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Abstract

Liquid-liquid phase separation leads to the formation of condensed phases that coexist with a fluid.
Here we investigate how the positions of a condensed phase can be controlled by using concentration
gradients of a regulator that influences phase separation. We consider a mean field model of a ternary
mixture where a concentration gradient of a regulator is imposed by an external potential. A novel first
order phase transition occurs at which the position of the condensed phase switches in a discontinuous
manner. This mechanism could have implications for the spatial organisation of biological cells and
provides a control mechanism for droplets in microfluidic systems.

1. Introduction: positioning of condensed phases

Phase separation of a mixture refers to the formation of aliquid condensed phase that coexists with a dilute
phase of lower concentration [1, 2]. Such demixing is the result of a first order thermodynamic phase transition
where the concentration difference between the phases changes discontinuously. It can be observed in many
forms in everyday life, for example when oil is added to water. The occurrence of a transition from the
homogeneous mixture to a system with coexisting phases can be controlled by temperature or by changing the
composition of the mixture. Condensed phases are influenced by surfaces possibly causing wetting transitions
[3-5]. Furthermore, phase separation can be affected by external forces such as gravity causing sedimentation.

Akey question is how liquid condensed phases such as droplets are positioned in systems with external cues like
concentration gradients or external fields. The study of positioning of phases provides general insights in the physics of
phase separation of spatially inhomogeneous systems. Understanding the underlying mechanism of the positioning
may open the possibility of applications in microfuidic devices. Positioned liquid condensed phases could be used to
seal and open junctions at specific locations in the microfluidic device, or simply position chemicals that partition into
the condensed phase. The positioning of liquid condensed phases in a complex mixture also plays a role in cell biology.
In particular, positioned droplets are used to segregate molecules during asymmetric cell division [6-9].

Here we study the equilibrium physics of the positioning of two liquid condensed phases in inhomogeneous
systems. We present a simplified model that provides the basic mechanism for the positioning at thermal
equilibrium which can be further extended to non-equilibrium processes such as the kinetics of droplet formation
and ripening [10]. In our model, phase separation of two components is subject to a concentration gradient of a
regulator component where the gradient is generated by an external field. The regulator component affects demixing
of the two components but does not phase separate itself. The system then relaxes to a spatially inhomogeneous
thermodynamic equilibrium state with two coexisting phases positioned by the regulator gradient. The spatial
distributions of the three concentration profiles at thermal equilibrium are determined by minimising a mean field
free energy functional. We find that as a function of an interaction parameter the position of the condensed phase
switches discontinuously from a position in the region of large regulator concentration (correlated state) to the
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Figure 1. Spatial regulation of phase separation by a discontinuous phase transition. (a), (b) The regulator (green) forms a gradient due
to an external potential U(x). Depending on the interactions with the regulator the spatial distribution of e.g. component A (purple;
component B behaves oppositely) switches from a spatially correlated (a) to an anti-correlated (b) distribution with respect to the
regulator. The switch corresponds to a discontinuous phase transition. Please refer to appendix B for details on the peak.

region of low regulator concentration (anti-correlated); see figures 1(a), (b). This switching of position corresponds
to anovel, equilibrium first order phase transition at which an order parameter jumps discontinuously.

2. Equilibrium model for spatial regulation of phase separation

In our equilibrium model for spatial regulation of phase separation we consider three components [11]: two
components which can demix from each other, A and B, and a regulator R that interacts with these components. The
regulator affects phase separation but does not demix from A and B. Demixing and interactions with the regulator are
described by the Flory—Huggins free energy density for three components ([12, 13] and appendix A for a derivation):

(s Pp) = kBTT Z G Ing; + Xar PaPr + Xpr PrP5 + Xap PaPs

i=A,B,R

U/ + VG + 2 Vo + V6,90, 0

where ¢; denotes the volume fraction field of component i = A, B, R. For simplicity, we consider an incompressible
system where the molecular volumes are equalto vand ¢y = 1 — ¢ — ¢,. Thelogarithmic contributions in
equation (1) correspond to the mixing entropy, while the quadratic terms describe the molecular interactions
between the components; x;;is the interaction parameter between component i and j. The gradient terms represent
contributions to the free energy density associated with spatial inhomogeneities. They introduce two length scales,
JFa and /kg . The regulator R is subject to an external field described by a position-dependent potential U(x). In
the following we consider a potential that varies solely along the x-coordinate, U (x) = —kg T In(1 + s(2x — L)),
where s > 0 characterises the slope of the potential and its inverse corresponds to a third length scale in our model.
In the absence of A molecules and for diluted regulator, ¢, < ¢p, ¢r(x) attains a concentration profile that is
linear in space with a slope proportional to s. For simplicity, we also consider a one dimensional system of size L
and two type of boundary conditions: (i) Neumann boundary conditions, «; ¢; ) + %(b; (0) = 0and

