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Abstract

Living cells use phase separation and concentration gradients to organize chemical compartments in
space. Here, we present a theoretical study of droplet dynamics in gradient systems. We derive the
corresponding growth law of droplets and find that droplets exhibit a drift velocity and position
dependent growth. As a consequence, the dissolution boundary moves through the system, thereby
segregating droplets to one end. We show that for steep enough gradients, the ripening leads to a
transient arrest of droplet growth that is induced by a narrowing of the droplet size distribution.

1. Introduction: droplet ripening in concentration gradients in biology

Living cells have to organize many molecules in space and time in order to build compartments which can
perform certain biological functions. The formation of these compartments is often regulated by spatially
heterogenous distributions of molecular species. An example is the polarized distribution of polarity proteins in
the course of asymmetric cell division [1-3]. During asymmetric cell division, molecules of the cell cytoplasm are
distributed unequally between both daughter cells [4, 5]. This can be studied in the first division of the fertilized
egg of the roundworm C. elegans. RNA-protein aggregates called P-granules are segregated to the posterior side
of the cell and are located in the posterior daughter cell after division. P-granules are liquid-like droplets that
form by phase separation from the cell cytoplasm [1-3, 6]. The segregation and ripening of P-granule droplets
toward the posterior is driven by a concentration gradient of the protein Mex-5 that regulates droplet dynamics
[6-8].

The ripening of drops guided by a concentration gradient of molecules that regulate phase separation
fundamentally differs from classical Ostwald-ripening. In the case of Ostwald ripening, droplets are uniformly
distributed throughout the system and the droplet size distribution broadens with time [9-12].Ifa
concentration gradient of a regulator component is maintained, for example by sources and sinks [8], or via
position-dependent reaction kinetics [13, 14], there is a broken symmetry generating a bias of droplet positions.
Recently, droplet segregation in a concentration gradient has been discussed using a simplified model [7].
However, the dynamics of droplets ripening in a gradient of regulating molecules has not been explored
(figure 1(a), (b)).

In this paper we present a theoretical study of droplet ripening in a concentration gradient of a regulator that
affects phase separation. Considering a simplified theory we extract generic physical features of droplet growth
in the presence of concentration gradients. The generic features that we study here are the spatially dependent,
local equilibrium concentration and a spatially dependent actual concentration outside the droplets. If the
distance between droplets is large, these features can be used to derive the generic laws of droplet ripening in
concentration gradients and thereby extend the classical theory for homogeneous systems [9, 10]. Our central
finding is that a regulator gradient leads to a drift velocity and a position dependent growth of droplets
(figure 1(b)). As a consequence, a dissolution boundary moves through the system, leaving droplets onlyin a
region close to one boundary of the system. Using numerical calculations supported by analytic estimates, we
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Figure 1. (a) Schematic representation of the regulation of droplet (blue dot) formation by a regulator R which can bind to droplet
material D to form the product R :D. (b) Illustration of droplet ripening in a gradient of regulator volume fraction ¢, (orange). At
each time point a boundary (red dashed) divides the system into domains of growth and shrinkage. This boundary moves to the right
(red arrow) leaving a region of dissolving drops behind. Droplets drift (black arrows) with velocity V.

study the growth dynamics of droplets in a gradient. We discover that, surprisingly, ripening is not always faster
in the case of steeper regulator gradients. Instead, a transient arrest of ripening is observed that results from a
narrowing of the droplet size distribution. Our work shows that a regulator gradient induces a novel and rich
ripening dynamics in droplet systems.

2. Local regulation of phase separation

We use a simplified model to discuss two-component phase separation that is influenced by a regulator. We
consider a system consisting of a solvent S, droplet material D and a regulator R that can create, together with
the droplet material, abound state R:D. In this model the regulator does not take part in demixing but
influences the phase separation of D and S. We describe demixing by a simplified Flory—Huggins type of
free-energy density

s

Vs

T
f=ksT f—Dlnqﬁg—i— Ingg| + &, (1)
D

where kg is the Boltzmann constant, T'is temperature and qb;g and ¢ denote the total volume fraction of droplet
material and solvent, respectively, with ¢}, + ¢ = 1.In equation (1) we neglect for simplicity the mixing
entropy of the component ¢,.,. We only consider interactions between droplet material D and solvent S. The
corresponding interaction energies are described by £. These simplifications do not affect the qualitative feature
of position dependent phase separation that we highlight in this work but are useful simplifications for the
discussion of the relevant physics. The molecular volumes v; connect volume fractions with concentrations ¢; by
¢; = vic;. Theregulator influences phase separation by binding to droplet material,

