Riley⁵, Goodarz Danaei¹², Pascal Bovet^{13,14}, Adela Chirita-Emandi¹⁵ lan R. Hambleton¹⁶, Alison J. Hayes¹⁷, Nayu Ikeda¹⁸, Andre P. Kengne¹⁹, Avula Laxmaiah²⁰, Yanping Li¹², Stephen T. McGarvey²¹, Aya Mostafa²², Martin Neovius²³, Gregor Starc²⁴, Ahmad A. Zainuddin²⁵, Leandra Abarca-Gómez²⁶, Ziad A. Abdeen²⁷, Shynar Abdrakhmanova²⁸, Suhaila Abdul Ghaffar²⁵, Zargar Abdul Hamid²⁹, Jamila Abubakar Garba³⁰, Niveen M. Abu-Rmeileh³¹, Benjamin Acosta-Cazares³², Robert J. Adams³³, Wichai Aekplakorn³⁴, Kaosar Afsana³⁵, Imelda A. Agdeppa³⁶, Carlos A. Aguilar-Salinas³⁷, Charles Agyemang³⁸, Mohamad Hasnan Ahmad²⁵, Noor Ani Ahmad²⁵, Naser Ahmadi³⁹, Alireza Ahmadvand⁴⁰, Wolfgang Ahrens⁴¹, Kamel Ajlouni⁴², Fadia AlBuhairan⁴³, Shahla AlDhukair⁴⁴, Hazzaa M. Al-Hazzaa⁴⁵, Mohamed M. Ali⁵, Osman Ali⁴⁶, Ala'a Alkerwi⁴⁷ Amani Rashed Al-Othman⁴⁸, Rajaa Al-Raddadi⁴⁹, Mar Alvarez-Pedrerol⁵⁰, Eman Aly⁵¹, Deepak N. Amarapurkar^{52,576}, Philippe Amouyel^{53,54} Antoinette Amuzu⁵⁵, Lars Bo Andersen⁵⁶, Sigmund A. Anderssen⁵⁷, Lars H. Ängquist⁵⁸, Ranjit Mohan Anjana⁵⁹, Alireza Ansari-Moghaddam⁶⁰, Hajer Aounallah-Skhiri⁶¹, Joana Araújo⁶², Inger Ariansen⁶³, Tahir Aris²⁵, Raphael E. Arku⁶⁴, Nimmathota Arlappa²⁰, Krishna K. Aryal⁶⁵, Thor Aspelund⁶⁶, Felix K. Assah⁶⁷, Maria Cecília F. Assunção⁶⁸, May Soe Aung⁶⁹, Juha Auvinen⁷⁰, Mária Avdicová⁷¹, Ana Azevedo⁷², Fereidoun Azizi⁷³, Mehrdad Azmin⁴⁰, Bontha V. Babu⁷⁴, Azli Baharudin²⁵, Suhad Bahijri⁴⁹, Jennifer L. Baker⁷⁵, Nagalla Balakrishna²⁰, Mohamed Bamoshmoosh⁷⁶, Maciej Banach⁷⁷, Piotr Bandosz⁷⁸, José R. Banegas⁷⁹, Carlo M. Barbagallo⁸⁰, Alberto Barceló⁸¹, Amina Barkat⁸², Aluisio J. D. Barros⁶⁸, Mauro V. G. Barros⁸³, Iqbal Bata⁸⁴, Anwar M. Batieha⁸⁵, Rosangela L. Batista⁸⁶, Zhamilya Battakova²⁸, Assembekov Batyrbek⁸⁷, Louise A. Baur¹⁷, Robert Beaglehole⁸⁸, Silvia Bel-Serrat⁸⁹, Habiba Ben Romdhane⁹⁰, Judith Benedics⁹¹, Mikhail Benet⁹², Salim Berkinbayev⁸⁷, Antonio Bernabe-Ortiz⁹, Gailute Bernotiene⁹³, Heloisa Bettiol⁹⁴, Aroor Bhagyalaxmi⁹⁵, Sumit Bharadwaj⁹⁶, Santosh K. Bhargava⁹⁷, Hongsheng Bi⁹⁸, Yufang Bi⁹⁹, Anna Biehl⁶³, Elysée Claude Bika Lele¹⁰⁰, Mukharram Bikbov¹⁰¹, Bihungum Bista¹⁰², Dusko J. Bjelica¹⁰³, Peter Bjerregaard^{104,105} Espen Bjertness¹⁰⁶, Marius B. Bjertness¹⁰⁶, Cecilia Björkelund¹⁰⁷, Anneke Blokstra¹⁰⁸, Simona Bo¹⁰⁹, Martin Bobak¹¹⁰, Lynne M. Boddy¹¹¹, Bernhard O. Boehm¹¹², Heiner Boeing¹¹³, Jose G. Boggia¹¹⁴, Carlos P. Boissonnet¹¹⁵, Marialaura Bonaccio¹¹⁶, Vanina Bongard¹¹⁷, Matthias Bopp¹¹⁸, Rossana Borchini¹¹⁹, Herman Borghs¹²⁰, Lien Braeckevelt¹²¹, Lutgart Braeckman¹²², Marjolijn C. E. Bragt¹²³, Imperia Brajkovich¹²⁴, Francesco Branca⁵, Juergen Breckenkamp¹²⁵, João Breda¹²⁶, Hermann Brenner¹²⁷, Lizzy M. Brewster³⁸, Garry R. Brian¹²⁸, Lacramioara Brinduse¹²⁹, Graziella Bruno¹⁰⁹, H. Bas Bueno-de-Mesquita¹⁰⁸, Anna Bugge¹³⁰, Marta Buoncristiano¹²⁶, Genc Burazeri¹³¹, Con Burns¹³², Antonio Cabrera de León¹³³, Joseph Cacciottolo¹³⁴, Hui Cai¹³⁵, Tilema Cama¹³⁶, Christine Cameron¹³⁷, José Camolas¹³⁸, Gamze Can¹³⁹, Günay Can¹⁴⁰, Ana Paula C. Cândido¹⁴¹, Felicia Cañete¹⁴², Mario V. Capanzana³⁶, Eduardo Capuano¹⁴³, Vincenzo Capuano¹⁴³, Viviane C. Cardoso⁹⁴, Axel C. Carlsson¹⁴⁴, Esteban Carmuega¹⁴⁵, Maria J. Carvalho¹⁴⁶, Felipe F. Casanueva¹⁴⁷, Juan-Pablo Casas¹¹⁰, Carmelo A. Caserta¹⁴⁸, Ertugrul Celikcan¹⁴⁹, Laura Censi¹⁵⁰, Juraci A. Cesar¹⁵¹, Snehalatha Chamukuttan¹⁵², Angelique W. Chan¹⁵³, Queenie Chan¹, Himanshu K. Chaturvedi¹⁵⁴, Nishi Chaturvedi¹¹⁰, Norsyamlina Che Abdul Rahim²⁵, Chien-Jen Chen¹⁵⁵, Fangfang Chen¹⁵⁶, Huashuai Chen¹⁵⁷, Shuohua Chen¹⁵⁸, Zhengming Chen¹⁵⁹, Ching-Yu Cheng¹⁵³, Yiling J. Cheng⁸, Angela Chetrit¹⁶⁰, Ekaterina Chikova-Iscener¹⁶¹, Arnaud Chiolero¹⁶², Shu-Ti Chiou¹⁶³, María-Dolores Chirlaque¹⁶⁴, Belong Cho¹⁶⁵, Yumi Cho¹⁶⁶, Kaare Christensen¹⁰⁵, Diego G. Christofaro¹⁶⁷, Jerzy Chudek¹⁶⁸, Renata Cifkova^{169,170}, Michelle Cilia¹⁷¹, Eliza Cinteza¹⁷², Frank Claessens¹⁷³, Janine Clarke¹⁷⁴, Els Clays¹²², Hans Concin¹⁷⁵, Susana C. Confortin¹⁷⁶, Cyrus Cooper¹⁷⁷, Tara C. Coppinger¹³², Simona Costanzo¹¹⁶, Dominique Cottel¹⁷⁸, Chris Cowell¹⁷, Cora L. Craig¹³⁷, Amelia C. Crampin¹⁷⁹, Ana B. Crujeiras¹⁸⁰, Juan J. Cruz⁷⁹, Alexandra Cucu¹⁸¹, Liufu Cui¹⁵⁸, Jean Dallongeville¹⁷⁸, Albertino Damasceno¹⁸², Camilla T. Damsgaard⁵⁸, Rachel Dankner¹⁶⁰, Thomas M. Dantoft⁷⁵, Graziella D'Arrigo¹⁸³, Parasmani Dasgupta¹⁸⁴, Saeed Dastgiri¹⁸⁵, Luc Dauchet⁵⁴, Kairat Davletov⁸⁷, Guy De Backer¹²², Dirk De Bacquer¹²², Amalia De Curtis¹¹⁶, Giovanni de Gaetano¹¹⁶, Stefaan De Henauw¹² Paula Duarte de Oliveira⁶⁸, Karin De Ridder¹⁸⁶, Susanne R. de Rooij¹⁸⁷, Delphine De Smedt¹²², Mohan Deepa⁵⁹, Alexander D. Deev¹⁸⁸, Abbas Dehghan¹⁸⁹, Hélène Delisle¹⁹⁰, Francis Delpeuch¹⁹¹, Elaine Dennison¹⁷⁷, Valérie Deschamps¹⁹², Klodian Dhana¹⁸⁹, Meghnath Dhimal¹⁰²,

Augusto F. Di Castelnuovo¹⁹³, Juvenal Soares Dias-da-Costa¹⁹⁴, Alejandro Diaz¹⁹⁵, Zivka Dika⁷, Shirin Djalalinia¹⁹⁶, Ha T. P. Do¹⁹⁷, Annette J. Dobson¹⁹⁸, Maria Benedetta Donati¹¹⁶, Chiara Donfrancesco¹⁹⁹, Silvana P. Donoso²⁰⁰, Angela Döring²⁰¹, Maria Dorobantu¹⁷², Ahmad Reza Dorosty³⁹, Eleonora d'Orsi¹⁷⁶, Kouamelan Doua²⁰², Wojciech Drygas²⁰³, Jia Li Duan²⁰⁴, Charmaine A. Duante³⁶, Rosemary B. Duda²⁰⁵, Vesselka Duleva¹⁶¹, Virginija Dulskiene⁹³, Samuel C. Dumith¹⁵¹, Vilnis Dzerve²⁰⁶, Elzbieta Dziankowska-Zaborszczyk⁷⁷, Ricky Eddie²⁰⁷, Eruke E. Egbagbe²⁰⁸, Robert Eggertsen¹⁰⁷, Gabriele Eiben²⁰⁹, Ulf Ekelund⁵⁷, Jalila El Ati²¹⁰, Denise Eldemire-Shearer²¹¹, Marie Eliasen⁷⁵, Paul Elliott¹, Reina Engle-Stone²¹², Rajiv T. Erasmus²¹³, Cihangir Erem¹³⁹, Louise Eriksen¹⁰⁵, Johan G. Eriksson²¹⁴ Jorge Escobedo-de la Peña³², Alun Evans²¹⁵, David Faeh¹¹⁸, Caroline H. Fall¹⁷⁷, Victoria Farrugia Sant'Angelo¹⁷¹, Farshad Farzadfar³⁹, Mohammad R. Fattahi²¹⁶, Francisco J. Felix-Redondo²¹⁷, Trevor S. Ferguson²¹¹, Romulo A. Fernandes¹⁶⁷, Daniel Fernández-Bergés²¹⁸, Daniel Ferrante²¹⁹ Marika Ferrari²²⁰, Catterina Ferreccio²²¹, Eldridge Ferrer³⁶, Jean Ferrieres¹¹⁷, Anna Fijalkowska²²², Günther Fink^{223,224}, Krista Fischer²²⁵ Eric Monterubio Flores²²⁶, Bernhard Föger¹⁷⁵, Leng Huat Foo²²⁷, Ann-Sofie Forslund²²⁸, Maria Forsner²²⁸, Heba M. Fouad⁵¹, Damian K. Francis²²⁹, Maria do Carmo Franco²³⁰, Oscar H. Franco¹⁸⁹, Guillermo Frontera²³¹, Flavio D. Fuchs²³², Sandra C. Fuchs²³³, Yuki Fujita²³⁴, Takuro Furusawa²³⁵, Zbigniew Gaciong²³⁶, Mihai Gafencu¹⁵, Daniela Galeone²³⁷, Fabio Galvano²³⁸, Jingli Gao¹⁵⁸, Manoli Garcia-de-la-Hera²³⁹, Dickman Gareta²⁴⁰, Sarah P. Garnett¹⁷, Jean-Michel Gaspoz²⁴¹, Magda Gasull²⁴², Louise Gates²⁴³, Andrea Gazzinelli²⁴⁴, Harald Geiger¹⁷⁵, Johanna M. Geleijnse²⁴⁵, Ali Ghanbari³⁹, Erfan Ghasemi³⁹, Anoosheh Ghasemian⁴⁰ Oana-Florentina Gheorghe-Fronea¹⁷², Simona Giampaoli¹⁹⁹, Francesco Gianfagna^{246,193}, Tiffany K. Gill²⁴⁷, Jonathan Giovannelli⁵⁴, Glen Gironella³⁶, Aleksander Giwercman²⁴⁸, Justyna Godos²³⁸, Sibel Gogen¹⁴⁹, Rebecca A. Goldsmith²⁴⁹, David Goltzman²⁵⁰, Helen Gonçalves⁶⁸, Angel R. Gonzalez²⁵¹, David A. Gonzalez-Chica²⁴⁷, Marcela Gonzalez-Gross²⁵², Margot González-Leon³², Juan P. González-Rivas²⁵³, María-Elena González-Villalpando²⁵⁴, Frederic Gottrand⁵³, Antonio Pedro Graca²⁵⁵, Sidsel Graff-Iversen⁶³, Dušan Grafnetter²⁵⁶, Aneta Grajda²⁵⁷, Maria G. Grammatikopoulou²⁵⁸, Ronald D. Gregor⁸⁴, Tomasz Grodzicki²⁵⁹, Anders Grøntved¹⁰⁵, Giuseppe Grosso²³⁸ Gabriella Gruden¹⁰⁹, Dongfeng Gu²⁶⁰, Emanuela Gualdi-Russo²⁶¹, Elias F. Gudmundsson²⁶², Vilmundur Gudnason⁶⁶, Ramiro Guerrero²⁶³, Idris Guessous²⁴¹, Andre L. Guimaraes²⁶⁴, Martin C. Gulliford²⁶⁵, Johanna Gunnlaugsdottir²⁶², Marc Gunter²⁶⁶, Xiuhua Guo²⁶⁷, Yin Guo²⁶⁷ Prakash C. Gupta²⁶⁸, Rajeev Gupta²⁶⁹, Oye Gureje²⁷⁰, Beata Gurzkowska²⁵⁷, Laura Gutierrez²⁷¹, Felix Gutzwiller¹¹⁸, Farzad Hadaegh⁷³, Charalambos A. Hadjigeorgiou²⁷², Rosa Haghshenas⁴⁰, Jytte Halkjær²⁷³, Rebecca Hardy¹¹⁰, Rachakulla Hari Kumar²⁰, Maria Hassapidou²⁷⁴, Jun Hata²⁷⁵, Teresa Haugsgjerd²⁷⁶, Jiang He²⁷⁷, Yuna He²⁷⁸, Regina Heidinger-Felso²⁷⁹, Mirjam Heinen⁸⁹, Tatjana Hejgaard²⁸⁰, Marleen Elisabeth Hendriks²⁸¹, Ana Henriques⁶² Leticia Hernandez Cadena²²⁶, Sauli Herrala²⁸², Victor M. Herrera²⁸³, Isabelle Herter-Aeberli²⁸⁴, Ramin Heshmat²⁸⁵, Allan G. Hill¹⁷⁷, Sai Yin Ho²⁸⁶, Suzanne C. Ho²⁸⁷, Michael Hobbs²⁸⁸, Albert Hofman¹⁸⁹, Wilma M. Hopman²⁸⁹, Andrea R. V. R. Horimoto²⁹⁰, Claudia M. Hormiga²⁹¹, Bernardo L. Horta⁶⁸, Leila Houti²⁹², Christina Howitt¹⁶, Thein Thein Htay²⁹³, Aung Soe Htet²⁹⁴, Maung Maung Than Htike²⁹⁴, Yonghua Hu²⁹⁵, José María Huerta²⁹⁶, Ilpo Tapani Huhtaniemi¹, Constanta Huidumac Petrescu¹⁸¹, Martiin Huisman^{297,298}, Abdullatif Husseini³¹, Chinh Nguyen Huu¹⁹⁷, Inge Huybrechts²⁶⁶, Nahla Hwalla²⁹⁹, Jolanda Hyska¹³¹, Licia lacoviello^{246,116}, Jesús M. Ibarluzea³⁰⁰, Mohsen M. Ibrahim³⁰¹, Norazizah Ibrahim Wong²⁵, M. Arfan Ikram¹⁸⁹, Vilma E. Irazola²⁷¹, Takafumi Ishida³⁰², Muhammad Islam¹⁰, Aziz al-Safi Ismail²²⁷, Vanja Ivkovic³⁰³, Masanori Iwasaki³⁰⁴, Tuija Jääskeläinen²¹⁴, Rod T. Jackson⁸⁸, Jeremy M. Jacobs³⁰⁵, Hashem Jaddou⁸⁵, Tazeen Jafar¹⁵³, Kenneth James²¹¹, Kazi M. Jamil⁴⁸, Konrad Jamrozik^{247,576}, Imre Janszky³⁰⁶, Edward Janus³⁰⁷, Juel Jarani³⁰⁸, Marjo-Riitta Jarvelin^{70,1}, Grazyna Jasienska²⁵⁹, Ana Jelakovic³⁰³, Bojan Jelakovic³⁰⁹, Garry Jennings³¹⁰, Seung-Iyeal Jeong³¹¹, Chao Qiang Jiang³¹², Ramon O. Jimenez³¹³, Michel Joffres³¹⁴, Mattias Johansson²⁶⁶, Jari J. Jokelainen²⁸², Jost B. Jonas³¹⁵, Torben Jørgensen⁷⁵, Pradeep Joshi³¹⁶, Dragana P. Jovic³¹⁷, Jacek Józwiak³¹⁸, Anne Juolevi²¹⁴, Gregor Jurak²⁴, Vesna Juresa⁷, Rudolf Kaaks¹²⁷ Anthony Kafatos³¹⁹, Eero O. Kajantie²¹⁴, Ofra Kalter-Leibovici¹⁶⁰, Nor Azmi Kamaruddin³²⁰, Yves Kameli¹⁹¹, Efthymios Kapantais³²¹, Khem B. Karki³²², Amir Kasaeian³⁹, Marzieh Katibeh³²³, Joanne Katz³²⁴, Peter T. Katzmarzyk³²⁵, Jussi Kauhanen³²⁶, Prabhdeep Kaur³²⁷, Maryam Kavousi¹⁸⁹, Gyulli Kazakbaeva¹⁰¹, Ulrich Keil³²⁸, Lital Keinan-Boker²⁴⁹, Sirkka Keinänen-Kiukaanniemi²⁸², Roya Kelishadi³²⁹, Cecily Kelleher⁸⁹, Han C. G. Kemper³³⁰, Alina Kerimkulova³³¹, Mathilde Kersting³³², Timothy Key¹⁵⁹, Yousef Saleh Khader⁸⁵, Davood Khalili⁷³,