Ki ¢£ (L) + %qb; (L) = 0 (i = j: A, R), where the primes denote spatial derivatives, and (ii) periodic boundaries
with ¢;(0) = ¢;(L)and qS; 0) = (;52 (L). The conditions (i) imply that there is no explicit energetic bias to wet or
dewet the boundary. However, such a boundary mediates a coupling between the slopes of the volume fraction
fields for A and R at the boundary. In contrast, the periodic conditions (ii) allow to study the system in the absence
ofboundaries. For the considered case of an external potential U(x) varying only along the x-coordinate, the
restriction to a one dimensional, phase separating system represents a valid approximation for large system sizes,
where the interface between the condensed phases becomes flat.

3. Equilibrium concentration profiles

To calculate the equilibrium profiles ¢, (x) and ¢, (x), we minimise the free energy

L
Flgy(x), op(x)] = j; dx f (94 (%), PR(x), x). (@)

Due to particle number conservation, two constraints are imposed for the minimisation: each field (i = A, R)

- L - . - - - .
obeys ¢, = L! fo dx ¢;(x), where ¢, are the average volume fractionsand ¢y = 1 — ¢, — ¢y. Variation of the
free energy equation (2) with the constraints of particle number conservation implies (i = A, R):

2
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where A\ and )\, are Lagrange multipliers, and the primes are derivatives with respect to the position x. The
boundary terms vanish for both, Neumann and periodic boundary conditions. Using the explicit form of the
free energy density (equation (1)), the Euler—Lagrange equations can be derived:

K/Z
0 :(I{A;‘{R — I) ///\ — HR()\A + XAB(l — 2¢A) —|— X¢R

IS | B N
—f—ln(1 - ¢A_ ¢R]]+ Z(AR—i- U + XBR(I 2¢R)

Pr
o ¢)J @

2
0= (HAHR - %)@Z — ka(Ar + U + xpr(1 — 2¢p)

+ XPy + ln(ldi—RqﬁR)] + %(AA + xap(1 — 2¢)
+ xop + ln(L]} (5)
1 — ¢ — ¢p

where X = xar — Xap — Xsr- We solve these equations using a finite difference solver (e.g., bvp4c[14]). As
control parameters we consider the three interaction parameters x ar, X4 and X g, the slope of the external
potential s and the mean volume fraction of A-material, ¢,. The mean regulator material is fixed to a rather
dilute value of ¢, = 0.02 in all presented studies. Moreover, we focus on the limit of strong phase segregation
where the interfacial width is small compared to the system size, i.e. \/r; < L.In thislimit, we verified that our
results depend only weakly on the specific values of ;.

4. Discontinuous phase transition in the positions of the condensed phases

Solving the Euler-Lagrange equations (4) and (5) with Neumann boundary conditions (i), we find two spatially
inhomogeneous solutions for component A, which we denote ¢1A (x) and ¢, (x), and the two corresponding
solutions for the regulator component R, are denoted ¢>IR (x) and ¢, (x) (the profile of B follows from volume
conservation). The phase separating material A is either accumulated close to the right boundary of the system
(¢ (x) and @', (x)) and correlated with the concentration of the regulator material (figure 1(a)), or it is
accumulated at the left ((bﬁ3 (x)and (blA (x)) and anti-correlated with the regulator (figure 1(b)). Upon varying the
interaction parameter xpg in figures 2(a), (b), the free energies of the correlated and the anti-correlated states,

F' = F[¢), ¢y land Fl=F [(;ﬁlA, ¢;], are different. They intersect at a certain value of the interaction
parameter, xgr = X > Which defines the transition point of the system (figure 2(a)). At this point the lowest free
energy exhibits a kink, which means that the system undergoes a discontinuous phase transition when switching
from the spatially anti-correlated (‘left’) to the spatially correlated (‘right’) solution with respect to the regulator.
This transition point XER does not depend on the slope of the regulator s, while A sz increases linearly with s
(figures 3(a), (b)). Similar results can be found when fixing the value of x gr and considering x 4z as control
parameter.