D+R="R:D. )

Here we consider the case where the bound state R:D does not phase separate from the solvent. The total volume
fraction of droplet material is given by the sum of contributions of bound and free molecules, ¢}, = ¢, + ¢x.p-
The binding process between regulator and droplet material can be described by mass action with the
equilibrium binding constant Ky = ¢g.p / (cpcr)- Using the simplification vz.p = vp, we write

Ko = ¢p.p/(¢pcr). Theinteraction energy s given by £ = kg Tx ¢, ¢, where x is the interaction parameter.
Expressing ¢, in terms of g{);g and considering a fast local equilibrium of the binding reaction we find,

EBpy b5) = ks Txeir G Pss 3)
with
_ _ Kog
Xeff_X(l —1+K¢RJ 4)
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Figure 2. (a) Phase diagram. Interaction parameter X, as a function of the volume fraction of droplet material d)f) The binodal line
(blue) and the critical point (triangle) are indicated. For a regulator concentration gradient, the positions x in the system are mapped to
aline (dashed/green line in the mixed/demixed region). At the position x = x4 this line crosses the binodal. (b) Equilibrium volume
fractions outside and inside the droplet, %" and <I>ic';, corresponding to the binodal line in (a), are shown as functions of position

x > xgq for K = 500. Parameters: m = —3 - 1073, ¢, = 4 - 1073, vs = 10vp.

and K = K /vg. The function x4 describes the effective interaction between the solvent and the total droplet
material which depends on the regulator. In the case of a vanishing regulator concentration, ¢, = 0,

equation (1) reduces to the original Flory—Huggins model for binary polymer blends [15] with an interaction
parameter X = X.Increasing the concentration of the regulator leads to a decrease in the effective interaction
parameter 4. This decrease is more pronounced if the binding constant Kis larger, which amounts to more R
being bound to D. Please note that only for large values of 4 relative to the entropic terms in equation (1) can
demixing occur (figure 2(a)).

3. Spatial organization of phase separation

To describe the spatial regulation of phase separation we consider a spatially inhomogeneous system that is
locally at thermodynamic equilibrium such that at each position the local free energy is defined. Globally the
system is maintained away from equilibrium by an imposed position dependent regulator gradient. For
simplicity, we use a linear gradient along the x direction, ¢ (x) = ¢, — m - x, with x € [0, L], where L
denotes the size of the system. We first look at a situation without droplets but with a possible spatial profile
¢p = ®(x) of droplet material. Since the spatial concentration profile of the regulator ¢, (x) is imposed, the
effective interaction parameter X, (x) becomes a function of x. As the droplet material is also distributed in
space, the concentration at each position x corresponds to a point in the phase diagram. The linear range

x € [0, L]then maps onto aline thatis indicated in the phase diagram in figure 2(a). Using the phase diagram,
we can determine the position x4 of the dissolution boundary, which separates the region x < x4 where the fluid
mixes, from the region x > x4 in which droplets can form. For x > x4, we can then determine the local

equilibrium volume fraction (bie‘jl (x) of the droplet material inside and CIJZ(‘l“ (x) outside of a potential droplet,

which depend on position. For vg > vp, @ie‘a is approximately constant along x. As we will see below, choosing
this simple limit allows us to focus on the concentration field outside of the droplet. The spatial distribution of
the regulator and droplet material imply a spatially dependent supersaturation defined as,

d(x)

N (x)

€(x) =

1, (5)

which is positive for x > x4.In the absence of droplets, the concentration field ® (x) evolves in time satisfying a
diffusion equation. If droplets are nucleated, their dynamics of growth or shrinkage is guided by the local
supersaturation € (x) as well as @L‘(‘] and @ggt (x). This droplet dynamics then in turn also influence the
concentration field ® (x).
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4. Dynamics of a single drop in a concentration gradient

A regulator concentration gradient generates a position-dependent supersaturation (equation (5)), which will
generically influence the spatial distribution of droplet material ® (x). In the following we discuss the kinetics of
growth of asingle droplet where the equilibrium concentration, g (x), and droplet material, ® (x), are
position dependent, and thereby extend the classical description of droplet growth [9, 10] to the case of
concentration gradients.