Mohammad Khateeb⁴², Kay-Tee Khaw³³³, Bahareh Kheiri⁷³, Alireza Khosravi³³⁴, Ilse M. S. L. Khouw¹²³, Stefan Kiechl³³⁵, Ursula Kiechl-Kohlendorfer³³⁵, Japhet Killewo³³⁶, Jeongseon Kim³³⁷, Yeon-Yong Kim³¹¹, Jeannette Klimont³³⁸, Jurate Klumbiene⁹³, Michael Knoflach³³⁵, Bhawesh Koirala³³⁹, Elin Kolle⁵⁷, Patrick Kolsteren¹²², Jürgen König³⁴⁰, Raija Korpelainen^{70,341}, Paul Korrovits³⁴², Magdalena Korzycka²²², Seppo Koskinen²¹⁴, Katsuyasu Kouda³⁴³, Viktoria A. Kovacs³⁴⁴, Sudhir Kowlessur³⁴⁵, Slawomir Koziel³⁴⁶ Wolfgang Kratzer³⁴⁷, Susi Kriemler¹¹⁸, Peter Lund Kristensen¹⁰⁵, Steinar Krokstad³⁰⁶, Daan Kromhouf³⁴⁸, Herculina S. Kruger³⁴⁹, Ruzena Kubinova³⁵⁰, Renata Kuciene⁹³, Diana Kuh¹¹⁰, Urho M. Kujala³⁵¹, Enisa Kujundzic³⁵², Zbigniew Kulaga²⁵⁷, R. Krishna Kumar³⁵³, Marie Kunešová³⁵⁴, Pawel Kurjata²⁰³, Yadlapalli S. Kusuma³⁵⁵, Kari Kuulasmaa²¹⁴, Catherine Kyobutungi³⁵⁶, Quang Ngoc La³⁵⁷, Fatima Zahra Laamiri³⁵⁸, Tiina Laatikainen²¹⁴, Carl Lachat¹²², Youcef Laid³⁵⁹, Tai Hing Lam²⁸⁶, Maja Lang Morovic³⁶⁰, Vera Lanska²⁵⁶, Georg Lappas³⁶¹ Bagher Larijani³⁶², Tint Swe Latt³⁶³, Lars E. Laugsand³⁰⁶, Laura Lauria¹⁹⁹, Maria Lazo-Porras⁹, Khanh Le Nguyen Bao¹⁹⁷, Agnès Le Port³⁶⁴, Tuyen D. Le¹⁹⁷, Jeannette Lee³⁶⁵, Jeonghee Lee³³⁷, Paul H. Lee³⁶⁶, Terho Lehtimäki³⁶⁷, Daniel Lemogoum³⁶⁸, Naomi S. Levitt³⁶⁹, Christa L. Lilly³⁷⁰, Wei-Yen Lim³⁶⁵, M. Fernanda Lima-Costa³⁷¹, Hsien-Ho Lin³⁷², Xu Lin³⁷³, Lars Lind³⁷⁴, Allan Linneberg⁷⁵, Lauren Lissner¹⁰⁷, Mieczyslaw Litwin²⁵⁷, Jing Liu³⁷⁵, Helle-Mai Loit³⁷⁶, Luis Lopes¹⁴⁶, Tania Lopez³ Esther López-García⁷⁹, Roberto Lorbeer³⁷⁸, Paulo A. Lotufo⁹⁴. José Eugenio Lozano³⁷⁹, Dalia Luksiene⁹³, Annamari Lundqvist²¹⁴, Robert Lundqvist³⁸⁰, Nuno Lunet¹⁴⁶, Per Lytsy³⁸¹, Guansheng Ma²⁹⁵, Jun Ma²⁹⁵, George L. L. Machado-Coelho³⁸², Aristides M. Machado-Rodrigues³⁸³, Suka Machi³⁸⁴, Stefania Maggi³⁸⁵, Dianna J. Magliano³⁸⁶, Emmanuella Magriplis³⁸⁷, Bernard Maire¹⁹¹, Marjeta Majer⁷, Marcia Makdisse³⁸⁸, Fatemeh Malekzadeh²¹⁶, Reza Malekzadeh²¹⁶, Rahul Malhotra¹⁵³, Sofia Malyutina³⁸⁹, Lynell V. Maniego³⁶, Yannis Manios³⁹⁰, Jim I. Mann³⁹¹, Enzo Manzato³⁹², Paula Margozzini²²¹, Anastasia Markaki³⁹³, Oonagh Markey³⁹⁴, Eliza Markidou loannidou³⁹⁵, Larissa Pruner Margues¹⁷⁶, Pedro Marques-Vidal³⁹⁶, Jaume Marrugat³⁹⁷, Rosemarie Martin³⁹⁸, Yves Martin-Prevel¹⁹¹, Reynaldo Martorell³⁹⁹, Eva Martos⁴⁰⁰, Stefano Marventano²³⁸, Shariq R. Masoodi⁴⁰¹, Ellisiv B. Mathiesen⁴⁰², Prashant Mathur⁴⁰³, Alicia Matijasevich⁹⁴, Tandi E. Matsha⁴⁰⁴, Artur Mazur⁴⁰⁵, Jean Claude N. Mbanya⁶⁷, Shelly R. McFarlane²¹¹, Martin McKee⁵⁵, Stela McLachlan⁴⁰⁶, Rachael M. McLean³⁹¹, Scott B. McLean¹⁷⁴, Breige A. McNulty³⁹, Safiah Md Yusof⁴⁰⁷, Sounnia Mediene-Benchekor²⁹², Jurate Medzioniene⁹³, Parinaz Mehdipour³⁹, Aline Meirhaeghe⁴⁰⁸, Jørgen Meisfjord⁶³, Christa Meisinger²⁰¹, Ana Maria B. Menezes⁶⁸, Geetha R. Menon⁷⁴, Gert B. M. Mensink⁴⁰⁹, Alibek Mereke⁸⁷, Indrapal I. Meshram²⁰, Andres Metspalu²²⁵, Haakon E. Meyer¹⁰⁶, Jie Mi¹⁵⁶, Kim F. Michaelsen⁵⁸, Nathalie Michels¹²², Kairit Mikkel²²⁵, Jody C. Miller³⁹¹ Cláudia S. Minderico⁴¹⁰, Juan Francisco Miquel²²¹, Daphne Mirkopoulou⁴¹¹, Erkin Mirrakhimov³³¹, Marjeta Misigoj-Durakovic⁷, Antonio Mistretta²³ Veronica Mocanu⁴¹², Pietro A. Modesti⁴¹³, Sahar Saeeidi Moghaddam³⁹, Bahram Mohajer³⁹, Mostafa K. Mohamed²², Kazem Mohammad³⁹, Noushin Mohammadifard⁴¹⁴, Viswanathan Mohan⁵⁹, Salim Mohanna⁹ Muhammad Fadhli Mohd Yusoff²⁵, Farnam Mohebi³⁹, Marie Moitry^{415,416}, Drude Molbo⁵⁸, Line T. Møllehave⁷⁵, Niels C. Møller¹⁰⁵, Dénes Molnár²⁷⁹, Amirabbas Momenan⁷³, Charles K. Mondo⁴¹⁷, Eric A. Monterrubio⁴¹⁸, Kotsedi Daniel K. Monyeki⁴¹⁹, Jin Soo Moon⁴²⁰, Leila B. Moreira²³³, Alain Morejon⁴²¹, Luis A. Moreno⁴²², Karen Morgan⁴²³, Suzanne Morin²⁵⁰ Erik Lykke Mortensen⁵⁸, George Moschonis⁴²⁴, Malgorzata Mossakowska⁴²⁵, Jorge Mota¹⁴⁶, Anabela Mota-Pinto³⁸³, Mohammad Esmaeel Motlagh⁴²⁶, Jorge Motta⁴²⁷, Kelias P. Msyamboza⁴²⁸, Thet Thet Mu⁴²⁹, Magdalena Muc³⁸³, Boban Mugoša³⁵², Maria Lorenza Muiesan⁴³⁰, Parvina Mukhtorova⁴³¹, Martina Müller-Nurasyid²⁰¹, Neil Murphy²⁶⁶, Jaakko Mursu³²⁶ Elaine M. Murtagh³⁹⁸, Sanja Music Milanovic^{360,7}, Vera Musil⁷, Iraj Nabipour⁴³², Shohreh Naderimagham³⁹, Gabriele Nagel⁴³³, Balkish M. Naidu²⁵, Harunobu Nakamura⁴³⁴, Jana Námešná⁷¹, Ei Ei K. Nang³⁶⁵, Vinay B. Nangia⁴³⁵, Martin Nankap⁴³⁶, Sameer Narake²⁶⁸, Paola Nardone¹⁹⁹, Matthias Nauck³⁷⁸, Eva Maria Navarrete-Muñoz²³⁹, William A. Neal³⁷⁰, Keiu Nelis³⁷⁶, Liis Nelis³⁷⁶, Ilona Nenko²⁵⁹, Flavio Nervi²²¹, Chung T. Nguyen⁴³⁷, Nguyen D. Nguyen⁴³⁸, Quang Ngoc Nguyen⁴³⁹, Ramfis E. Nieto-Martínez Guang Ning⁹⁹, Toshiharu Ninomiya²⁷⁵, Sania Nishtar⁴⁴¹, Marianna Noale³⁸⁵, Oscar A. Noboa¹¹⁴, Teresa Norat¹, Sawada Norie⁴⁴², Davide Noto⁸⁰, Mohannad Al Nsour⁴⁴³, Eha Nurk³⁷⁶, Moffat Nyirenda⁵⁵, Galina Obreja⁴⁴⁴, Angélica M. Ochoa-Avilés²⁰⁰, Eiji Oda⁴⁴⁵, Kyungwon Oh¹⁶⁶, Kumiko Ohara²³⁴, Ryutaro Ohtsuka⁴⁴⁶, Örn Olafsson²⁶², Maria Teresa Anselmo Olinto⁴⁴⁷, Isabel O. Oliveira⁶⁸, Maciej Oltarzewski⁴⁴⁸, Mohd Azahadi Omar²⁵, Altan Onat¹⁴⁰, Terence W. O'Neill⁴⁴⁹, Sok King Ong⁴⁵⁰, Lariane M. Ono¹⁷⁶, Pedro Ordunez⁸¹, Dermot O'Reilly²¹⁵, Rui Ornelas⁴⁵¹, Ana P. Ortiz⁴⁵², Pedro J. Ortiz⁹, Merete Osler⁴⁵³, Clive Osmond⁴⁵⁴, Sergej M. Ostojic⁴⁵⁵, Afshin Ostovar³⁹, Johanna A. Otero²⁹¹, Kim Overvad³²³, Ellis Owusu-Dabo⁴⁵⁶, Fred Michel Paccaud⁴⁵⁷, Cristina Padez³⁸³, Ioannis Pagkalos²⁷⁴,