The emergence of the correlated or the anti-correlated state can be qualitatively understood when
considering the energetic interactions with the regulator. In the case of a negative value of the interaction
parameter X gg, the B-particles prefer the neighbourhood of the regulator R. This preference leads to an
accumulation of A-particles at low regulator concentration and thus to an anti-correlated equilibrium state. If,
however, the value of the interaction parameter y zr has a positive value, the B-particles have a tendency to avoid
the vicinity of the R-particles causing an accumulation of A-particles at high regulator concentration. As a result,
the equilibrium profile of A is correlated with the regulator.

The transition between the correlated and anti-correlated state can be described by the following set of order
parameters:
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Figure 2. Discontinuous phase transition. (a) Free energy F (equation (2)) as a function of the B-R interaction parameter ypg. F and bad
are the free energies of the correlated and anti-correlated stationary solution with respect to the regulator gradient, respectively
(figures 1(a), (b)). Lines are dashed when solutions are metastable. At XER’ F"and Fintersect causing a kink corresponding to the
solution of lowest free energy. This shows that the transition between correlation and anti-correlation is a discontinuous phase
transition. The grey line depicts the behaviour of the system in the absence of an external potential. In that case, both solutions have
equal free energy and no kink is observed. (b) The order parameter pgr (equation (6)) jumps at a certain value of the interaction
parameter, X}, byavalue of Agh,. The grey line shows the order parameter in the absence of an external potential. In that case, the
order parameter curves are equal for both solutions and no jump could be observed. Parameters: xa5 = 4, xar = 1, ¢, = 0.5,

b = 0.02, kp/L* = 7.63 x 107%, k4 /[* = 6.10 x 107°, k/L* = 6.10 x 107%, Ls = 0.99. For plotting, v = L/256 was chosen.
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Figure 3. Impact of the slope of the external potential U(x) on the phase transition. (a) The transition point is independent on the slope
of the regulator gradient s. (b) The jump of the order parameter at the transition point linearly increases with the slope of the gradient s.
The slope of this linear dependence is influenced by (ESA. Fixed parameters: xap = 4, Xar = 1, J)R = 0.02, kr/L* = 7.63 x 1072,
Ka/I? = 6.10 x 1075, k/I* = 6.10 x 1075, v = L/256.

py = G TLNG 1) = [F (6,0, 6,5) — F(@, 3]

£

-1 L - =
= N[ dx@@a,0 - 33, ®)

where the squared normalisation A/ 121 = Var(gb?)Var((b?) with Var(¢,) = fo - dx(qbf (x) — fbiz), denoting the
variance and qbf) (x) = O(L¢; — x), where O(-) is the Heaviside step function. This normalisation ensures that

—1 < pj < landp; = £1if ¢;(x) = gbi@ (x). The derivative of the free energy with respect to the interaction
parameter ; generates the covariance between the spatially dependent fields ¢,(x) and ¢;(x). If the fields are spatially
correlated, p; > 0,and if they are anti-correlated, p;; < 0. For homogeneous fields with ¢,(x) = ¢;, pij = 0.
Varying the interaction parameter X gg (figure 2(b)), the order parameters pgg and pag jump at the transition point
XER’ while in the absence of a regulator gradient (s = 0), they change smoothly (figure 2(b), grey lines). The jump of
both order parameters in the presence of a regulator gradient indicates that the spatial correlation of A and B with
respect to R changes abruptly, which is expected in the case of a first order phase transition.

By means of the order parameter ppg (equation (6)) we can now discuss the phase diagrams as a function of
the interaction parameters for different volume fractions of the demixing material, ¢,. We find three regions
(figures 4(a)—(c)): a mixed region (M), where volume fraction profiles are only weakly inhomogeneous and no
phase separation occurs. In addition, there are two regions, (C) and (AC), where components A and B phase
separate and A is spatially correlated or anti-correlated with the regulator R, respectively. There exists a triple
point where all three states have the same free energy. For ¢, = 1/2, the shape of the transition line between
correlated and anti-correlated states is straight and the transition point Xz r is independent of x5 (figure 4(b)).