Neglecting variations of the concentration inside the droplet, we restrict ourselves to the concentration field
outside of the single droplet, ¢°" (r, 0, ). We use spherical coordinates centred at the droplet position x, with
rdenoting the radial distance from the centre, and 6 and ¢ are the azimuthal and polar angles. The volume
fraction outside but near the droplet then obeys the steady state of a diffusion equation,

V2pout(r, 6, @) = 0. (6)
The concentration field approaches for large r (far from the drop) a linear gradient of the form,

lim ¢°"(r, ) = v r cosO + 3, 7)

r—0o0

where the droplet material outside ® (x) is locally characterized by the concentration 3 = ®(x,) and the
gradient o« = 0,P (xg) at the droplet position x,. At the surface r = R of a spherical droplet, the boundary
condition is

G (R, 0) = (BL" + Rcos(0) 3, DL (1 + 4 /R). 8)

Here, ¢, = 2~yvp/ (ks T) is the capillary length, -y denoting the surface tension of the droplet. Equation (8)
corresponds to the Gibbs—Thomson relation [12], which describes the increase of the local concentration at the
droplet interface relative to the equilibrium concentration due to the surface tension of the droplet. The
presence of spatial inhomogeneities on the scale of the droplet R leads to an additional term in the Gibbs—
Thomson relation of the form R cos(6) 8x<1>221“. The values of o and 3 characterizing the far field together with
the local concentration at the droplet surface, " (R, 6), then determine the local rates of growth or shrinkage
of the drop. Deformations of the spherical shape of the droplet can be neglected if the surface tension is large and
concentration gradients on the scale of the droplet are small. Furthermore, we focus, for simplicity, on the case
where the Onsager cross coupling coefficient between the regulator and droplet material is negligible and we
thus ignore how the spatial distribution of droplet material affects the maintained regulator gradient.

The solution to the diffusion equation (6) is of the form, ¢°"* (r, 8) = >-°° (A" + B,r "~ P,(cos0),
where B, (cos 0) are the Legendre polynomials. Using the boundary conditions (7) and (8), we find

3
@ (r, 0) = avcosd (r — %) + 6 (1 - %) + ((I)g(‘l“ + R cos(@)@xq)ggt (1 + %) ? )

The interface of a droplet at position x, can be expressed by a function R (6, ¢, t; x¢). The speed of the interface is
0RO, p, t; x9) = v (0, @; xp), where v, = 71 - J isthelocal velocity normal to the interface and 7l denotes a

surface normal. Here, | = (?“ - fout) / (P — ®Yy") is thelocal interface velocity [12], and j 7" and fout denote
the volume fluxes at the droplet surface inside and out51de of the drop. Since the volume fraction inside the droplet

is considered to be constant and independent of the droplet position, ]_"‘[1 =0and j i = —DV¢°*. In thelimit
of strong phase separation ('13”1 > CID"‘“) the growth velocity normal to the interface is v, = (D / Pin ) 0 ° =k

With the definition of the droplet radius, R = (1/4) f dpdd sin OR, we can calculate the growth rate of the
droplet radius, dR/dt = (1/4m) f dpdd sin 0 0, R, and the net drift velocity along the x-direction, V3 = (1/4m)

f dedf sin 0 €, - €, 0;R.Here, €, - €, = cosf and €, and €, denote the radial unit vector in spherical coordinates
and the unit vector along the x-direction in cartesian coordinates. Thus, the droplet radius grows as,

dR D out £
ity [ﬁ P (xo)(l + R)] (10)

In the presence of concentration gradients there also exists a net drift velocity with,

Vi = q?[ .03y e 1 + ’;)] an

Note that both the growth speed and the drift velocity are set by the molecular diffusion constant D of the
droplet material.
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5. Ripening of multiple drops in a regulator gradient