Elena Pahomova²⁰⁶, Andrzej Pająk²⁵⁹, Domenico Palli⁴⁵⁸, Alberto Palloni⁴⁵⁹, Luigi Palmieri¹⁹⁹, Wen-Harn Pan¹⁵⁵, Songhomitra Panda-Jonas³¹⁵, Arvind Pandey¹⁵⁴, Francesco Panza⁴⁶⁰, Dimitrios Papandreou⁴⁶¹, Soon-Woo Park⁴⁶², Winsome R. Parnell³⁹¹, Mahboubeh Parsaeian³⁹, Ionela M. Pascanu⁴⁶³, Nikhil D. Patel⁴⁶⁴, Ivan Pecin^{309,303}, Mangesh S. Pednekar²⁶⁸, Nasheeta Peer⁴⁶⁵, Sergio Viana Peixoto³⁷¹, Markku Peltonen²¹⁴, Alexandre C. Pereira²⁹⁰, Cynthia M. Pérez⁴⁵² Napoleon Perez-Farinos⁴⁶⁶, Annette Peters²⁰¹, Astrid Petersmann³⁷⁸, Janina Petkeviciene⁹³, Ausra Petrauskiene⁹³, Niloofar Peykari¹⁹⁶ Son Thai Pham⁴⁶⁷, Daniela Pierannunzio¹⁹⁹, Iris Pigeot⁴⁶⁸, Hynek Pikhart¹¹⁰, Aida Pilav⁴⁶⁹, Lorenza Pilotto⁴⁷⁰, Francesco Pistelli⁴⁷¹, Freda Pitakaka⁴⁷², Aleksandra Piwonska²⁰³, Pedro Plans-Rubió⁴⁷³, Bee Koon Poh³²⁰, Hermann Pohlabeln⁴⁶⁸, Raluca M. Pop⁴⁶³, Stevo R. Popovic¹⁰³, Miquel Porta⁴⁷⁴, Marileen L. P. Portegies¹⁸⁹, Georg Posch¹⁷⁵, Dimitrios Poulimeneas²⁷⁴, Hamed Pouraram³⁹, Akram Pourshams⁴⁷⁵, Hossein Poustchi⁴⁷⁶, Rajendra Pradeepa⁵⁹, Alison J. Price⁵⁵, Jacqueline F. Price⁴⁰⁶, Jardena J. Puder³⁹⁶, Iveta Pudule⁴⁷⁷, Soile E. Puhakka^{341,70}, Maria Puiu¹⁵, Margus Punab³⁴², Radwan F. Qasrawi²⁷ Mostafa Qorbani⁴⁷⁸, Tran Quoc Bao⁴⁷⁹, Madhari S. Radhika²⁰, Ivana Radic⁴⁵⁵, Ricardas Radisauskas⁹³, Mahfuzar Rahman⁴⁸⁰, Mahmudur Rahman⁴⁸¹, Olli Raitakari⁴⁸², Manu Raj³⁵³, Hemalatha Rajkumar²⁰, Sherali Rakhmatulloev⁴³¹, Sudha Ramachandra Rao³²⁷, Ambady Ramachandran¹⁵², Jacqueline Ramke⁸⁸, Elisabete Ramos⁷², Rafel Ramos⁴⁸³, Lekhraj Rampal⁴⁸⁴, Sanjav Rampal⁴⁸⁵. Kodavanti Mallikharjuna Rao²⁰, Ramon A. Rascon-Pacheco³², Mette Rasmussen⁴⁸⁶, Josep Redon⁴⁸⁷, Paul Ferdinand M. Reganit⁴⁸⁸, Valéria Regecová⁴⁸⁹, Luis Revilla³⁷⁷, Lourdes Ribas-Barba⁴⁹⁰, Robespierre Ribeiro⁴⁹¹, Elio Riboli¹, Fernando Rigo⁴⁹², Natascia Rinaldo²⁶¹, Tobias F. Rinke de Wit⁴⁹³, Ana Rito⁴⁹⁴, Raphael M. Ritti-Dias⁴⁹⁵, Juan A. Rivera²²⁶, Cynthia Robitaille⁴⁹⁶, Daniela Rodrigues³⁸³, Fernando Rodríguez-Artalejo⁷⁹, María del Cristo Rodriguez-Perez⁴⁹⁷, Laura A. Rodríguez-Villamizar⁴⁹⁸, Rosalba Rojas-Martinez⁴¹⁸, Nipa Rojroongwasinkul³⁴, Dora Romaguera¹⁸⁰, Annika Rosengren^{499,107}, Ian Rouse⁵⁰⁰, Joel G. R. Roy¹⁷⁴, Adolfo Rubinstein²⁷¹, Frank J. Rühli¹¹⁸, Jean-Bernard Ruidavets¹¹⁷, Emma Ruiz Moreno⁵⁰¹, Blanca Sandra Ruiz-Betancourt³², Paola Russo⁵⁰², Petra Rust³⁴⁰, Marcin Rutkowski⁷⁸, Charumathi Sabanayagam⁵⁰³, Harshpal S. Sachdev⁵⁰⁴ Saeid Safiri⁵⁰⁵, Olfa Saidi⁹⁰, Benoit Salanave¹⁹², Eduardo Salazar-Martinez²²⁶, Diego Salmerón²⁹⁶, Veikko Salomaa²¹⁴, Jukka T. Salonen⁵⁰⁶, Massimo Salvetti⁴³⁰, Jose Sánchez-Abanto⁵⁰⁷, Sandjaja⁵⁰⁸, Susana Sans⁵⁰⁹, Loreto Santa-Marina⁵¹⁰, Diana A. Santos⁵¹¹, Ina S. Santos⁶⁸, Osvaldo Santos⁵¹¹, Rute Santos¹⁴⁶, Sara Santos Sanz⁴⁶⁶, Jouko L. Saramies⁵¹², Luis B. Sardinha⁵¹¹, Nizal Sarrafzadegan⁵¹³, Kai-Uwe Saum¹²⁷, Savvas Savva²⁷², Mathilde Savy¹⁹¹, Marcia Scazufca⁵¹⁴, Angelika Schaffrath Rosario⁴⁰⁹, Herman Schargrodsky⁵¹⁵, Anja Schienkiewitz⁴⁰⁹, Karin Schindler⁵¹⁶, Sabine Schipf³⁷⁸, Carsten O. Schmidt³⁷⁸, Ida Maria Schmidt⁵¹⁷, Ben Schöttker¹²⁷ Constance Schultsz¹⁸⁷, Aletta E. Schutte^{349,19}, Sylvain Sebert⁷⁰, Aye Aye Sein²⁹⁴, Rusidah Selamat²⁵, Vedrana Sember²⁴, Abhijit Sen³⁰⁶, ldowu O. Senbanjo⁵¹⁸, Sadaf G. Sepanlou³⁹, Victor Sequera¹⁴², Luis Serra-Majem⁵¹⁹, Jennifer Servais¹⁷⁴, Svetlana A. Shalnova¹⁸⁸, Sanjib K. Sharma³³⁹, Jonathan E. Shaw³⁸⁶, Lela Shengelia⁵²⁰, Kenji Shibuya³⁰², Hana Shimizu-Furusawa⁵²¹, Dong Wook Shin⁵²², Youchan Shin⁵⁰ Alfonso Siani⁵⁰², Rosalynn Siantar⁵⁰³, Abla M. Sibai²⁹⁹, Antonio M. Silva⁸⁶, Diego Augusto Santos Silva¹⁷⁶, Mary Simon¹⁵², Judith Simons⁵²³, Leon A. Simons⁵²⁴, Khairil Si-Ramlee⁴⁵⁰, Agneta Sjöberg¹⁰⁷, Michael Sjöström²³, Jolanta Slowikowska-Hilczer⁷⁷, Przemyslaw Slusarczyk⁴²⁵, Liam Smeeth⁵⁵, Marieke B. Snijder³⁸, Hung-Kwan So²⁸⁶, Eugène Sobngwi⁶⁷, Stefan Söderberg²²⁸, Moesijanti Y. E. Soekatri⁵²⁵, Agustinus Soemantri⁵²⁶, Vincenzo Solfrizzi⁵²⁷, Emily Sonestedt²⁴⁸, Yi Song²⁹⁵, Thorkild I. A. Sørensen⁵⁸, Charles Sossa Jérome⁵²⁸, Aïcha Soumaré⁵²⁹, Angela Spinelli¹⁹⁹, Igor Spiroski⁵³⁰, Jan A. Staessen⁵³¹, Hanspeter Stamm⁵³² Maria G. Stathopoulou⁵³³, Kaspar Staub¹¹⁸, Bill Stavreski³¹⁰, Jostein Steene-Johannessen⁵⁷, Peter Stehle⁵³⁴, Aryeh D. Stein³⁹⁹, George S. Stergiou⁵³⁵, Jochanan Stessman³⁰⁵, Doris Stöckl²⁰¹, Tanja Stocks²⁴⁸, Jakub Stokwiszewski⁵³⁶, Gareth Stratton⁵³⁷, Karien Stronks³⁸, Maria Wany Strufaldi²³⁰, Lela Sturua⁵²⁰, Ramón Suárez-Medina²⁵⁴, Chien-An Sun⁵³⁸, Johan Sundström³⁷⁴, Yn-Tz Sung²⁸⁷, Jordi Sunyer⁵⁰, Paibul Suriyawongpaisal³⁴, Boyd A. Swinburn⁸⁸, Rody G. Sy⁴⁸⁸, René Charles Sylva⁵³⁹, Lucjan Szponar⁴⁴⁸, E. Shyong Tai³⁶⁵, Mari-Liis Tammesoo²²⁵, Abdonas Tamosiunas⁹³, Eng Joo Tan¹⁷, Xun Tang²⁹⁵, Frank Tanser⁵⁴⁰, Yong Tao²⁹⁵, Mohammed Rasoul Tarawneh⁵⁴¹, Jakob Tarp⁵⁷, Carolina B. Tarqui-Mamani⁵⁰⁷, Radka Taxová Braunerová³⁵⁴, Anne Taylor²⁴⁷, Félicité Tchibindat⁴³⁶, William R. Tebar¹⁶⁷, Grethe Tell²⁷⁶, Tania Tello⁹, Holger Theobald¹⁴⁴, Xenophon Theodoridis²⁵⁸, Lutgarde Thijs⁵³¹, Betina H. Thuesen⁷⁵, Lubica Tichá⁵⁴², Erik J. Timmermans³³⁰, Anne Tjonneland²⁷³, Hanna K. Tolonen²¹⁴, Janne S. Tolstrup¹⁰⁵, Murat Topbas¹³⁹, Roman Topór-Madry²⁵⁹, María José Tormo⁵⁴³,

Michael J. Tornaritis²⁷², Maties Torrent⁵⁴⁴, Stefania Toselli⁵⁴⁵, Pierre Traissac¹⁹¹, Dimitrios Trichopoulos 12,576, Antonia Trichopoulou 546, Oanh T. H. Trinh 438, Atul Trivedi⁵⁴⁷, Yu-Hsiang Tsao³⁷², Lechaba Tshepo⁵⁴⁸, Maria Tsigga²⁷⁴, Shoichiro Tsugane⁴⁴², Marshall K. Tulloch-Reid²¹¹, Fikru Tullu⁵⁴⁹ Tomi-Pekka Tuomainen³²⁶, Jaakko Tuomilehto⁵⁵⁰, Maria L. Turley⁵⁵¹, Per Tynelius²³, Themistoklis Tzotzas³²¹, Christophe Tzourio⁵²⁹, Peter Ueda¹², Eunice E. Ugel⁵⁵², Flora A. M. Ukoli⁵⁵³, Hanno Ulmer³³⁵, Belgin Unal⁵⁵⁴, Hannu M. T. Uusitalo⁵⁵⁵, Justina Vaitkeviciute⁹³, Gonzalo Valdivia²²¹, Susana Vale⁵⁵⁶, Damaskini Valvi¹², Yvonne T. van der Schouw⁵⁵⁷, Koen Van Herck¹²², Hoang Van Minh³⁵⁷, Lenie van Rossem⁵⁵⁸, Natasja M. Van Schoor³³⁰, Irene G. M. van Valkengoed³⁸, Dirk Vanderschueren¹⁷³, Diego Vanuzzo⁴⁷⁰, Gregorio Varela-Moreiras⁵⁰¹, Patricia Varona-Pérez²⁵⁴, Lars Vatten³⁰⁶, Tomas Vega³⁷⁹, Toomas Veidebaum³⁷⁶, Gustavo Velasquez-Melendez²⁴⁴, Biruta Velika⁴⁷⁷, Giovanni Veronesi²⁴⁶, W. M. Monique Verschuren¹⁰⁸, Cesar G. Victora⁶⁸, Giovanni Viegi⁵⁵⁹, Lucie Viet¹⁰⁸, Paolo Vineis¹, Jesus Viogue⁵⁶⁰, Jyrki K. Virtanen³²⁶, Marjolein Visser²⁹⁸, Sophie Visvikis-Siest⁵³³ Bharathi Viswanathan⁵⁶¹, Tiina Vlasoff⁵⁶², Peter Vollenweider³⁹⁶, Henry Völzke³⁷⁸, Ari Voutilainen³²⁶, Sari Voutilainen³²⁶, Martine Vrijheid⁵⁰, Tanja G. M. Vrijkotte²⁹⁷, Alisha N. Wade⁵⁶³, Aline Wagner⁴¹⁶, Thomas Waldhör⁵¹⁶, Janette Walton¹³², Wan Mohamad Wan Bebakar²²⁷, Wan Nazaimoon Wan Mohamud⁵⁶⁴, Rildo S. Wanderley Jr⁸³, Ming-Dong Wang⁴⁹⁶, Qian Wang⁵⁶⁵, Xiangjun Wang⁵⁶⁶, Ya Xing Wang²⁶⁷, Ying-Wei Wang¹⁶³, S. Goya Wannamethee¹¹⁰, Nicholas Wareham³³³, Adelheid Weber⁹¹, Deepa Weerasekera⁵⁵¹, Daniel Weghuber⁵⁶⁷, Wenbin Wei²⁶⁷, Peter H. Whincup⁵⁶⁸, Kurt Widhalm⁵¹⁶, Indah S. Widyahening⁵⁶⁹, Andrzej Wiecek¹⁶⁸, Alet H. Wijga¹⁰⁸, Rainford J. Wilks²¹¹, Johann Willeit³³⁵, Peter Willeit³³⁵, Tom Wilsgaard⁴⁰², Bogdan Wojtyniak⁵³⁶, Jyh Eiin Wong³²⁰, Tien Yin Wong¹⁵³, Roy A. Wong-McClure²⁶, Jean Woo²⁸⁷, Mark Woodward^{524,159}, Frederick C. Wu⁴⁴⁹, Jianfeng Wu⁹⁸, Shouling Wu¹⁵⁸, Haiquan Xu⁵⁷⁰, Liang Xu²⁶⁷, Uruwan Yamborisut³⁴, Weili Yan⁵⁷¹, Ling Yang¹⁵⁹. Xiaoguang Yang²⁷⁸, Yang Yang⁵⁶⁶, Nazan Yardim¹⁴⁹, Mehdi Yaseri⁷³, Xingwang Ye³⁷³, Panayiotis K. Yiallouros⁵⁷², Agneta Yngve³⁷⁴, Moein Yoosefi³⁹, Akihiro Yoshihara³⁰⁴, Qi Sheng You²⁶⁷, San-Lin You⁵³⁸, Novie O. Younger-Coleman²¹¹, Ahmad Faudzi Yusoff²⁵, Luciana Zaccagni²⁶¹, Vassilis Zafiropulos³⁹³, Farhad Zamani⁵⁷³, Sabina Zambon³⁹², Antonis Zampelas³⁸⁷, Hana Zamrazilová³⁵⁴, Maria Elisa Zapata¹⁴⁵, Ko Ko Zaw³⁶³, Tomasz Zdrojewski⁷⁸, Tajana Zeljkovic Vrkic³⁰³, Yi Zeng^{157,295}, Dong Zhao³⁷⁵, Wenhua Zhao²⁷⁸, Wei Zheng¹³⁵, Yingfeng Zheng⁵⁰³, Bekbolat Zholdin⁵⁷⁴, Maigeng Zhou²⁷⁸, Dan Zhu⁵⁷⁵, Baurzhan Zhussupov⁸⁷, Esther Zimmermann⁷⁵, Julio Zuñiga Cisneros⁴²⁷ & Majid Ezzati¹*