4
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Figure 4. Phase diagrams of our ternary model with spatial regulation. (a)~(c) Phase diagram for three volume fractions ¢, = {0.1, 0.5, 0.9}
and varying the interaction parameters X 4 and y r. The colour code depicts the order parameter ppr defined in equation (6). Component A
is spatially correlated (C) with the regulator profile if ppr < 0, and anti-correlated (AC) otherwise. When the system is mixed (M), pgr = 0,
and spatial profiles of all components are only weakly inhomogeneous. The vertical grey line in (b) is the transition line between Cand AC
calculated with the ansatz equations (8)—(10) using condition (7). The triple point (black dot) corresponds to the point in the phase diagrams
where the three regions meet and the three free energies are equal. (d) Triple point for different ¢, values (colour code). Parameters: x4 = 1,
Pr = 0.02, kg /1> = 7.63 X 107>, ks /L[> = 6.10 x 1075, k/L? = 6.10 x 107, Ls = 0.99,v = L/256.

If ¢, is decreased, the correlated state is favoured while for increasing ¢,, the anti-correlated state is preferred.
The transition line to the mixed states is horizontal for ¢, = 1/2 (figure 4(b)). For both, larger and smaller
$,-values, it becomes curved and moves towards larger x 43 interaction parameters. This behaviour can be
qualitatively understood by the upshift of the demixing threshold x 45 once ¢, deviates from 1,/2, as known for
binary systems. Since the regulator R is considered to be dilute, this analogy to binary systems is a good
approximation (¢, — 0 in equation (1)). Both trends explain the parabolic shape of the positions of the triple
pointin the phase diagrams when the mean volume fraction of the demixing material ¢, is varied (figure 4(d)).
The transition line in the phase diagrams between the correlated and anti-correlated solution as a function of
the interaction parameters can be estimated analytically. In the absence of a regulator gradient (s = 0), the free
energies of both solutions are the same for all interaction parameters for which phase separation occurs. In the
presence of a regulator gradient, however, the free energies corresponding to the correlated and the anti-correlated
solutions are unequal for most points in the phase diagram. The reason is that the external potential U(x) forces the
regulator to form a gradient, and thus the interactions with the regulator lead to different free energies of the
correlated and anti-correlated states. Only along the transition line between both states, the free energies are equal:

AF = F[¢',, ¢%] — F[¢,, ¢L] = 0. )

This condition can be used to estimate the transition line for varying interaction parameters and the slope of the
external potential s. To estimate AF we parametrise the profiles of the stationary solutions (i)r/gl (x)and gi);il (%)
using physical assumptions that are in agreement with our numerical results. First, we idealise the already
narrow interface of the demixed component ¢, as sharp, which can be realised by a strong phase separation far
away from the critical point. Second, we use only one profile, denoted as ¢ (x), for both regulator states because
the regulator is dilute and maintained by the external potential. By means of the numerical solution, we actually
confirm that ¢ (x) ~ gi)ﬂ2 (x) close to the transition line. In addition, we approximate the regulator profile as
linear function of slope m, neglecting spatial nonlinearities that can be seen in figures 1(a), (b). In appendix B we
show that for small enough kg, the amount of regulator inside this peak become negligible. Finally, the low
volume fractions outside the condensed phase of the demixed binary A-B system are approximated as constant
values ¢, . The value of ¢, is determined by the Flory—Huggins parameter 43 and can be calculated from the

binary phase diagram by solving x ;5 = In((1 — @,,)/Pour) /(1 — 26Byy,) fOr @, (X 4p)- The larger volume

5
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Figure 5. Comparison of approximated concentration profiles to numerically calculated profiles. (a) Anti-correlated profile and (b)
correlated profile close to the correlated-anti-correlated transition line. The dashed black lines depict the simplified profiles
(equations (8)—(10)) used in the analytic calculation of the free energy difference between the free energies of the two stationary
solutions, AF. The peak of the regulator at the interface between the condensed and dilute phase is neglected in the analytical ansatz.
Fixed parameters: Xap = 4, Xar = L, Xpr = 1, ¢ = 0.02, ¢, = 0.5, rig/L? = 7.63 x 1075, ki /I> = 6.10 x 1075, Ls = 0.99,

v = L/256.