We can now describe the dynamics of many droplets i = 1, ---, N, with positions x; and radius R;. If droplets are
far apart from each other, the rate of growth of droplet i reads,

q)gut Xi
iR,’ = 2 q'( ) e(xi) — é . (12)
dt Ri g i
The droplet drift velocity, dx; /dt = Vj(x;), is given by,
dx; D - 7
— = — 0, P(x)]x, — AP ()| |1+ =] 13
& @;g[ () ], q ( )|,( Ri)] (13)
If the distance between droplets is large relative to their size, droplets only interact via the concentration field
®(x, t) which represents the far field. It is governed by a diffusion equation including gain and loss terms
associated with growth or shrinkage of drops,
- o2 - 47r<I>ien N d
0P (x, t) = D—P(x, t) — LN (xi — x)—R3 (). 14
Bl ) = Db 1) = =580 — LR (14)

For simplicity, in the above equation we consider a regulator gradient along the x axis. Please note that
equation (14) describes the effects of large scale spatial inhomogeneities on the ripening dynamics. Since large
scale variations of @ (x, t) only build up along the x-directions, derivatives of ® along the y and zaxes do not
contribute.

In the absence of a regulator gradient, ®¢;* and ® are constant, implying a position-independent
supersaturation level € (equation (5)). In this case equation (12) gives the classical law of droplet ripening derived
by Lifschitz—Slyozov [9, 10] (also referred to as Ostwald ripening), and the net drift vanishes (equation (13)). In
the case of Ostwald ripening large droplets of radius larger than the critical radius, R, = . /¢, grow at the
expense of smaller shrinking drops. This causes an increase in the average droplet size and a broadening of the
droplet size distribution with time. On large spatial scales, droplets remain homogeneously distributed in the
system.

This property fundamentally changes due to the presence of concentration gradients, leading to two
possibilities of droplet material transport along the regulator gradient: (i) exchange of material between droplets
at different positions of the concentration gradient by diffusive transport in the dilute phase or (ii) drift of
droplets along the concentration gradient. (i) Droplets grow or shrink with rates that vary along the gradients of
2(‘1“ and the droplet material volume fraction ® (x) (equation (12)). For
e(x) = d(x) / <I>§(‘1“ x)—-1>¢ / R, adroplet located at position x grows, and shrinks in the opposite case. The
critical droplet radius thus becomes position dependent, where below or above R, (x) = #. /€ (x) droplets
shrink or grow. (ii) The drift of a droplet (equation (13)) results from an asymmetry of material flux through the
interface parallel to the regulator gradient, if |0,® (x)| < |0, ®gq'|, the droplet drift velocity V4 points toward
regions of smaller &g (x). This is a typical case since the gradient of droplet material 9, ® (x) tends to flatten
with time due to the diffusion of droplet material in the dilute phase.

To study the ripening dynamics of droplets in a concentration gradient we solved the equations (12) to (14)
numerically. To access the late time regime of ripening we first initialize about N = 107 drops with radii taken
from the Lifschitz—Slyozov distribution [9, 10] in a system of position independent equilibrium concentration
®dy, and fix the concentration inside fbifl = 1.Fort > L?/D, we then spatially quench the system by imposing

local equilibrium volume fraction ®

the spatially varying equilibrium concentration” @S&" (x) = ®y(1 — sx), which we refer to as ‘spatial quench’ in
the following. In our numerical studies we find that droplets experience a nonuniform growth depending on the
position and the stage of ripening (figure 3(a)). At the beginning, all drops grow in the region where the
concentration ® (x) exceeds the local equilibrium concentration at the drop surface, CIJS(']lt x)(1 + £ /R),and

shrink otherwise. The dissolution boundary at x = x4 obeys ® (xq) ~ <I>‘e’j1lt (xq) since in the late time regime

¢ < R.Itmoves accordingto,

dxa _ dé(zd(t)) / APy’ (x) s
t

dt dx

x=x4(t)

For d®g;* (x) /dx < 0, the position of the dissolution boundary x4 moves to the right until it reaches the system

boundaryat x = L (supplementary video is available at stacks.iop.org/NJP/19/053021 /mmedia®). At long

> We checked that a quench of the form @g;‘ (x) =Pp[l —s(x—L / 2)]leads to qualitatively similar results.