 1 Imperial College London, London, UK. 2 University of Kent, Canterbury, UK. 3 Middlesex University, London, UK. ⁴University of California Berkeley, Berkeley, CA, USA. ⁵World Health Organization, Geneva, Switzerland. ⁶Seoul National University, Seoul, South Korea. ⁷University of Zagreb, Zagreb, Croatia. 8US Centers for Disease Control and Prevention, Atlanta, GA, USA. ⁹Universidad Peruana Cayetano Heredia, Lima, Peru. ¹⁰Aga Khan University, Karachi, Pakistan. $^{11}\mbox{The Hospital for Sick Children, Toronto, Ontario, Canada.}\,^{12}\mbox{Harvard T. H. Chan School of}$ Public Health, Boston, MA, USA. ¹³Ministry of Health, Victoria, Seychelles. ¹⁴University of Lausanne, Lausanne, Switzerland. ¹⁵Victor Babeş University of Medicine and Pharmacy Timisoara, Timisoara, Romania. ¹⁶The University of the West Indies, Cave Hill, Barbados. ¹⁷University of Sydney, Sydney, New South Wales, Australia. ¹⁸National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan. ¹⁹South African Medical Research Council, Cape Town, South Africa. 20 ICMR-National Institute of Nutrition, Hyderabad, India. 21 Brown University, Providence, RI, USA. ²²Ain Shams University, Cairo, Egypt. ²³Karolinska Institutet, Stockholm, Sweden. ²⁴University of Ljubljana, Ljubljana, Slovenia. ²⁵Ministry of Health Malaysia, Kuala Lumpur, Malaysia. ²⁶Caja Costarricense de Seguro Social, San José, Costa Rica. ²⁷Al-Quds University, East Jerusalem, Palestine. ²⁸National Center of Public Healthcare, Nur-Sultan, Kazakhstan. ²⁹Center for Diabetes and Endocrine Care, Srinagar, India. ³⁰Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria. ³¹Birzeit University, Birzeit, Palestine. ³²Instituto Mexicano del Seguro Social, Mexico City, Mexico. 33 Flinders University, Adelaide, South Australia, Australia. 34 Mahidol University, Nakhon Pathom, Thailand. 35 BRAC University, Dhaka, Bangladesh. ³⁶Food and Nutrition Research Institute, Taguig, The Philippines. ³⁷Instituto Nacional de Ciencias Médicas y Nutrición, Mexico City, Mexico. 38 University of Amsterdam, Amsterdam, The Netherlands. ³⁹Tehran University of Medical Sciences, Tehran, Iran. ⁴⁰Non-Communicable Diseases Research Center, Tehran, Iran. 41 University of Bremen, Bremen, Germany. 42The National Center for Diabetes, Endocrinology and Genetics, Amman, Jordan. ⁴³Aldara Hospital and Medical Center, Riyadh, Saudi Arabia. ⁴⁴King Abdullah International Medical Research Center, Riyadh, Saudi Arabia. ⁴⁵King Saud University, Riyadh, Saudi Arabia. ⁴⁶Universiti Malaysia Sabah, Kota Kinabalu, Malaysia. ⁴⁷Luxembourg Institute of Health, Strassen, Luxembourg. ⁴⁸Kuwait Institute for Scientific Research, Safat, Kuwait. ⁴⁹King Abdulaziz University, Jeddah, Saudi Arabia. 50 ISGlobal Centre for Research in Environmental Epidemiology, Barcelona, Spain. ⁵¹World Health Organization Regional Office for the Eastern Mediterranean, Cairo, Egypt. ⁵²Bombay Hospital and Medical Research Centre, Mumbai, India. ⁵³University of Lille, Lille, France. ⁵⁴Lille University Hospital, Lille, France. ⁵⁵London School of Hygiene & Tropical Medicine, London, UK. ⁵⁶Western Norway University of Applied Sciences, Sogndal, Norway. 57 Norwegian School of Sport Sciences, Oslo, Norway. 58 University of Copenhagen, Copenhagen, Denmark. 59 Madras Diabetes Research Foundation, Chennai, India. ⁶⁰Zahedan University of Medical Sciences, Zahedan, Iran. ⁶¹National Institute of Public Health,

Tunis, Tunisia. 62Institute of Public Health of the University of Porto, Porto, Portugal. ⁶³Norwegian Institute of Public Health, Oslo, Norway. ⁶⁴University of Massachusetts, Amherst, MA, USA. ⁶⁵Abt Associates, Kathmandu, Nepal. ⁶⁶University of Iceland, Reykjavik, Iceland. ⁶⁷University of Yaoundé 1, Yaoundé, Cameroon. ⁶⁸Federal University of Pelotas, Pelotas, Brazil. ⁶⁹University of Medicine 1, Yangon, Myanmar. ⁷⁰University of Oulu, Oulu, Finland. ⁷¹Regional Authority of Public Health, Banska Bystrica, Slovakia. 72 University of Porto Medical School, Porto, Portugal, 73 Shahid Beheshti University of Medical Sciences, Tehran, Iran, 74 Indian Council of Medical Research, New Delhi, India. ⁷⁵Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark. ⁷⁶University of Science and Technology, Sana'a, Yemen. ⁷⁷Medical University of Lodz, Lodz, Poland. ⁷⁸Medical University of Gdansk, Gdansk, Poland. ⁷⁹Universidad Autónoma de Madrid, Madrid, Spain. 80 University of Palermo, Palermo, Italy. 81 Pan American Health Organization, Washington, DC, USA. 82 Mohammed V University de Rabat, Rabat, Morocco. ⁸³University of Pernambuco, Recife, Brazil. ⁸⁴Dalhousie University, Halifax, Nova Scotia, Canada. 85 Jordan University of Science and Technology, Irbid, Jordan. 86 Federal University of Maranhao, Sao Luis, Brazil. 87 Kazakh National Medical University, Almaty, Kazakhstan, 88University of Auckland, Auckland, New Zealand, 89University College Dublin, Dublin, Ireland. ⁹⁰University Tunis El Manar, Tunis, Tunisia. ⁹¹Federal Ministry of Labour, Social Affairs, Health and Consumer Protection, Vienna, Austria. 92 Cafam University Foundation, Bogota, Colombia. 93Lithuanian University of Health Sciences, Kaunas, Lithuania. 94University of São Paulo, São Paulo, Brazil. 95B. J. Medical College, Ahmedabad, India. 96Chirayu Medical College, New Delhi, India. ⁹⁷Sunder Lal Jain Hospital, Delhi, India. ⁹⁸Shandong University of Traditional Chinese Medicine, Shandong, China. 99Shanghai Jiao-Tong University School of Medicine, Shanghai, China. 100 Institute of Medical Research and Medicinal Plant Studies, Yaoundé, Cameroon. 101 Ufa Eye Research Institute, Ufa, Russia. 102 Nepal Health Research Council, Kathmandu, Nepal, 103 University of Montenegro, Niksic, Montenegro, 104 University of Greenland, Nuuk, Greenland. 105University of Southern Denmark, Odense, Denmark. ¹⁰⁶University of Oslo, Oslo, Norway. ¹⁰⁷University of Gothenburg, Gothenburg, Sweden. ¹⁰⁸National Institute for Public Health and the Environment, Bilthoven, The Netherlands. ¹⁰⁹University of Turin, Turin, Italy. ¹¹⁰University College London, London, UK. ¹¹¹Liverpool John Moores University, Liverpool, UK. ¹¹²Nanyang Technological University, Singapore, Singapore. ¹¹³German Institute of Human Nutrition, Potsdam, Germany. ¹¹⁴Universidad de la República, Montevideo, Uruguay. 115 CEMIC, Buenos Aires, Argentina. 116 IRCCS Neuromed, Pozzilli, Italy. ¹¹⁷Toulouse University School of Medicine, Toulouse, France. ¹¹⁸University of Zurich, Zurich, Switzerland. 119 University Hospital of Varese, Varese, Italy. 120 University Hospital KU Leuven, Leuven, Belgium. 121 Flemish Agency for Care and Health, Brussels, Belgium. 122 Ghent University, Ghent, Belgium. ¹²³FrieslandCampina, Amersfoort, The Netherlands. ¹²⁴Universidad Central de Venezuela, Caracas, Venezuela. 125 Bielefeld University, Bielefeld, Germany. 126 World Health Organization Regional Office for Europe, Copenhagen, Denmark. 127German Cancer Research Center, Heidelberg, Germany. 128The Fred Hollows Foundation, Auckland, New Zealand. 129 University of Medicine and Pharmacy Bucharest, Bucharest, Romania. 130 University College Copenhagen, Copenhagen, Denmark. 131 Institute of Public Health, Tirana, Albania. ¹³²Cork Institute of Technology, Cork, Ireland. ¹³³Universidad de La Laguna, Tenerife, Spain. ¹³⁴University of Malta, Pietà, Malta, ¹³⁵Vanderbilt University, Nashville, TN, USA, ¹³⁶Ministry of Health, Tongatapu, Tonga. ¹³⁷Canadian Fitness and Lifestyle Research Institute, Ottawa, Ontario, Canada. ¹³⁸Hospital Santa Maria, Lisbon, Portugal. ¹³⁹Karadeniz Technical University, Trabzon, Turkey. ¹⁴⁰Istanbul University, Istanbul, Turkey. ¹⁴¹Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil. ¹⁴²Ministry of Public Health, Asunción, Paraguay. ¹⁴³Cardiologia di Mercato S. Severino Hospital, Mercato San Severino, Italy. 144 Karolinska Institutet, Huddinge, Sweden. ¹⁴⁵Centro de Estudios sobre Nutrición Infantil, Buenos Aires, Argentina. ¹⁴⁶University of Porto, Porto, Portugal. ¹⁴⁷Santiago de Compostela University, Santiago de Compostela, Spain. ¹⁴⁸Associazione Calabrese di Epatologia, Reggio Calabria, Italy. ¹⁴⁹Ministry of Health, Ankara, Turkey. ¹⁵⁰Food and Agriculture Organization of the United Nations, Rome, Italy. ¹⁵¹Federal University of Rio Grande, Rio Grande, Brazil. 152 India Diabetes Research Foundation, Chennai, India. 153 Duke-NUS Medical School, Singapore, Singapore. 154 National Institute of Medical Statistics, New Delhi, India. 155 Academia Sinica, Taipei, Taiwan. 156 Capital Institute of Pediatrics, Beijing, China. 157 Duke University, Durham, NC, USA. 158 Kailuan General Hospital, Tangshan, China. ¹⁵⁹University of Oxford, Oxford, UK. ¹⁶⁰The Gertner Institute for Epidemiology and Health Policy Research, Ramat Gan, Israel. 161 National Centre of Public Health and Analyses, Sofia, Bulgaria. ¹⁶²University of Bern, Lausanne, Switzerland. ¹⁶³Ministry of Health and Welfare, Taipei, Taiwan. ¹⁶⁴Murcia Health Council, Murcia, Spain. ¹⁶⁵Seoul National University College of Medicine, Seoul, South Korea, 166Korea Centers for Disease Control and Prevention. Cheongju-si, South Korea. ¹⁶⁷Universidade Estadual Paulista, Presidente Prudente, Brazil. ¹⁶⁸Medical University of Silesia, Katowice, Poland. ¹⁶⁹Charles University in Prague, Prague, Czech Republic. 170Thomayer Hospital, Prague, Czech Republic. 171Primary Health Care, Floriana, Malta. ¹⁷²Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. ¹⁷³Katholieke Universiteit Leuven, Leuven, Belgium. ¹⁷⁴Statistics Canada, Ottawa, Ontario, Canada. 175 Agency for Preventive and Social Medicine, Bregenz, Austria. 176 Universidade Federal de Santa Catarina, Florianópolis, Brazil. 177 University of Southampton, Southampton, UK. ¹⁷⁸Institut Pasteur de Lille, Lille, France. ¹⁷⁹Malawi Epidemiology and Intervention Research Unit, Lilongwe, Malawi. 180CIBEROBN, Madrid, Spain. 181National Institute of Public Health, Bucharest, Romania. ¹⁸²Eduardo Mondlane University, Maputo, Mozambique. ¹⁸³National Council of Research, Reggio Calabria, Italy. ¹⁸⁴Indian Statistical Institute, Kolkata, India. ¹⁸⁵Tabriz Health Services Management Centre, Tabriz, Iran. ¹⁸⁶Sciensano, Brussels, Belgium. ¹⁸⁷Academic Medical Center of University of Amsterdam, Amsterdam, The Netherlands. $^{188}\mbox{National}$ Research Centre for Preventive Medicine, Moscow, Russia. $^{189}\mbox{Erasmus}$ Medical Center Rotterdam, Rotterdam, The Netherlands. 190 University of Montreal, Montreal, Québec, Canada. 191 Institut de Recherche pour le Développement, Montpellier, France. 192 French Public Health Agency, St Maurice, France. 193 Mediterranea Cardiocentro, Naples, Italy. 194 Universidade do Vale do Rio dos Sinos, São Leopoldo, Brazil. 195 National Council of Scientific and Technical Research, Tandil, Argentina. 196 Ministry of Health and Medical Education, Tehran, Iran. ¹⁹⁷National Institute of Nutrition, Hanoi, Vietnam. ¹⁹⁸University of Queensland, Brisbane, Queensland, Australia. 199 Istituto Superiore di Sanità, Rome, Italy. 200 Universidad de Cuenca,