fraction (inside) shows a weakly linear profile (figures 1(a), (b)). For diluted regulator, the volume fraction inside
the condensed phase can be well described as ¢, (x) = ¢, — @r(x), where (}in is the constant volume fraction
inside the condensed phase of the binary A-B mixture (figure 5). In summary, in the case of a diluted regulator, a
linear regulator profile and strong phase separation the approximated profiles are:

BL () ~ [¢3(X) — Gou] Ol — %) + Ppes 8
¢ () ™ [y (%) — Poudd O& — L + %) + Gy ©)
Pr(x) =~ m(x — L/2) + ¢p. (10)

The conservation of A determines the domain sizes of the phase separated region,

=2 -+ Lm + 4(}0ut + zésR
2m
. JEBLM(Bo — B) + 2 £ Lim — 4dy — 2332
2m ’

€,r(m) =

(11

which depends on the slope of the regulator m. For the special case of zero slope, the domain sizes left and right
areequal, €/(0) = €.(0) = L(d,,, — &) / (20, + ®r — 1). To calculate AF (equation (7)), the free energy
density (equation (1)) is integrated in the domain [0, L]. Using the approximated profiles (equations (8)—(10)),
we find

kg T
AF(m) ~ BT<><AR — Xgr) G(m), (12)

where the function G(m) depends only on the parameters of the simplified solutions (see equations (8)—(10)),
and reads

G = = + 20y (4 Oap) + 28 = 2D = &)
- m(iLQ — 40y (Xap) — 40p) (a1 + €)
+ 2L (eE = €D + S @) + 28 = e+ €D
+2mef - ) (13)

In thelimit m — 0, the function G(m = 0) = 0 as the domain sizes of the phase separated regions become
equal, €(0) = €,(0), for vanishing regulator slope m. To leading order in the regulator slope m,

G(m) ~ m(L — €)€ 2y (Xap) + dx — 1. (14)

The expression above indicates that for small regulator slopes m, the asymmetry of the domain sizes of the phase
separated region ¢ and ¢, is not essential for the free energy difference AF. Consistently, according to

equations (12) and (14), the free energy difference between the correlated and anti-correlated state vanishes
(AF = 0), if there is no regulator gradient (m = 0). In the presence of a regulator gradient (m = 0), the free
energy difference AFis zero onlyif x3r = Xar, Which corresponds to the transition line ){;R between the
correlated and anti-correlated state according to the approximate profiles (equations (8)—(10)). This prediction
is in very good agreement with our numerical results for ¢, ~ 1/2; see figures 4(b) and 6(a).

6
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Figure 6. Phase diagram and order parameter estimated by approximated concentration profiles (8)—(10). (a) The transition between
spatial correlation (C) and anti-correlation (AC) with respect to the regulator in the X 4z pr-plane. Parameters: x5 = 4, ¢4 = 0.5,
¢r = 0.02, kg JL* = 7.63 x 107>, ky /> = 6.10 x 107>, k/L?> = 6.10 x 1075, Ls = 0.99,v = L/256, Lm = 0.04. (b) Jump of the
order parameter at the transition point, A pz > asa function of the interaction parameter x 4 for different values of Pr- Additionally to
the parameters of (a), xar = 1and xpr = 1. The blackline in (a) and (b) shows the result obtained from using equations (8)—(10); the
symbols are numerical results from the minimisation of equation (2).

The condition for the transition line, xar = Xpr, for the case ¢, ~ 1/2 (see figure 4(b)) can also be
understood by symmetry arguments. For ¢, ~ ¢, ~ 1/2 and dilute regulator, switching the identity of A and B
leads to the same free energy density. Thus, in the presence of an external potential acting on the regulator, the
difference in free energy between the correlated and anti-correlated state AF vanishes at equal interaction
parameters with respect to the regulator, xar = Xar-

By means of the approximated profiles (8)—(10) and the definition of the order parameter (6), we can
estimate how the jump of the order parameter A sz (definition see figure 2(b)) at the transition point depends
on the model parameters:

Apy ~ —Nit G(m). (15)

We find that the estimated A pjy, as a function of the slope of the regulator and the interaction parameter x 55
almost perfectly describes the data obtained from the numerical minimisation of the free energy (figure 6(b)).
This agreement shows that the proposed stationary profiles (equations (8)—(10)) are a consistent approximation
to describe the discontinuous phase transition in the case of strong phase separation and a linear and diluted
regulator profile. We could also show that the asymmetry of the phase separated domains, ¢ and €, is not
essential for the jump of the order parameter (equation (14)). Instead the jump is determined by the slope of the
regulator profile where the jump height is affected by the mean amount of regulator material ¢, and the degree
of phase separation characterised by x 45 (figure 6(b)).