6 See the supplementary material for videos and more information (available at stacks.iop.org/NJP/19/053021 /mmedia).
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Figure 3. Droplet ripening in concentration gradients. (a) Mean droplet radius (R), at position x as a function of time for different x as
indicated. A spatial profile of equilibrium volume fraction of slope s = 0.5 is imposed at time t = L2/D (quench). The grey data
points correspond to classical Ostwald ripening (s = 0). (b) Characteristic time 7;, required to segregate the volume of droplet material
toward x = L, and dissolution time 7 required to reach ten droplets starting from O(10*), as a function of quench slope s. The
horizontal grey line indicated the value of 7 for classical Ostwald ripening (s = 0).

times, the volume fraction at all positions approaches the minimum of the equilibrium volume fraction,
d(x) — CD‘;&" (L), and all droplets dissolve exceptat x = L (figure 3(a), supplementary video (see footnote 6)).

The characteristic time 7;, of droplet segregation depends on the quench slope s. It decreases for increasing s
accordingto 77 o< s~ ! (figure 3(b)). In contrast, the time of droplet dissolution, 7p, defined as the time to reach
ten droplets, changes only weakly with the quench slope s and can even increase (figure 3(b)). Interestingly, the
droplet ripening exhibits periods of transient arrest, during which droplet number and size remain almost
constant (figure 4(a)). These arrest phases govern the time of droplet dissolution for large quench slopes since
they occur for sufficiently large quench slopes s. The duration of arrest is roughly constant as a function of sand
the onset of the arrest phase is delayed for decreasing’ s (figure 4(b)). Intriguingly, the onset of the arrest phase is
preceded by a narrowing of the droplet size distribution. The droplet size distribution narrows during the
segregation of droplets toward x = L while the onset of arrest occurs after droplets have mostly been spatially
segregated (supplementary video (see footnote 2)). In particular, the standard deviation of droplet radius
exhibits a pronounced minimum when the arrest begins (figure 4(c)). After the arrest phase droplets undergo
classical Ostwald ripening where time-dependence of (R) and 4R is consistent with ! /3 (figures 3(a) and 4(a)).
The effect of a narrowing droplet size distribution has also been observed in open but spatially homogeneous
systems with a constant influx of phase separation material [16, 17].

The narrowing of the droplet size distribution in a concentration gradient is fundamentally different from
the broadening of the droplet size distributions during classical Ostwald ripening [9, 10]. Ostwald ripening is
characterized by a supersaturation that decreases with time, leading to an increase in the critical droplet radius
R. = £./¢€(t) o< t'/. The droplet size distribution p(R) has a universal shape and is nonzero only in the interval
[0, 3R. /2] (figure 4(d), blue graph). The broadening of p(R) follows from larger droplets growing at a larger rate
dR/dt than smaller droplets. Though dR/dt has a maximum at R = 2R, and decreases for large R, no droplets
exist that are larger than 3R, /2.

This situation changes in the presence of a concentration gradient. The spatial quench reduces the local
critical radius R, (x >~ L) = £ /€ (x ~ L) attherightmostboundary x ~ L as compared to the critical radius
before the quench (equation (5)). This quench also shifts the maximum of dR/d¢ for dropletsat x ~ L to
smaller radii (black line in figure 4(d)) since the radius corresponding to the maximum occursat R = 2R.. Asa
result, many droplets now exist after the spatial quench with largeradii R > 2R.(x ~ L). These droplets grow
more slowly than those at R = 2R, which leads to a narrowing of the size distribution p(R) at x ~ L. The critical
radius R, (x ~ L) remains small because dissolution of droplets at x < L leads to a diffusive flux toward x >~ L
and thus keeps the volume fraction ® (L) at increased levels. These conditions hold longer if the spatial quench
has a steeper slope. As a result the distribution narrows more for steeper quenches. When the critical radius
catches up with the mean droplet size narrowing stops and the onset of arrest occurs. At this time droplets have
almost equal size which slows down the exchange of material between droplets via Ostwald ripening, leading to a