Cuenca, Ecuador. 201 Helmholtz Zentrum München, Munich, Germany. 202 Ministère de la Santé et de la Lutte Contre le Sida, Abidjan, Côte d'Ivoire. 203The Cardinal Wyszynski Institute of Cardiology, Warsaw, Poland. ²⁰⁴Beijing Center for Disease Prevention and Control, Beijing, China. ²⁰⁵BIDMC, Boston, MA, USA. ²⁰⁶University of Latvia, Riga, Latvia. ²⁰⁷Ministry of Health and Medical Services, Gizo, Solomon Islands. 208 University of Benin, Benin City, Nigeria. ²⁰⁹University of Skövde, Skövde, Sweden. ²¹⁰National Institute of Nutrition and Food Technology, Tunis, Tunisia. 211The University of the West Indies, Kingston, Jamaica. 212University of California Davis, Davis, CA, USA. ²¹³University of Stellenbosch, Cape Town, South Africa. ²¹⁴National Institute for Health and Welfare, Helsinki, Finland. ²¹⁵Queen's University of Belfast, Belfast, UK. ²¹⁶Shiraz University of Medical Sciences, Shiraz, Iran. ²¹⁷Centro de Salud Villanueva Norte, Badajoz, Spain. ²¹⁸Hospital Don Benito-Villanueva de la Serena, Badajoz, Spain. ²¹⁹Ministry of Health, Buenos Aires, Argentina. ²²⁰Council for Agricultural Research and Economics, Rome, Italy. 221 Pontificia Universidad Católica de Chile, Santiago, Chile. 222 Institute of Mother and Child, Warsaw, Poland. ²²³University of Basel, Basel, Switzerland. ²²⁴Swiss TPH, Basel, Switzerland. ²²⁵University of Tartu, Tartu, Estonia. ²²⁶Instituto Nacional de Salud Pública, Cuernavaca, Mexico. ²²⁷Universiti Sains Malaysia, Kelantan, Malaysia. ²²⁸Umeå University, Umeå, Sweden. ²²⁹Georgia College and State University, Milledgeville, GA, USA. ²³⁰Federal University of São Paulo, São Paulo, Brazil. 231 Hospital Universitario Son Espases, Palma, Spain. ²³²Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil. ²³³Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. ²³⁴Kindai University, Osaka-Sayama, Japan. ²³⁵Kyoto University, Kyoto, Japan. ²³⁶Medical University of Warsaw, Warsaw, Poland. ²³⁷Ministry of Health, Rome, Italy. ²³⁸University of Catania, Catania, Italy. ²³⁹CIBER en Epidemiología y Salud Pública, Alicante, Spain. 240 Africa Health Research Institute, Mtubatuba, South Africa. 241 Geneva University Hospitals, Geneva, Switzerland. 242CIBER en Epidemiología y Salud Pública, Barcelona, Spain. ²⁴³Australian Bureau of Statistics, Canberra, Australian Capital Territory, Australia. ²⁴⁴Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. ²⁴⁵Wageningen University, Wageningen, The Netherlands. ²⁴⁶University of Insubria, Varese, Italy. ²⁴⁷University of Adelaide, Adelaide, South Australia, Australia. 248Lund University, Lund, Sweden. 249Ministry of Health, Jerusalem, Israel. ²⁵⁰McGill University, Montreal, Québec, Canada. ²⁵¹Universidad Autonoma de Santo Domingo, Santo Domingo, Dominican Republic. ²⁵²Universidad Politécnica de Madrid, Madrid, Spain. ²⁵³The Andes Clinic of Cardio-Metabolic Studies, Merida, Venezuela. ²⁵⁴Instituto Nacional de Higiene, Epidemiología y Microbiología, Havana, Cuba. ²⁵⁵Ministry of Health, Lisbon, Portugal. ²⁵⁶Institute for Clinical and Experimental Medicine, Prague, Czech Republic. ²⁵⁷Children's Memorial Health Institute, Warsaw, Poland. ²⁵⁸Aristotle University of Thessaloniki, Thessaloniki, Greece. ²⁵⁹ Jagiellonian University Medical College, Kraków, Poland. ²⁶⁰National Center of Cardiovascular Diseases, Beijing, China. ²⁶¹University of Ferrara, Ferrara, Italy. ²⁶²Icelandic Heart Association, Kopavogur, Iceland. ²⁶³Universidad Icesi, Cali, Colombia. ²⁶⁴State University of Montes Claros, Montes Claros, Brazil. ²⁶⁵King's College London, London, UK. ²⁶⁶International Agency for Research on Cancer, Lyon, France. ²⁶⁷Capital Medical University, Beijing, China. ²⁶⁸Healis-Sekhsaria Institute for Public Health, Navi Mumbai, India. ²⁶⁹Eternal Heart Care Centre and Research Institute, Jaipur, India. 270 University of Ibadan, Ibadan, Nigeria. ²⁷¹Institute for Clinical Effectiveness and Health Policy, Buenos Aires, Argentina. ²⁷²Research and Education Institute of Child Health, Nicosia, Cyprus. 273 Danish Cancer Society Research Centre, Copenhagen, Denmark. 274Alexander Technological Educational Institute, Thessaloniki, Greece. ²⁷⁵Kyushu University, Fukuoka, Japan. ²⁷⁶University of Bergen, Bergen, Norway. ²⁷⁷Tulane University, New Orleans, LA, USA. ²⁷⁸Chinese Center for Disease Control and Prevention, Beijing, China. ²⁷⁹University of Pécs, Pécs, Hungary. ²⁸⁰Danish Health Authority, Copenhagen, Denmark. ²⁸¹Joep Lange Institute, Amsterdam, The Netherlands. ²⁸²Oulu University Hospital, Oulu, Finland. ²⁸³Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia. ²⁸⁴ETH Zurich, Zurich, Switzerland. ²⁸⁵Chronic Diseases Research Center, Tehran, Iran. ²⁸⁶University of Hong Kong, Hong Kong, China. ²⁸⁷The Chinese University of Hong Kong, Hong Kong, China. ²⁸⁸University of Western Australia, Perth, Western Australia, Australia. ²⁸⁹Kingston Health Sciences Centre, Kingston, Ontario, Canada. ²⁹⁰Heart Institute, São Paulo, Brazil. ²⁹¹Fundación Oftalmológica de Santander, Santander, Colombia. ²⁹²University Oran 1, Oran, Algeria. ²⁹³Independent Public Health Specialist, Nay Pyi Taw, Myanmar. ²⁹⁴Ministry of Health and Sports, Nay Pyi Taw, Myanmar. ²⁹⁵Peking University, Beijing, China. ²⁹⁶CIBER en Epidemiología y Salud Pública, Murcia, Spain. ²⁹⁷Amsterdam UMC of University of Amsterdam, Amsterdam, The Netherlands. ²⁹⁸Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. ²⁹⁹American University of Beirut, Beirut, Lebanon. ³⁰⁰CIBER en Epidemiología y Salud Pública, San Sebastian, Spain. ³⁰¹Cairo University, Cairo, Egypt. ³⁰²The University of Tokyo, Tokyo, Japan. ³⁰³University Hospital Centre Zagreb, Zagreb, Croatia. ³⁰⁴Niigata University, Niigata, Japan. ³⁰⁵Hadassah University Medical Center, Jerusalem, Israel. ³⁰⁶Norwegian University of Science and Technology, Trondheim, Norway. 307The University of Melbourne, Melbourne, Victoria, Australia. ³⁰⁸Sports University of Tirana, Tirana, Albania. ³⁰⁹University of Zagreb School of Medicine, Zagreb, Croatia. 310 Heart Foundation, Melbourne, Victoria, Australia. 311 National Health Insurance Service, Wonju, South Korea. 312Guangzhou 12th Hospital, Guangzhou, China. ³¹³Universidad Eugenio Maria de Hostos, Santo Domingo, Dominican Republic. ³¹⁴Simon Fraser University, Burnaby, British Columbia, Canada. 315Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany. 316World Health Organization Country Office, Delhi, India. ³¹⁷Institute of Public Health of Serbia, Belgrade, Serbia. ³¹⁸University of Opole, Opole, Poland. ³¹⁹University of Crete, Heraklion, Greece. ³²⁰Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia. 321 Hellenic Medical Association for Obesity, Athens, Greece. 322 Maharajgunj Medical Campus, Kathmandu, Nepal. 323 Aarhus University, Aarhus, Denmark. 324 Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. 325 Pennington Biomedical Research Center, Baton Rouge, LA, USA. 326 University of Eastern Finland, Kuopio, Finland. 327 National Institute of Epidemiology, Chennai, India. 328 University of Münster, Münster, Germany. 329 Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan, Iran. ³³⁰Amsterdam Public Health Research Institute, Amsterdam, The Netherlands. ³³¹Kyrgyz State Medical Academy, Bishkek, Kyrgyzstan. 332Research Institute of Child Nutrition, Dortmund, Germany. ³³³University of Cambridge, Cambridge, UK. ³³⁴Hypertension Research Center, Isfahan, Iran. 335 Medical University of Innsbruck, Innsbruck, Austria. 336 Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania. 337 National Cancer Center, Goyang-si,

South Korea. 338 Statistics Austria, Vienna, Austria. 339 B. P. Koirala Institute of Health Sciences, Dharan, Nepal. 340 University of Vienna, Vienna, Austria. 341 Oulu Deaconess Institute Foundation, Oulu, Finland. 342 Tartu University Clinics, Tartu, Estonia. 343 Kansai Medical University, Osaka-Sayama, Japan. 344 National Institute of Pharmacy and Nutrition, Budapest, Hungary. ³⁴⁵Ministry of Health and Quality of Life, Port Louis, Mauritius. ³⁴⁶Polish Academy of Sciences Anthropology Unit, Wroclaw, Poland. 347 University Hospital Ulm, Ulm, Germany. 348 University of Groningen, Groningen, The Netherlands. 349 North-West University, Potchefstroom, South Africa. 350 National Institute of Public Health, Prague, Czech Republic. 351 University of Jyväskylä, Jyväskylä, Finland. 352 Institute of Public Health of Montenegro, Podgorica, Montenegro. ³⁵³Amrita Institute of Medical Sciences, Cochin, India. ³⁵⁴Institute of Endocrinology, Prague, Czech Republic. 355AII India Institute of Medical Sciences, New Delhi, India. 356African Population and Health Research Center, Nairobi, Kenya. 357 Hanoi University of Public Health, Hanoi, Vietnam. ³⁵⁸Higher Institute of Nursing Professions and Technical Health, Rabat, Morocco. 359 National Institute of Public Health of Algeria, Algiers, Algeria. 360 Croatian National Institute of Public Health, Zagreb, Croatia. 361 Sahlgrenska Academy, Gothenburg, Sweden. 362 Endocrinology and Metabolism Research Center, Tehran, Iran, 363 University of Public Health, Yangon, Myanmar. ³⁶⁴International Food Policy Research Institute, Dakar, Senegal. ³⁶⁵National University of Singapore, Singapore, Singapore. ³⁶⁶Hong Kong Polytechnic University, Hong Kong, China. ³⁶⁷Tampere University Hospital, Tampere, Finland. ³⁶⁸University of Douala, Douala, Cameroon. ³⁶⁹University of Cape Town, Cape Town, South Africa. ³⁷⁰West Virginia University, Morgantown, WV, USA. 371 Oswaldo Cruz Foundation Rene Rachou Research Institute, Belo Horizonte, Brazil. ³⁷²National Taiwan University, Taipei, Taiwan. ³⁷³University of Chinese Academy of Sciences, Shanghai, China. 374 Uppsala University, Uppsala, Sweden. 375 Capital Medical University Beijing An Zhen Hospital, Beijing, China. 376National Institute for Health Development, Tallinn, Estonia. 377 Universidad San Martín de Porres, Lima, Peru. 378 University Medicine of Greifswald, Greifswald, Germany. ³⁷⁹Consejería de Sanidad Junta de Castilla y León, Valladolid, Spain. 380 Norrbotten County Council, Luleå, Sweden. 381 University of Uppsala, Uppsala, Sweden. 382 Universidade Federal de Ouro Preto, Ouro Preto, Brazil. 383 University of Coimbra, Coimbra, Portugal. 384The Jikei University School of Medicine, Tokyo, Japan. 385 National Research Council, Padua, Italy. 386 Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia. 387 Agricultural University of Athens, Athens, Greece. 388 Hospital Israelita Albert Einstein, São Paulo, Brazil. 389 Institute of Internal and Preventive Medicine, Novosibirsk, Russia. 390 Harokopio University, Athens, Greece. 391 University of Otago, Dunedin, New Zealand. ³⁹²University of Padua, Padua, Italy. ³⁹³Technological Educational Institute of Crete, Heraklion, Greece. ³⁹⁴Loughborough University, Loughborough, UK. ³⁹⁵Ministry of Health, Nicosia, Cyprus. ³⁹⁶Lausanne University Hospital, Lausanne, Switzerland. ³⁹⁷CIBERCV, Barcelona, Spain. ³⁹⁸Mary Immaculate College, Limerick, Ireland. 399Emory University, Atlanta, GA, USA. 400Hungarian Society of Sports Medicine, Budapest, Hungary. 401 Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India. 402 UiT The Arctic University of Norway, Tromsø, Norway. 403 National Centre for Disease Informatics and Research, New Delhi, India. 404Cape Peninsula University of Technology, Cape Town, South Africa. 405 University of Rzeszow, Rzeszow, Poland. 406 University of Edinburgh, Edinburgh, UK. 407 International Medical University, Shah Alam, Malaysia. 408 Institut National de la Santé et de la Recherche Médicale, Lille, France. 409 Robert Koch Institute, Berlin, Germany. 410 Lusófona University, Lisbon, Portugal. 411 Democritus University, Alexandroupolis, Greece. 412 Grigore T. Popa University of Medicine and Pharmacy, lasi, Romania. 413 Università degli Studi di Firenze, Florence, Italy. 414 Isfahan Cardiovascular Research Center, Isfahan, Iran. 415 Strasbourg University Hospital, Strasbourg, France. ⁴¹⁶University of Strasbourg, Strasbourg, France. ⁴¹⁷Mulago Hospital, Kampala, Uganda. 418 Instituto Nacional de Salud Pública, Mexico City, Mexico. 419 University of Limpopo, Sovenga, South Africa. 420 Seoul National University Children's Hospital, Seoul, South Korea. 421 University Medical Science, Havana, Cuba. 422 Universidad de Zaragoza, Zaragoza, Spain. 423 RCSI, Dublin, Ireland. 424La Trobe University, Melbourne, Victoria, Australia. 425International Institute of Molecular and Cell Biology, Warsaw, Poland. 426Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. 427Gorgas Memorial Institute of Public Health, Panama City, Panama ⁴²⁸World Health Organization Country Office, Lilongwe, Malawi. ⁴²⁹Department of Public Health, Nay Pyi Taw, Myanmar. 430 University of Brescia, Brescia, Italy. 431 Ministry of Health and Social Protection, Dushanbe, Tajikistan. 432 Bushehr University of Medical Sciences, Bushehr, Iran. ⁴³³Ulm University, Ulm, Germany. ⁴³⁴Kobe University, Kobe, Japan. ⁴³⁵Suraj Eye Institute, Nagpur, India. 436UNICEF, Yaoundé, Cameroon. 437 National Institute of Hygiene and Epidemiology, Hanoi, Vietnam. ⁴³⁸University of Pharmacy and Medicine, Ho Chi Minh City, Vietnam. 439 Hanoi Medical University, Hanoi, Vietnam. 440 Miami Veterans Affairs Healthcare System, Miami, FL, USA. 441 Heartfile, Islamabad, Pakistan. 442 National Cancer Center, Tokyo, Japan. 443 Eastern Mediterranean Public Health Network, Amman, Jordan. 444 State University of Medicine and Pharmacy, Chisinau, Moldova. 445 Tachikawa General Hospital, Nagaoka, Japan. ⁴⁴⁶Japan Wildlife Research Center, Tokyo, Japan. ⁴⁴⁷University of Vale do Rio dos Sinos, São Leopoldo, Brazil. 448 National Food and Nutrition Institute, Warsaw, Poland. 449 University of Manchester, Manchester, UK. ⁴⁵⁰Ministry of Health, Bandar Seri Begawan, Brunei Darussalam. ⁴⁵¹University of Madeira, Funchal, Portugal. ⁴⁵²University of Puerto Rico, San Juan, Puerto Rico. ⁴⁵³Research Center for Prevention and Health, Glostrup, Denmark. ⁴⁵⁴MRC Lifecourse Epidemiology Unit, Southampton, UK. ⁴⁵⁵University of Novi Sad, Novi Sad, Serbia. ⁴⁵⁶Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. 457 Institute for Social and Preventive Medicine, Lausanne, Switzerland. 458 Cancer Prevention and Research Institute, Florence, Italy. 459 University of Wisconsin-Madison, Madison, WI, USA. 460 IRCCS Casa Sollievo della Sofferenza, Bari, Italy. 461 Zayed University, Abu Dhabi, United Arab Emirates. 462 Catholic University of Daegu, Daegu, South Korea. 463 University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Târgu Mureş, Romania. 464 Jivandeep Hospital, Anand, India. ⁴⁶⁵South African Medical Research Council, Durban, South Africa. ⁴⁶⁶Spanish Food Safety and Nutrition Agency, Madrid, Spain. 467 Vietnam National Heart Institute, Hanoi, Vietnam. 468 Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany. 469 University of Sarajevo, Sarajevo, Bosnia and Herzegovina. 470 Cardiovascular Prevention Centre Udine, Udine, Italy. ⁴⁷¹University Hospital of Pisa, Pisa, Italy. ⁴⁷²Ministry of Health and Medical Services, Honiara, Solomon Islands. 473 Public Health Agency of Catalonia, Barcelona, Spain. 474 Institut

Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain. 475 Digestive Oncology Research Center, Tehran, Iran. 476 Digestive Disease Research Institute, Tehran, Iran. 477 Centre for Disease Prevention and Control, Riga, Latvia. 478 Alborz University of Medical Sciences, Karaj, Iran. 479Ministry of Health, Hanoi, Vietnam. 480BRAC, Dhaka, Bangladesh. 481Institute of Epidemiology Disease Control and Research, Dhaka, Bangladesh. 482 University of Turku, Turku, Finland. 483 Institut Universitari d'Investigació en Atenció Primària Jordi Gol, Girona, Spain. 484 Universiti Putra Malaysia, Serdang, Malaysia. 485 University of Malaya, Kuala Lumpur, Malaysia. ⁴⁸⁶National Institute of Public Health, Copenhagen, Denmark. ⁴⁸⁷University of Valencia, Valencia, Spain. ⁴⁸⁸University of the Philippines, Manila, The Philippines. ⁴⁸⁹Slovak Academy of Sciences, Bratislava, Slovakia. 490 Nutrition Research Foundation, Barcelona, Spain. ⁴⁹¹Minas Gerais State Secretariat for Health, Belo Horizonte, Brazil. ⁴⁹²Health Center San Agustín, Palma, Spain. 493 Pharm Access Foundation, Amsterdam, The Netherlands. 494 National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal. 495 Universidade Nove de Julho, São Paulo, Brazil. 496Public Health Agency of Canada, Ottawa, Ontario, Canada. 497Canarian Health Service, Tenerife, Spain. 498 Universidad Industrial de Santander, Santander, Colombia. ⁴⁹⁹Sahlgrenska University Hospital, Gothenburg, Sweden. ⁵⁰⁰Fiji National University, Suva, Fiji. ⁵⁰¹Spanish Nutrition Foundation, Madrid, Spain. ⁵⁰²Institute of Food Sciences of the National Research Council, Avellino, Italy. 503 Singapore Eye Research Institute, Singapore, Singapore. ⁵⁰⁴Sitaram Bhartia Institute of Science and Research, New Delhi, India. ⁵⁰⁵Maragheh University of Medical Sciences, Maragheh, Iran. 506 University of Helsinki, Helsinki, Finland. 507 National Institute of Health, Lima, Peru. ⁵⁰⁸Ministry of Health, Jakarta, Indonesia. ⁵⁰⁹Catalan Department of Health, Barcelona, Spain. 510 Biodonostia Health Research Institute, San Sebastian, Spain. ⁵¹¹Universidade de Lisboa, Lisbon, Portugal. ⁵¹²South Karelia Social and Health Care District, Lappeenranta, Finland. 513Cardiovascular Research Institute, Isfahan, Iran. 514University of São Paulo Clinics Hospital, São Paulo, Brazil. 515 Hospital Italiano de Buenos Aires, Buenos Aires, Argentina. 516 Medical University of Vienna, Vienna, Austria. 517 Rigshospitalet, Copenhagen, Denmark. ⁵¹⁸Lagos State University College of Medicine, Lagos, Nigeria. ⁵¹⁹University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain. 520 National Center for Disease Control and Public Health, Tbilisi, Georgia. 521 National Center for Global Health and Medicine, Tokyo, Japan. 522 Samsung Medical Center, Seoul, South Korea. 523 St Vincent's Hospital, Sydney, New South Wales, Australia. 524 University of New South Wales, Sydney, New South Wales,

Australia. 525 Health Polytechnic Jakarta II Institute, Jakarta, Indonesia. 526 Diponegoro University, Semarang, Indonesia. 527 University of Bari, Bari, Italy. 528 Institut Régional de Santé Publique, Ouidah, Benin. 529 University of Bordeaux, Bordeaux, France. 530 Institute of Public Health, Skopje, Macedonia. 531 University of Leuven, Leuven, Belgium. 532 Lamprecht und Stamm Sozialforschung und Beratung AG, Zurich, Switzerland. 533 INSERM, Nancy, France. 534 Bonn University, Bonn, Germany. 535 Sotiria Hospital, Sotiria, Greece. 536 National Institute of Public Health-National Institute of Hygiene, Warsaw, Poland. 537 Swansea University, Swansea, UK. 538Fu Jen Catholic University, Taipei, Taiwan. 539National Statistic Office of Cabo Verde, Praia, Cabo Verde. 540 University of KwaZulu-Natal, Mtubatuba, South Africa. 541 Ministry of Health, Amman, Jordan. 542 Comenius University, Bratislava, Slovakia. 543 Health Service of Murcia, Murcia, Spain. 544 IB-SALUT Area de Salut de Menorca, Maó, Spain. 545 University of Bologna, Bologna, Italy. 546Hellenic Health Foundation, Athens, Greece. 547Government Medical College, Bhavnagar, India. ⁵⁴⁸Sefako Makgatho Health Science University, Ga-Rankuwa, South Africa. ⁵⁴⁹Addis Ababa University, Addis Ababa, Ethiopia. ⁵⁵⁰Dasman Diabetes Institute, Kuwait City, Kuwait. 551 Ministry of Health, Wellington, New Zealand. 552 Universidad Centro-Occidental Lisandro Alvarado, Barquisimeto, Venezuela. 553 Meharry Medical College, Nashville, TN, USA. ⁵⁵⁴Dokuz Eylul University, Izmir, Turkey. ⁵⁵⁵University of Tampere Tays Eye Center, Tampere, Finland. ⁵⁵⁶Polytechnic Institute of Porto, Porto, Portugal. ⁵⁵⁷Utrecht University, Utrecht, The Netherlands. ⁵⁵⁸University Medical Center Utrecht, Utrecht, The Netherlands. ⁵⁵⁹National Research Council, Pisa, Italy. 560 Universidad Miguel Hernandez, Alicante, Spain. 561 Ministry of Health, Mont Fleuri, Seychelles. ⁵⁶²North Karelian Center for Public Health, Joensuu, Finland. ⁵⁶³University of the Witwatersrand, Johannesburg, South Africa. ⁵⁶⁴Institute for Medical Research, Kuala Lumpur, Malaysia. 565Xinjiang Medical University, Urumqi, China. 566Shanghai Educational Development Co. Ltd, Shanghai, China. 567 Paracelsus Medical University, Salzburg, Austria. 568St George's, University of London, London, UK. 569Universitas Indonesia, Jakarta, Indonesia. ⁵⁷⁰Institute of Food and Nutrition Development of Ministry of Agriculture, Beijing, China. ⁵⁷¹Children's Hospital of Fudan University, Shanghai, China. ⁵⁷²University of Cyprus, Nicosia, Cyprus. 573 Iran University of Medical Sciences, Tehran, Iran. 574 West Kazakhstan State Medical University, Aktobe, Kazakhstan. ⁵⁷⁵Inner Mongolia Medical University, Hohhot, China. ⁵⁷⁶Deceased: Deepak N. Amarapurkar, Konrad Jamrozik, Dimitrios Trichopoulos. *e-mail: majid.ezzati@imperial.ac.uk

RESEARCH LETTER

METHODS

Our aim was to estimate trends in mean BMI from 1985 to 2017 by rural and urban place of residence for 200 countries and territories (Supplementary Table 2). To achieve this aim, we pooled cross-sectional population-based data on height and weight in adults aged 18 years and older. Therefore, by design, our results measure total change in BMI in each country's rural and urban populations, which consists of (1) change in the BMI of individuals due to change in their economic status and environment, and (2) change in the composition of individuals that make up the population (and their economic status and environment). Change in population composition occurs naturally owing to fertility and mortality, as well as owing to migration. Therefore, our results should not be interpreted as solely a change in the BMI of individuals. Both components of change are relevant for policy formulation because policies should address the environment and nutrition of the contemporary population.

We used mean BMI as the primary outcome, rather than prevalence of overweight or obesity, because the relationship between BMI and disease risk is continuous, with each unit lower BMI being associated with a constant proportional reduction in disease risk until a BMI of around $21-23 \, \mathrm{kg m^{-2}}$, which is below the cut-offs used to define overweight and obesity $^{37-39}$. Therefore, the largest health benefits of weight management are achieved by lowering the population distribution of BMI. Mean BMI is the simplest summary statistic of the population distribution. Nonetheless, mean BMI and prevalence of overweight and obesity are closely associated (Extended Data Fig. 5).

Data sources. We used a database on cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration (NCD-RisC). NCD-RisC is a worldwide network of health researchers and practitioners, that systematically documents the worldwide trends and variations in risk factors for non-communicable diseases. The database was collated through multiple routes for identifying and accessing data. We accessed publicly available population-based measurement surveys—for example, Demographic and Health Surveys, Global School-based Student Health Surveys, the European Health Interview and Health Examination Surveys and those available via the Inter-University Consortium for Political and Social Research. We requested, through the World Health Organization (WHO) and its regional and country offices, help with identification and access to population-based surveys from ministries of health and other national health and statistical agencies. Requests were also sent by the World Heart Federation to its national partners. We made similar requests to the co-authors of an earlier pooled analysis of cardiometabolic risk factors 40-43 and invited them to reanalyse data from their studies and join NCD-RisC. Finally, to identify major sources not accessed through the above routes, we searched and reviewed published studies as described previously⁴⁴ and invited all eligible studies to join NCD-RisC.

Anonymized individual record data from sources included in NCD-RisC were reanalysed according to a common protocol. Within each survey, we included participants aged 18 years and older who were not pregnant. We dropped participants with implausible BMI levels (defined as BMI $< 10 \text{ kg m}^{-2} \text{ or BMI} > 80$ $kg m^{-2}$) or with implausible height or weight values (defined as height < 100 cm, height > 250 cm, weight < 12 kg or weight > 300 kg; < 0.2% of all subjects). We also dropped participants whose urban and rural status was unknown in surveys that had recorded place of residence (0.05% of all participants). We calculated mean BMI and its standard error by sex, age group (18 years, 19 years, 10-year age groups from 20-29 years to 70-79 years and 80+ years) and rural or urban place of residence. All analyses incorporated appropriate sample weights and complex survey design, when applicable, in calculating summary statistics. Countries typically use the rural and urban classification of communities designated by their statistical offices at any given time both for survey design and for reporting of population to the United Nations Population Division. The classification can change, for example as previously rural areas grow and industrialize and hence become, and are (re)designated as, de novo cities. To the extent that the reclassifications keep up with changes in the real status of each community, survey and population data reflect the status of each community at the time of measurement. For surveys without information on place of residence, we calculated age- and sex-stratified summary statistics for the entire sample, which represented the population-weighted sum of rural and urban means.

To ensure summaries were prepared according to the study protocol, computer code was provided to NCD-RisC members who requested assistance. All submitted data were checked by at least two independent reviewers. Questions and clarifications were discussed with NCD-RisC members and resolved before data were incorporated into the database.

Finally, we incorporated all nationally representative data from sources that were identified but not accessed through the above routes, by extracting summary statistics from published reports. Data were also extracted for nine WHO STEPwise approach to Surveillance (STEPS) surveys, one Countrywide Integrated Non-communicable Diseases Intervention (CINDI) survey, and five sites of the

WHO Multinational MONItoring of trends and determinants in CArdiovascular disease (MONICA) project that were not deposited in the MONICA Data Centre. Data were extracted from published reports only when reported by sex and in age groups no wider than 20 years. We also used data from a previous global data pooling study⁴³ when such data had not been accessed through the routes described.

All NCD-RisC members are asked periodically to review the list of sources from their country, to suggest additional sources not in the database, and to verify that the included data meet the inclusion criteria listed below and are not duplicates. The NCD-RisC database is continuously updated through this contact with NCD-RisC members. For this paper, we used data from the NCD-RisC database for years 1985 to 2017 and ages 18 years and older. A list of the data sources that we used in this analysis and their characteristics is provided in Supplementary Table 1.

Data inclusion and exclusion. Data sources were included in the NCD-RisC database if: (1) measured data on height, weight, waist circumference or hip circumference were available; (2) study participants were 5 years of age and older; (3) data were collected using a probabilistic sampling method with a defined sampling frame; (4) data were from population samples at the national, sub-national (that is, covering one or more sub-national regions, more than three urban communities or more than five rural communities) or community level; and (5) data were from the countries and territories listed in Supplementary Table 2.

We excluded all data sources that were based solely on self-reported weight and height without a measurement component, because these data are subject to biases that vary by geography, time, age, sex and socioeconomic characteristics^{45–47}. Owing to these variations, approaches to correcting self-reported data leave residual bias. We also excluded data sources on population subgroups whose anthropometric status may differ systematically from the general population, including: (1) studies that included or excluded people based on their health status or cardiovascular risk; (2) studies whose participants were only ethnic minorities; (3) specific educational, occupational, or socioeconomic subgroups, with the exception noted below; (4) those recruited through health facilities, with the exception noted below; and (5) women aged 15–19 years in surveys which sampled only ever-married women or measured height and weight only among mothers.

We used school-based data in countries, and in age–sex groups, with school enrolment of 70% or higher. We used data for which the sampling frame was health insurance schemes in countries in which at least 80% of the population were insured. Finally, we used data collected through general practice and primary care systems in high-income and central European countries with universal insurance, because contact with the primary care systems tends to be as good as or better than response rates for population-based surveys.

Conversion of BMI prevalence metrics to mean BMI. In 2% of our data points—mostly extracted from published reports or from a previous pooling analysis 43 —mean BMI was not reported, but data were available for the prevalence of one or more BMI categories, for example, BMI $\geq 30~{\rm kg~m^{-2}}$. In order to use these data, we used previously validated conversion regressions 2 to estimate the missing primary outcome from the available BMI prevalence metric(s). All sources of uncertainty in the conversion—including the sampling uncertainty of the original data, the uncertainty of the regression coefficients and random effects, and the regression residuals—were carried forward by using repeated draws from their joint posterior distribution, accounting for the correlations among the uncertainties of regression coefficients and random effects.

Statistical analysis of BMI trends by rural and urban place of residence. We used a Bayesian hierarchical model to estimate mean BMI by country, year, sex, age and place of residence. The statistical model is described in detail in a statistical paper and related substantive papers^{2,35,40–44,48-51}, and in the Supplementary Information. In summary, we organized countries into 21 regions (Supplementary Table 2), mostly based on geography and national income. The exception was high-income English-speaking countries (Australia, Canada, Ireland, New Zealand, the United Kingdom and the United States), grouped together in one region because BMI and other cardiometabolic risk factors have similar trends in these countries, which can be distinct from other countries in their geographical regions^{2,49,50,52}. Regions were in turn organized into nine super-regions.

The model had a hierarchical structure in which estimates for each country and year were informed by their own data, if available, and by data from other years in the same country and from other countries, especially those in the same region with data for similar time periods. The extent to which estimates for each country-year were influenced by data from other years and other countries depended on whether the country had data, the sample size of the data, whether they were national, and the within-country and within-region variability of the available data. The model incorporated nonlinear time trends comprising linear terms and a second-order random walk, all modelled hierarchically. The age association of BMI was modelled using a cubic spline to allow nonlinear age patterns, which could vary across countries. The model accounted for the possibility that BMI in sub-national and community samples might differ systematically from nationally

representative ones and have larger variation than in national studies. These features were implemented by including data-driven fixed-effect and random-effect terms for sub-national and community data. The fixed effects adjusted for systematic differences between sub-national or community studies and national studies. The random effects allowed national data to have larger influence on the estimates than sub-national or community data with similar sample sizes.