5. Discontinuous phase transition in a periodic domain and the presence of fluctuations

The phase diagrams (figures 4(a)—(c)) depend on the boundary conditions raising the question whether the boundary
may play a role for the existence of the phase transition. To this end we considered a periodic system without
boundaries. As for the non-periodic system, we are minimising the free energy (equation (1)), now using periodic
boundaries with ¢; (0) = ¢;(L) and ¢1’. 0) = gbl'. (L). In the periodic domain, we also use a periodic external potential:

U= kBTln(l - Asin(Zw(% - w))) (16)

where w denotes a phase shift. The value of the phase is chosen such that the region of segregated A-material is
placed atx = 0. The logarithmic form of the potential ensures that a sinus distribution of the regulator is
obtained in the dilute limit.

We find the same main results as for the non-periodic system with Neumann boundary conditions, namely
the existence of a discontinuous phase transition. In particular, we find two stationary solutions of different
spatial correlations with respect to the regulator. They switch at X;R by a discontinuous phase transition
(figures 7(a)—(c)). Therefore, a boundary of the system is not a necessary requirement for the emergence of the
reported discontinuous phase transition since it also exists in the absence of boundaries. Thus the transition is
not induced by boundaries as for example in the case of wetting transitions [3-5].

We have also scrutinised the robustness of the phase transition in position considering Monte Carlo studies
corresponding to the mean field free energy density equation (1). We could confirm that the positioning
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Figure 7. Discontinuous phase transition in a periodic potential and periodic boundary conditions. (a) Free energy F as a function of
the B-R interaction parameter Y r. F and F are the free energies of the correlated and anti-correlated stationary solution with respect
to the regulator gradient, respectively. Lines are dashed when solutions are metastable. At XﬁR’ Fland F* intersect and the solution of
lowest free energy exhibits a kink. This shows that the transition between correlation and anti-correlation is a discontinuous phase
transition. (b) The order parameter pgr jumps at X§R by avalue of ApﬁR. Parameters: X4z = 4, Xag = 1, ¢, = 0.1, ¢ = 0.02,
kr/L* = 7.63 X 107>, k4 /L* = 6.10 x 107>, k/L?* = 6.10 x 107>, A = 0.5. For plotting, v = L/256 was chosen. (c) Phase
diagrams of our ternary model for spatial regulation in a periodic potential and periodic boundary conditions (¢, = 0.1). The colour
code depicts the order parameter pgr. Component A is spatially correlated (C) with the regulator profile if pgr < 0, and anti-
correlated (AC) otherwise. When the system is mixed (M), pgr = 0, and spatial profiles of all components are only weakly
inhomogeneous (no phase separation). The triple point (black dot) corresponds to the point in the phase diagrams where the three
regions meet and the three free energies are equal. Parameters: yar = 1, (EA = 0.1, (Z)R = 0.02, kr/L* = 7.63 x 107°,A = 0.5,

v = L/256.

mechanisms is robust against the fluctuations arising from the probabilistic Monte Carlo update and that the
phase diagrams of correlated and anti-correlated states coincide qualitatively.

6. Experimental verification and outlook

The discontinuous switching of phase separation could be tested experimentally. We suggest to use a soluble salt
of high magnetic susceptibility in order to create and maintain the regulator concentration gradient by applying
an inhomogeneous magnetic field [15]. Phase separation in a regulator gradient could then be observed by
introducing components that phase separate in a salt dependent manner. In particular, a pre-formed droplet
could be added to an existing regulator gradient or the regulator gradient is created after coarsening via Ostwald-
ripening and coalescence is completed [10, 16—18]. The phase transition could be triggered by changing the
concentrations of the phase separating material, by changing the temperature or by adding additional
components that influence the interaction parameters. The validity of our theory could be probed by comparing
the order parameter with corresponding experimental measurements. In particular, the order parameter jump
at the transition point could be determined for different amounts of regulator material ¢y (see figure 6).