” The arrest phase is defined as the time interval during which the droplet number N(#) decreases slower than #~'/2. Note that for Ostwald
ripening (s = 0), N (t) ~ t L
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Figure 4. Narrowing droplet size distribution. (a) Mean radius (R) averaged over all drops in the system as a function of time for three
quench slopes s. The onset of arrest is indicated (arrows). (b) Duration and time of onset of the arrest phase as a function of quench
slope s. The vertical black line indicates the quench slope s, = {1 — [3/2 — ®,/(2®(t = L2/D))]"'} /L below which no arrest can
occur. It can be calculated by the condition that the critical radius R.atx = Lis reduced by atleast a factor of 3/2 during the quench.
Therefore the largest droplets in the distribution grow slower than smaller drops with radii roughly corresponding the largest growth
rate. Then the distribution can narrow. For our numerical solutions s. & 0.017/L, which is consistent with the emergence of arrest
found in our numerical calculations. (c) Standard deviation 6R of the droplet radius distribution as a function of time for three
different quench slopes s. The onset of arrest corresponds to a sudden narrowing of the distribution (arrows). (d) Rate of droplet
growth dR/dt asafunction of droplet radius R before (grey) and after (black) the spatial quench. The droplet radius distribution p(R)
at the moment of the quench is shown (blue). Narrowing of p(R) occurs if droplet size exceeds the radius for which the growth rate is
maximal (black dots).

long phase of almost constant size and number of droplets (figure 3(a)). During this arrest phase, the droplet
distribution broadens slowly.

6. Conclusion and outlook

Here we have presented the generic behavior of droplet ripening in concentration gradients and extended the
classical theory by Lifschitz and Slyozov to inhomogeneous systems [9, 10]. One main result is that a
concentration gradient of a soluble component that regulates liquid-liquid phase separation can reshape the
supersaturation profile such that all drops dissolve except those within a region close to one boundary of the
system. As a consequence, droplets segregate toward the boundary where the supersaturation is highest [7]. Even
though the details by which a regulator affects the local supersaturation are system-specific, the resulting
ripening dynamics that takes place in a supersaturation gradient is generic. Surprisingly, we find that the size
distribution of droplets narrows for sufficiently steep concentration gradients, leading to a transient arrest of the
droplet dynamics. Such a behavior is fundamentally different to classical Ostwald ripening, where the droplet
size distribution continuously broadens at all times. Transient narrowing of the droplet size distribution stems

7
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from a position-dependent shift of the maximal droplet growth rate to smaller droplet radii as compared to
spatially homogeneous systems (figure 4(d)).

Our work shows that droplet ripening in concentration gradients exhibits fundamental differences
compared to classical phase-separating systems where droplet positions are homogeneously distributed in space.
The physics presented here could be relevant for the control of emulsions in chemical engineering and biology.
The narrowing of droplet size distributions found in the presence of a regulator gradient could be used to control
droplet size. It provides a physical mechanism for the formation of almost monodisperse emulsions. An example
in biology where an emulsion is controlled by concentration gradients is the C. elegans embryo [6—8]. In this
system liquid-like cellular compartments, so called P granules, are positioned toward the posterior side of the
cell prior to asymmetric cell division by a protein concentration gradient. An increasing number of
membraneless compartments with liquid-like properties have been characterized [2, 18]. Their formation and
positioning could be a general scheme for the spatial organization of chemistry in living cells. In our work we
have identified the physical mechanisms of spatial segregation of droplets by concentration gradients. The
physics discussed here contributes to the behavior of liquid-like compartments in living cells such as P granules.
However, many aspects of the dynamics of liquid-like compartments inside cells remain unexplored. In
particular, they consist of a large number of components and are chemically active. Emulsions in the presence of
chemical reactions driven away from equilibrium can give rise to novel phenomena in phase separating systems,
such as the suppression of Ostwald ripening [ 19] or the spontaneous division of liquid droplets [20]. Future
questions could address how nucleation, fusion and droplet shape is changed by concentration gradients and
how non-equilibrium chemical reactions in droplets are affected by concentration gradients.
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