Here, we extended the model to make estimates for rural and urban populations following a previously published approach ^{35,51}. This model includes a parameter representing the urban-rural BMI difference, which is estimated empirically and allowed to vary by country and year. The model uses all of the data—those stratified by rural and urban place of residence as well as those reported for the entire population. If data for a country-year were not stratified by place of residence, the estimated urban-rural BMI difference was informed by stratified data from other years and countries, especially those in the same region with data from similar time periods.

We fitted the statistical model with the Markov chain Monte Carlo (MCMC) algorithm and following burn-in obtained 5,000 samples (or draws) from the posterior distribution of model parameters, which were in turn used to obtain the posterior distributions of our primary outcomes—mean urban BMI, mean rural BMI and mean urban-rural BMI difference. Posterior estimates were made in 1-year age groups for ages 18 and 19 and 5-year age groups for those aged 20 years and older. We generated age-standardized estimates by taking weighted means of age-specific estimates, using age weights from the WHO standard population. Regional and global rural and urban mean BMI estimates were calculated as population-weighted averages of rural and urban mean for the constituent country estimates by age group and sex. National mean BMI was calculated as population-weighted averages of the rural and urban means. All analyses were done separately by sex because geographical and temporal patterns of BMI differ between men and women².

The reported credible intervals represent the 2.5th and the 97.5th percentiles of the posterior distributions. We report the posterior probability that the estimated urban–rural BMI difference is a true difference in the same direction as the posterior mean estimate. We also report the posterior probability that the estimated change in the rural–urban BMI difference over time represents a true increase or decrease.

Validation of statistical model. We calculated the difference between the posterior estimates from the model and data from national studies. Median errors were very close to zero (0.03 kg m $^{-2}$ for women and -0.02 kg m $^{-2}$ for men) and median absolute errors were 0.32 kg m $^{-2}$ for women and 0.26 kg m $^{-2}$ for men, indicating that the estimates were unbiased and had small deviations relative to national studies. The differences were indistinguishable from zero at the 5% level of statistical significance.

We also tested how well our statistical model predicts missing data, known as external predictive validity or cross-validation, in two different tests. In the first test, we held out all data from 10% of countries with data (that is, created the appearance of countries with no data for which we actually had data). The countries for which the data were withheld were selected randomly from the following three groups: data rich (8 or more data sources for women and 7 or more data sources for men), data poor (1-3 data sources for women and 1-2 for men) and average data availability (4–7 data sources for women and 3–6 for men). All data-rich countries had at least one data source after 2000 and at least one source with data stratified on rural and urban place of residence. We fitted the model to the data from the remaining 90% of countries and made estimates of the held-out observations. In the second test, we assessed other patterns of missing data by holding out 10% of our data sources, again from a mix of data-rich, data-poor and average-data countries, as defined above. For a given country, we either held out a random one third of the country's data or all of the country's 2000-2017 data to determine, respectively, how well we filled in the gaps for countries with intermittent data and how well we estimated in countries without recent data. We fitted the model to the remaining 90% of the dataset and made estimates of the held-out observations. We repeated each test five times, holding out a different subset of data in each repetition. In both tests, we calculated the differences between the held-out data and the estimates. We also calculated the 95% credible intervals of the estimates; in a model with good external predictive validity, 95% of held-out values would be included in the 95% credible intervals.

Our statistical model performed very well in the external validation tests, that is, in estimating mean BMI when data were missing. The estimates of mean BMI were unbiased, as evidenced with median errors that were zero or close to zero globally (0.03 and $-0.03~{\rm kg~m^{-2}}$ for women and $-0.15~{\rm and}~0.00~{\rm kg~m^{-2}}$ for men in the first and second tests, respectively), and less than $\pm 0.20~{\rm kg~m^{-2}}$ in every subset of withheld data except 1985–1999 data in the first test for men, for which the median error was $-0.24~{\rm kg~m^{-2}}$ (Extended Data Table 2). Most of the median errors were indistinguishable from zero at the 5% level of statistical significance.

The 95% credible intervals of estimated mean BMI covered 94–98% of true data globally; coverage was $>\!93\%$ in all but one subset of withheld data. Median absolute errors ranged from 0.52 to 1.09 kg m $^{-2}$ globally and were at most 1.29 kg m $^{-2}$ in all subsets of withheld data. Median absolute errors were smaller in the second test, in which subsets of data sources from some countries were withheld, than in the first test, in which all data from some countries were withheld. Given that we had data for 190 out of 200 countries for women and 183 out of 200 countries for men, the second test is a better reflection of data availability in our analysis. For comparison, median absolute differences for mean BMI between pairs of nationally representative surveys done in the same country and in the same year was 0.46 kg m $^{-2}$, indicating that our estimates perform almost as well as running two parallel surveys in the same country and year.

Contributions of urbanization and rural and urban BMI change to changes in population mean BMI. We calculated the contributions of the following components to change in population mean BMI from 1985 to 2017: the contribution of change in BMI in rural areas, the contribution of change in BMI in urban areas, and the contribution of urbanization (that is, increase in the proportion of people living in urban areas). The first two parts were calculated by fixing the proportion of people living in rural and urban areas to 1985 levels and allowing BMI to change as it did in the respective population. The contribution of urbanization was calculated by fixing BMI in rural and urban areas to 2017 levels and allowing the proportion of people living in cities to change as it did. Percentage contributions were calculated using posterior draws, with reported credible intervals representing the 2.5th and the 97.5th percentiles of their posterior distributions. The change in mean BMI from 1985 to 2017 was then calculated as (contribution of change in rural BMI + contribution of change in urban BMI + contribution of change in the proportion of the population living in urban areas) = $((change in BMI_{rural1985-2017})$ (percentage living in rural areas₁₉₈₅) + (change in BMI_{urban1985-2017})(percentage living in urban areas₁₉₈₅) +(change in percentage living in urban areas₁₉₈₅₋₂₀₁₇) $(BMI_{urban2017} - BMI_{rural2017})).$

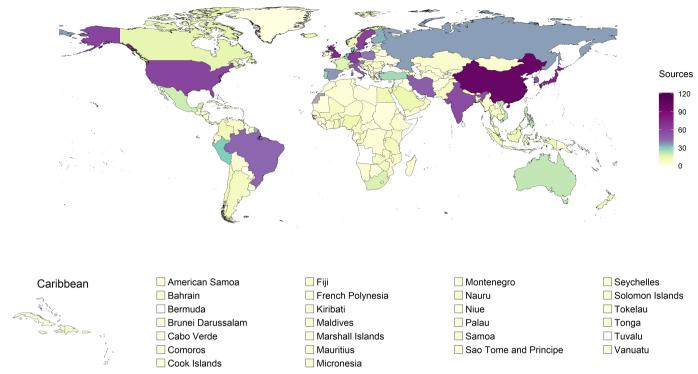
Strengths and limitations. Urbanization is regarded as one of the most important contributors to the global obesity epidemic, but this perspective is based on limited data. We present the first comparable estimates of mean BMI for rural and urban populations worldwide over three decades using, to our knowledge, the largest and most comprehensive global database of human anthropometry with information on urban or rural place of residence. We used population-based measurement data from almost all countries, with information on participants' urban or rural place of residence for the majority of data sources. We maintained a high level of data quality through repeated checks of study characteristics against our inclusion and exclusion criteria, which were verified by NCD-RisC members, and did not use any self-reported data to avoid bias in height and weight. Data were analysed according to a common protocol to obtain mean BMI by age, sex and place of residence. We used a statistical model that used all available data, while giving more weight to national data than sub-national and community studies and took into account the epidemiological features of BMI by using nonlinear time trends and age associations. The model used information on the urban-rural difference in BMI where available and estimated this difference hierarchically and temporally in the absence of stratified data.

Despite our large-scale data collation effort, some countries and regions had fewer data sources, particularly the Caribbean, and Polynesia and Micronesia. There were also fewer data sources before 2000. This temporal and geographical sparsity of data led to wider uncertainty intervals for these countries, regions and years. Although health surveys commonly use the rural and urban classification of national statistical offices, cities and rural areas in different countries vary in their demographic characteristics (for example, population size or density), economic activity, administrative structures, infrastructure and environment. These differences appropriately exist because countries themselves differ in terms of their demography, geography and economy. For example, a country with a smaller population may use a lower threshold for urban designation than one with a larger population, because its cities are naturally smaller even if they serve the same functions. Official rural and urban classifications are used for resource allocation and planning for nutrition and health^{53–58}, which makes them the appropriate unit for tracking outcomes. Nonetheless, understanding the causes of change in rural and urban areas can be enriched with use of more complex and multi-dimensional measures of urbanicity involving size, density, economic and commercial activities and infrastructures^{59,60}. Finally, urbanization could arise from a variety of mechanisms: (1) natural increase due to excess births over deaths in cities compared to rural areas, (2) rural to urban migration (often related to opportunities for work and education) and (3) reclassification of previously rural areas as they grow and industrialize and hence become, and are (re)designated as, de novo cities. The contributions of these mechanisms to urbanization vary across countries. The use of time-varying rural versus urban classification of communities ensures that in any year, the rural and urban strata represent the actual status of each community.

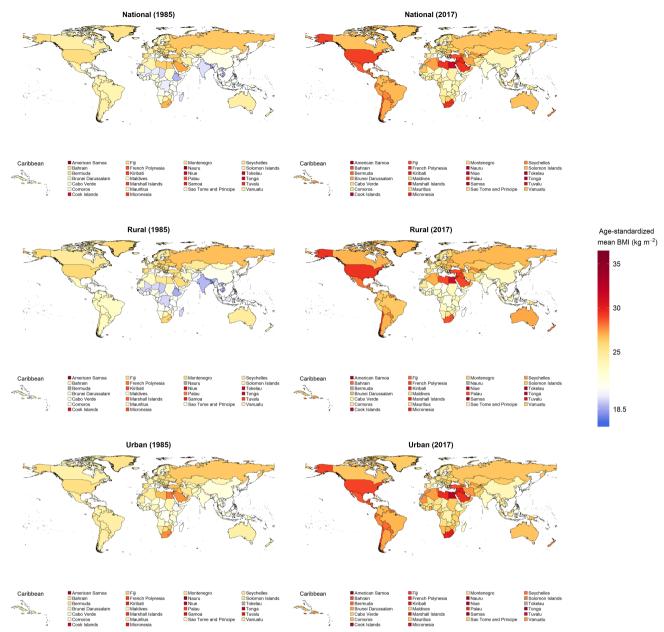
However, each of these mechanisms may have different implications for changes in nutrition and physical activity and, therefore, BMI.

Data availability

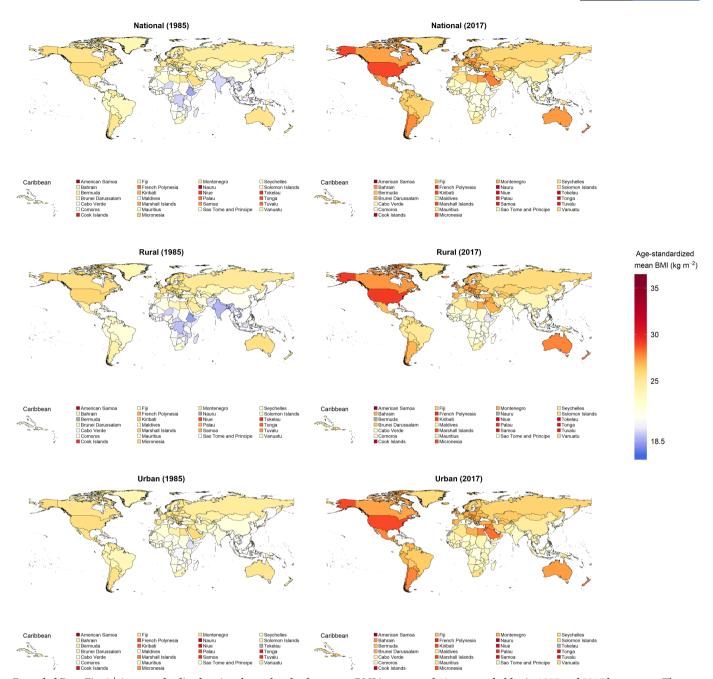
Estimates of mean BMI by country, year, sex and urban and rural place of residence are available from http://www.ncdrisc.org/. Input data from publicly available sources can also be downloaded from http://www.ncdrisc.org/. For other data sources, contact information for data providers can be obtained from http://www.ncdrisc.org/.


Code availability

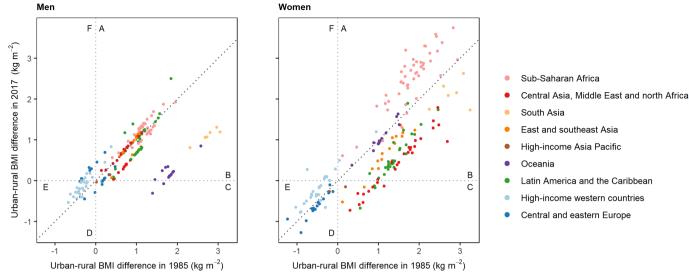
The computer code for the Bayesian hierarchical model used in this work is available at http://www.ncdrisc.org/.


- Prospective Studies Collaboration. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. *Lancet* 373, 1083–1096 (2009).
- The Global BMI Mortality Collaboration. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. *Lancet* 388, 776–786 (2016).
- Singh, G. M. et al. The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLoS ONE 8, e65174 (2013).
- Danaei, G. et al. National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5·4 million participants. *Lancet* 377, 568–577 (2011).
- Danaei, G. et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. *Lancet* 378, 31–40 (2011).
- 42. Farzadfar, F. et al. National, regional, and global trends in serum total cholesterol since 1980: systematic analysis of health examination surveys and epidemiological studies with 321 country-years and 3·0 million participants. *Lancet* 377, 578–586 (2011).
- 43. Finucane, M. M. et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. *Lancet* 377, 557–567 (2011).
- NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19-2 million participants. *Lancet* 387, 1377–1396 (2016).
- Hayes, A. J., Clarke, P. M. & Lung, T. W. C. Change in bias in self-reported body mass index in Australia between 1995 and 2008 and the evaluation of correction equations. *Popul. Health Metr.* 9, 53 (2011).