Our finding of a phase transition in the position of coexisting phases could also be relevant for applications.
As the composition of condensed phases provide a distinct chemical environment (e.g. for chemical reactions),
our work suggests a novel mechanism to control and switch chemical environments in microfluidic devices by
the use of a phase transition in position.
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Appendix A. Gradient contributions in the ternary Flory—Huggins free energy density

A.1. Derivation using a mean field approximation

To derive the gradient contribution in the ternary Flory—Huggins free energy density, we start from the local
mean-field free energy on the lattice and calculate the continuum limit of this free energy as shown in [19] for a
binary system. The local free energy density of the three component system is derived in [20, 21] using a mean-
field approximation:




10P Publishing

New J. Phys. 20 (2018) 075009 S Kriiger et al

£/ T /) = 3" (s (@) Ingsy (@) + () Ingsg ()
(1= 6,(0) — dp(a)In(l — d,(@) — dp(a))
LS (st Bay @ — 6,(8) — 6p(B)

2 a,3 witha=3

+ Jsr(a, B) Pp()(1 — ¢4 (B) — ¢r(B))
+ Jar(a, B) ¢4 (@) @R (53)), (A.D)

where v is the molecular volume. The greek indices o and Findicate the positions on the lattice. The first two
lines describe the entropy of the mixture. The remaining contributions stem from the interactions between the
components at neighbouring lattice sites.

In the next steps we will perform the continuum limit. In case of the entropic contribution, we can simply
replace ¢i(a) — ¢i(x). In order to perform the continuum limit for the energetic contributions, we rearrange the
corresponding terms as follows:

% Yo Uasa, B¢ (@1 = ¢,(8)) + Jsr(er, B)dr(a)(1 — ¢r(0))
«, 3 witha= (3
+ Uar(a, B) = Jap(, B) — Jar(cr, 8)) ¢4 () pr(B)]. (A.2)

Each contribution can be rewritten as

Jas(a, B) ¢, (a) (1 — ¢4 (6))
= %]AB(O" D(da(@) — o4 (B)* — (84())* — (¢4 (B)* + 28, ()], (A3)

Jer(a, B) Pr(a)(1 — ¢p(B))
= %]BR(Oé, B (@r(@) — (B — (Pr())* — ($r(B)* + 2¢p()], (A4)

Uar(a, B) — Jap(, B) — Jar(a, B)] () pr(5)
= %UAR(OA B) — Jas(a, B) — Jgr(a, B[y () pp(a) + ¢, (B) Pr(B)
— (¢4() — 9, (D)) (Pgr() — Pr(BN]. (A.5)

We can identify the Flory—Huggins interaction parameter as y;; = %Zﬁ Jij(a, #).Inthe continuum limit we can
introduce the gradient of the volume fractions as (¢,(a) — ¢,(3)) — aV¢,, where a denotes the lattice size. We
finally obtain the free energy F = f dx f with the free energy density given as

F=50 + 2L E490,00p + EiTo,00p + £90,00 Vo, | (46)
where
fo/ kT Jv) = ¢, (x)In ¢ (x) + Pp(x)In g (x)
+ (1 = ¢4 (x) — Pr(xNIn(1 — ¢, (x) — Pr(x))
+ Xar P4 (%) Pr(x) + XAB¢A(X)(1 — Py (x) — ¢R(x))
+ XBR¢R(x)(1 - ¢A(x) - ¢R(x)) (A7)

The parameters characterising the ‘penalty’ corresponding to spatial inhomogeneities are x; = a*x; g, i€ {A, R},
and k = a*(X4r — Xag — Xar)-

A.2.Phenomenological derivation
In the Ginzburg-Landau free energy the penalties corresponding to spatial inhomogeneities are
phenomenologically introduced based on symmetry considerations:

£ fy = 2 vor + Lvo,2 + Evo,r, A8)

where &; > 0 since spatial inhomogeneities are unfavored. Moreover, f; is the free energy density that only
depends on the volume fractions ¢, i € A, B, R. However, only two volume fraction fields are independent due
to particle conservation and incompressibility, | = ¢4 + ¢5 + ¢r. Thuswe canwrite Voo = -V — Vg,
leading to

f=f= Z_A(VQSA)Z + %(v@z)z + gV(ZSAV(ﬁR. (A.9)

Here, k4 = R4 + Rp, kg = Rgr + Rpand kK = Rp.
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A.3. Choice of the parameters k;

In the presented studies, we have chosen k4 = & for simplicity. Please note that the derivation presented in
appendix A.1 is based on a mean field approximation and therefore it should only serve as an estimate for the
values ;. We chose the values for the parameters ~ 4 and kg that are consistent with these estimates (see figure
captions).