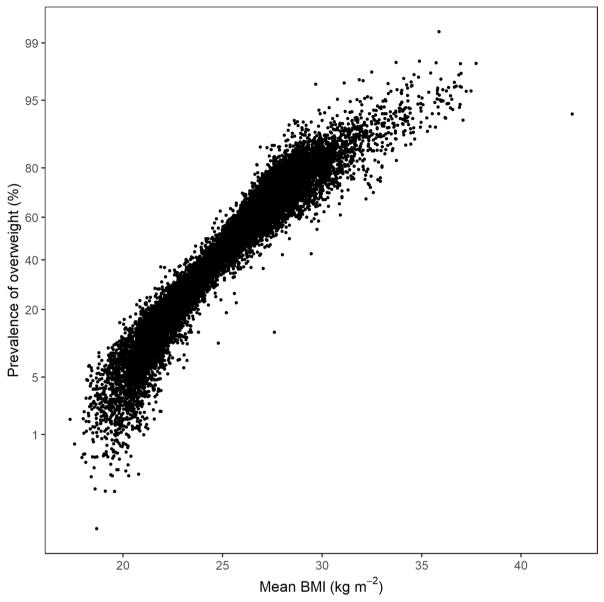
- Gorber, S. C., Tremblay, M., Moher, D. & Gorber, B. A comparison of direct vs. self-report measures for assessing height, weight and body mass index: a systematic review. Obes. Rev. 8, 307–326 (2007).
- Ezzati, M., Martin, H., Skjold, S., Vander Hoorn, S. & Murray, C. J. L. Trends in national and state-level obesity in the USA after correction for self-report bias: analysis of health surveys. J. R. Soc. Med. 99, 250–257 (2006).
- Finucane, M. M., Paciorek, C. J., Danaei, G. & Ezzati, M. Bayesian estimation of population-level trends in measures of health status. Stat. Sci. 29, 18–25 (2014).
- 49. NCD Risk Factor Collaboration (NCD-RisC). A century of trends in adult human height. *eLife* **5**, e13410 (2016).
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. *Lancet* 389, 37–55 (2017).
- Finucane, M. M., Paciorek, C. J., Stevens, G. A. & Ezzati, M. Semiparametric Bayesian density estimation with disparate data sources: a meta-analysis of global childhood undernutrition. J. Am. Stat. Assoc. 110, 889–901 (2015).
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. *Lancet* 387, 1513–1530 (2016).
- The World Bank. An Overview of Links Between Obesity and Food Systems: Implications for the Food and Agriculture Global Practice Agenda. http://documents.worldbank.org/curated/en/222101499437276873/pdf/117200-REVISED-WP-Obesity-Overview-Web-PUBLIC-002.pdf (World Bank, 2017).
- FAO. Ending Poverty and Hunger by Investing in Agriculture and Rural Areas. http://www.fao.org/3/a-i7556e.pdf (Food and Agriculture Organization of the United Nations, 2017).
- 55. WHO & Global Health Workforce Alliance. Global Experience of Community Health Workers for Delivery of Health Related Millenium Development Goals: a Systematic Review, Country Case Studies, and Recommendations for Integration into National Health Systems. https://www.who.int/workforcealliance/knowledge/ publications/CHW_FullReport_2010.pdf?ua=1 (World Health Organization, 2010)
- Bhutta, Z. A. et al. Rethinking community based strategies to tackle health inequities in South Asia. Br. Med. J. 363, k4884 (2018).
- IFAD. Rural Development Report 2016: Fostering Inclusive Rural Transformation. https://www.ifad.org/documents/38714170/39155702/Rural+development+report+2016.pdf/347402dd-a37f-41b7-9990-aa745dc113b9 (International Fund for Agricultural Development, 2016).
- FAO, IFAD & WFP. The State of Food Insecurity in the World 2015. Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress. http://www. fao.org/3/a-i4646e.pdf (Food and Agriculture Organization of the United Nations. 2015).
- Dahly, D. L. & Adair, L. S. Quantifying the urban environment: a scale measure of urbanicity outperforms the urban–rural dichotomy. Soc. Sci. Med. 64, 1407–1419 (2007).
- Jones-Smith, J. C. & Popkin, B. M. Understanding community context and adult health changes in China: development of an urbanicity scale. Soc. Sci. Med. 71, 1436–1446 (2010).



Extended Data Fig. 1 | **Number of data sources by country.** The colour indicates the number of population-based data sources used in the analysis for each country. Countries and territories not included in the analysis are coloured in grey.

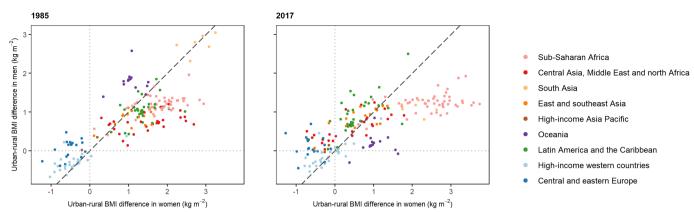


 $\textbf{Extended Data Fig. 2} \ | \ \textbf{Age-standardized national, rural and urban mean BMI in women aged 18 years and older in 1985 and 2017 by country.} \ The numerical values are provided in Supplementary Table 3 and can be downloaded from http://www.ncdrisc.org. \\$



Extended Data Fig. 3 | Age-standardized national, rural and urban mean BMI in men aged 18 years and older in 1985 and 2017 by country. The numerical values are provided in Supplementary Table 3 and can be downloaded from http://www.ncdrisc.org.

Extended Data Fig. 4 | The difference between rural and urban agestandardized mean BMI in 1985 compared to 2017. Each point shows one country and colours indicate region. A positive number indicates a higher urban mean BMI and a negative number indicates a higher rural mean BMI. Different sections labelled A–F indicate the following categories of countries. A, countries with an urban excess BMI that


increased from 1985 to 2017. B, countries with an urban excess BMI that decreased from 1985 to 2017. C, countries with an urban excess BMI in 1985 that changed to a rural excess BMI in 2017. D, countries with a rural excess BMI that increased from 1985 to 2017. E, countries with a rural excess BMI that decreased from 1985 to 2017. F, countries with a rural excess BMI in 1985 that changed to an urban excess BMI in 2017.

Extended Data Fig. 5 | The relationship between mean BMI and prevalence of overweight. Overweight is defined as BMI $\geq 25~\rm kg~m^{-2}.$ Prevalence is plotted on a probit scale, which changes in an approximately linear manner as the mean changes. Each point represents an age group-

and sex-specific mean, stratified by place of residence as described in the Methods and with more than 25 participants, from data sources in the NCD-RisC database.

RESEARCH LETTER

Extended Data Fig. 6 | Comparison of the difference between rural and urban age-standardized mean BMI in women and men aged 18 years and older in 1985 and 2017. Each point shows one country and colours indicate region.

Extended Data Table 1 | Mean BMI and percentage of the population by urban and rural place of residence

	Sex	Percentage of the population living in urban areas		Age-standardized mean BMI (kg m˙²)				
Region				Ru	ıral	Urban		
		1985	2017	1985	2017	1985	2017	
Emerging economies								
Central Asia. Middle East and north Africa	Men	51%	63%	23.4 (22.7-24.0)	26.0 (25.8-26.3)	24.2 (23.6-24.8)	26.8 (26.6-27.0)	
Central Asia, Middle East and Horti Airica	Women			24.2 (23.5-24.9)	28.2 (27.9-28.4)	26.1 (25.4-26.8)	28.7 (28.4-28.9)	
East and southeast Asia	Men	25%	55%	20.7 (20.4-21.0)	23.3 (23.0-23.7)	21.8 (21.5-22.1)	24.4 (24.0-24.9)	
Last and southeast Asia	Women	25/0		20.9 (20.5-21.3)	23.3 (22.9-23.8)	22.1 (21.7-22.4)	23.9 (23.4-24.4)	
Latin America and the Caribbean	Men	68%	80%	23.0 (22.4-23.6)	25.6 (25.3-25.9)	24.4 (23.8-24.9)	26.9 (26.6-27.2)	
Latin America and the Cambbean	Women	00%		23.1 (22.5-23.7)	27.1 (26.7-27.4)	24.6 (24.0-25.1)	27.5 (27.2-27.9)	
Oceania	Men	21%	20%	22.9 (21.9-24.0)	25.7 (24.7-26.7)	25.3 (24.2-26.4)	26.6 (25.7-27.5)	
Oceania	Women	21%		23.2 (21.9-24.5)	26.2 (24.8-27.5)	25.6 (24.1-27.1)	28.4 (27.2-29.6)	
South Asia	Men	24%	34%	19.0 (18.4-19.6)	21.6 (21.2-22.0)	22.0 (21.3-22.6)	22.8 (22.4-23.2)	
South Asia	Women			19.0 (18.2-19.7)	21.8 (21.4-22.3)	22.2 (21.3-23.0)	23.7 (23.3-24.2)	
Sub-Saharan Africa								
Sub-Saharan Africa	Men	25%	39%	20.1 (19.6-20.7)	21.7 (21.3-22.0)	21.7 (21.2-22.3)	23.3 (22.9-23.7)	
Gub-Gariaran Airica	Women			20.9 (20.4-21.5)	22.7 (22.4-23.0)	23.5 (23.0-24.1)	25.9 (25.6-26.2)	
High-income and other industrialized regions	•							
Central and eastern Europe	Men	65%	68%	25.0 (24.4-25.6)	26.7 (26.2-27.2)	25.0 (24.5-25.5)	26.7 (26.1-27.3)	
Central and eastern Europe	Women			26.3 (25.6-27.0)	26.7 (26.1-27.2)	26.0 (25.4-26.6)	26.2 (25.6-26.9)	
High-income Asia Pacific	Men	74%	91%	22.3 (22.0-22.6)	24.1 (23.9-24.4)	22.4 (22.1-22.6)	23.9 (23.6-24.2)	
Inigri-income Asia Facilic	Women	74%		22.2 (21.8-22.6)	22.7 (22.3-23.0)	22.1 (21.8-22.4)	22.1 (21.7-22.5	
High income western countries	Men	74%	80%	25.6 (25.3-25.8)	27.8 (27.5-28.1)	25.2 (24.9-25.4)	27.6 (27.4-27.9)	
High-income western countries	Women	14%		25.4 (25.0-25.8)	26.9 (26.5-27.3)	24.9 (24.6-25.2)	26.9 (26.5-27.2)	
World								
World	Men	41%	55%	21.1 (20.9-21.3)	23.2 (23.0-23.4)	23.7 (23.5-23.9)	25.3 (25.2-25.5	
I VVOIIG	Women	41%		21.5 (21.3-21.8)	23.6 (23.4-23.8)	24.2 (23.9-24.4)	25.5 (25.3-25.7	

For each region, the table shows age-standardized mean BMI for urban and rural populations and the percentage of the population living in urban areas in 1985 and 2017. See Supplementary Table 2 for a list of countries in each region. Numbers in parentheses show 95% credible intervals.

Extended Data Table 2 | Results of model validation

V-1:-1-4:	C	Sex Data		No. of held-out	Percent_ covered	Error (kg m ⁻²) [†]			Absolute error (kg m ⁻²)				
Validation	Sex			observations		Median	Q1	Q3	(p*)	Median	Q1	Q3	(p*)
	Women	All		7022	98	0.03	-1.09	1.08	0.08	1.09	0.50	1.88	0.08
		Study representativeness	Community	1589	98	0.30	-0.89	1.31	0.48	1.16	0.54	1.95	0.48
			Sub-national	1197	98	-0.09	-1.30	1.25	0.03	1.29	0.61	2.04	0.03
			National	4236	97	-0.03	-1.09	0.95	0.06	1.00	0.47	1.78	0.06
		Years	1985-1999	480	96	0.00	-1.33	0.86	0.14	1.06	0.47	1.69	0.14
Test 1		Years	2000-2017	6542	98	0.03	-1.07	1.10	0.17	1.09	0.50	1.90	0.17
I est i		All		6392	97	-0.15	-0.98	0.74	0.00	0.86	0.43	1.54	0.00
			Community	1409	98	-0.15	-0.92	0.63	0.01	0.78	0.39	1.37	0.01
		Study representativeness	Sub-national	1233	98	-0.11	-0.85	0.87	0.18	0.86	0.40	1.56	0.18
			National	3750	96	-0.16	-1.06	0.74	0.00	0.89	0.45	1.59	0.00
		Years	1985-1999	627	99	-0.24	-0.90	0.50	0.02	0.72	0.36	1.21	0.02
			2000-2017	5765	97	-0.13	-1.00	0.76	0.00	0.88	0.44	1.58	0.00
	Women	All		7680	94	-0.03	-0.67	0.58	0.29	0.62	0.28	1.19	0.29
		Study representativeness	Community	1480	88	0.10	-0.75	0.92	0.83	0.84	0.38	1.59	0.83
			Sub-national	1330	93	-0.07	-0.73	0.58	0.38	0.65	0.30	1.19	0.38
			National	4870	96	-0.05	-0.63	0.50	0.27	0.57	0.26	1.08	0.27
		Years	1985-1999	1472	94	-0.02	-0.56	0.55	0.71	0.56	0.25	1.15	0.71
Test 2			2000-2017	6208	94	-0.03	-0.69	0.58	0.21	0.64	0.29	1.20	0.21
		All		6608	95	0.00	-0.54	0.51	0.23	0.52	0.24	1.01	0.23
		Study representativeness	Community	1559	93	0.01	-0.65	0.65	0.71	0.65	0.32	1.23	0.71
			Sub-national	1137	94	0.03	-0.51	0.56	0.93	0.54	0.25	1.06	0.93
			National	3912	96	-0.01	-0.51	0.45	0.19	0.48	0.21	0.91	0.19
		Years	1985-1999	1190	97	-0.04	-0.52	0.37	0.68	0.45	0.20	0.84	0.68
			2000-2017	5418	95	0.01	-0.55	0.53	0.28	0.54	0.25	1.05	0.28

Q1, first quartile; Q3, third quartile; p, p value.
†Estimated values minus held-out values.
*p values for model error comparisons were calculated using the non-parametric Wilcoxon signed-rank test for paired data. The p values are calculated assuming independence of the held-out observations. They should therefore be interpreted as an approximation because there is some dependence among the held-out observations, within each of the five repetitions for example.

Corresponding author(s): Majid Ezzati

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see <u>Authors & Referees</u> and the <u>Editorial Policy Checklist</u>.

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main

Statistical parameters

text	, or Methods section).
n/a	Confirmed
\boxtimes	The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
X	An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
\boxtimes	The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section.
\boxtimes	A description of all covariates tested
X	A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
	A full description of the statistics including <u>central tendency</u> (e.g. means) or other basic estimates (e.g. regression coefficient) AND <u>variation</u> (e.g. standard deviation) or associated <u>estimates of uncertainty</u> (e.g. confidence intervals)
\boxtimes	For null hypothesis testing, the test statistic (e.g. <i>F</i> , <i>t</i> , <i>r</i>) with confidence intervals, effect sizes, degrees of freedom and <i>P</i> value noted <i>Give P values as exact values whenever suitable.</i>
	For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
\boxtimes	For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
\bigvee	Fetimates of effect sizes (e.g. Cohen's d. Pearson's r), indicating how they were calculated

Our web collection on <u>statistics for biologists</u> may be useful.

Software and code

Policy information about availability of computer code

State explicitly what error bars represent (e.g. SD, SE, CI)

Clearly defined error bars

Data collection Processing of secondary data was conducted using the statistical software R (version 3.5.1).

Data analysis All analyses were conducted using the statistical software R (version 3.5.1). The code for national analysis of mean risk factor trends is available at www.ncdrisc.org. The code for analysis of trends in urban and rural subgroups is available from www.ncdrisc.org.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

This is a data-pooling study that brings together almost 2000 disparate data sources and uses a Bayesian hierarchical model to estimate population risk factor trends. Estimates of mean BMI by country, year, sex and place of residence (urban and rural) are available from www.ncdrisc.org. Estimates of mean BMI by

country, year, sex and urban and rural place of residence are available from http://www.ncdrisc.org/. Input data from publicly available sources can also be
downloaded from http://www.ncdrisc.org/. For other data sources, contact information for data providers can be obtained from http://www.ncdrisc.org/.

Reporting for specific materials, systems and methods

Ma	terials & experimental systems	Methods				
n/a	Involved in the study	n/a	Involved in the study			
\times	Unique biological materials	\boxtimes	ChIP-seq			
\boxtimes	Antibodies	\boxtimes	Flow cytometry			
\times	Eukaryotic cell lines	\boxtimes	MRI-based neuroimaging			
\times	Palaeontology					
\times	Animals and other organisms					
\boxtimes	Human research participants					