Appendix B. Regulator peak at the interface

The numerically obtained regulator profiles show a significant peak at the interface between the A-rich and the
B-rich phase (figures 1(a), (b)). The emergence of the regulator peak can be understood by entropic and
energetic considerations of the free energy. For large and positive y 4z and x pg (corresponding to a repulsive
tendency with respect to the regulator), the energy of the system decreases as regulator accumulates at the
interface. Moreover, the entropy decreases as the composition of the interfacial region of all three components is
closer to a well-mixed state.

The amount of regulator material that is accumulated at the interface is strongly influenced by the
Ki-parameters; see figure B1. In figure B2(a), the peak area is shown for varying x;-parameters. For simplicity, we
chose k4 = Kk = k. The peak area vanishes as the «;-parameters approach zero. This behaviour is expected
since these parameters determine the size of the interface between the phase separated phases. In this limit, the
approximated profiles (equations (8) and (10)) accurately describe the numerical solutions and thus the
corresponding predictions for the phase boundaries coincide well with the phase boundaries obtained from the
numerical calculations.

0.06 - (a) ] 0.06 |- (b)]
& &
< 003 1 < o003l -
0 ! 0 I
0 0.5 1 0.46 0.48 0.5
xz/L xz/L

Figure B1. Peak of regulator material at the interface of the condensed phase. (a), (b) Comparison of two regulator profiles for different
values of k; (b) depicts azoom in of (a). The graphs show that the peak area decreased as the value for «;is lowered. The decreasing
peak area is caused by a reduced peak width while the peak height remains approximately constant as «; is varied (see figures B2(a),
(b)). The choice of k; = 41is very close to set of parameters that used through the entire manuscript. Fixed parameters: y4p = 4,

Xar = 1, ¢z = 0.02, ¢, = 0.5,5 = 0.99,v = L/256.

T T 006 T T T (b) \( )
0.06 | <
01 + w s
< = = WA
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<
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Figure B2. Characterisation of the peak in regulator concentration. Peak area (a) and peak height (b) as a function of varying r; values
and different interaction parameters. The peak position is defined as the position of the largest concentration value of regulator
material that occurs close to the interface between the coexisting phases. The peak height refers to the regulator concentration
difference between the peak concentration and the linear fit of the increasing regulator concentration at the position of the peak. The
integrated difference along x is the peak area. The parameters 4, kg and  are equal and changed simultaneously. Different values of &
have very minor influence on the peak height. It decreases only very little with increasing «; parameters. However, the peak area
significantly decreases for smaller x; values. For very small x values, the peak area is close to zero. Fixed parameters: x a5 = 4,

Xar = 1, ¢z = 0.02, &, = 0.5,5 = 0.99, v = L/256.(c) Peak height for different Flory—Huggins parameters Yar = Xpr. The peak
height shows a monotonic growth for increasing xar = X pr. The volume fraction of the regulator at the interface increases as the
repulsive tendency of the regulator with the other components is more pronounced. We set /1> = 7.63 x 1073,

ka/L? = 6.10 x 107>, which are the same values as for the studies of the phase diagram (figures 4 and 7).
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However, the peak height and thereby the existence of the peak is approximately independent of x;
(figure B2(b)). This indicates that the existence of the peak may depend on the interaction parameters for
example. Since we also observed that the peak is more pronounced at the transition line between anti-correlated
state and correlated state, we investigated the energetic influence on the peak height along the transition line. As
derived in section 4, the transition line is governed by the condition y ar = Xsr for ¢, = 0.5. We find that the
peak height increases as a function of the energetic parameters x ar = X pr (figure B2(c)). Large and positive
values of x 4r and x gr correspond to a repulsive tendency with respect to the regulator. This indicates that the
energetic contribution to the free energy decreases as regulator accumulates at the interface.
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