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Abstract. Actively propelled particles undergoing dissipative collisions are
known to develop a state of spatially distributed coherently moving clusters.
For densities larger than a characteristic value, clusters grow in time and form
a stationary well-ordered state of coherent macroscopic motion. In this work
we address two questions. (i) What is the role of the particles’ aspect ratio in
the context of cluster formation, and does the particle shape affect the system’s
behavior on hydrodynamic scales? (ii) To what extent does particle conservation
influence pattern formation? To answer these questions we suggest a simple
kinetic model permitting us to depict some of the interaction properties between
freely moving particles and particles integrated in clusters. To this end, we
introduce two particle species: single and cluster particles. Specifically, we
account for coalescence of clusters from single particles, assembly of single
particles on existing clusters, collisions between clusters and cluster disassembly.
Coarse graining our kinetic model, (i) we demonstrate that particle shape (i.e.
aspect ratio) shifts the scale of the transition density, but does not impact the
instabilities at the ordering threshold and (ii) we show that the validity of particle
conservation determines the existence of a longitudinal instability, which tends
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to amplify density heterogeneities locally, and in turn triggers a wave pattern
with wave vectors parallel to the axis of macroscopic order. If the system is in
contact with a particle reservoir, this instability vanishes due to a compensation
of density heterogeneities.
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1. Introduction

The emergence of collective motion is a ubiquitous phenomenon in nature, encountered in
a great variety of actively propelled systems [1–3]. Coherently moving groups have been
observed over a broad range of length scales, spanning from micrometer-sized systems [4–10]
over millimeter large granules [11–13] to large groups of animals [14]. The fact that the
capability of synchronizing movements between agents is shared even among fundamentally
different systems has called for abstract modeling approaches, aiming at identifying the essential
properties of these systems both in terms of analytical descriptions [15–28] and by means of
agent-based simulation techniques [29–39].

Theoretically, the emergence of collective motion has mostly been studied in the context of
particle conserving systems. There are, however, a number of experimental systems in which the
assumption of particle conservation is questionable. In typical gliding assays [4–6, 9, 10], for
instance, collective motion of filaments is observed on a two-dimensional ‘motor carpet’ which
itself is in contact with a three-dimensional bulk reservoir of filaments. However, the impact of
particle conservation on the formation of patterns of collective motion remains largely elusive.

Here, we address the significance of constraints for particle number by highlighting the
differences in the collective properties between particle conserving systems and those in contact
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with a particle reservoir. Our focus will be on the comparison of two archetypical scenarios,
which we will refer to as the canonical (particle conserving) and the grand canonical (violating
particle conservation) scenarios, respectively.

To this end, we will resort to a kinetic approach, which has been set up previously
by Aranson and Tsimring [16] to describe pattern formation in a system of interacting
microtubules, and which has been extended to the case of self-propelled spheres by Bertin et al
[17, 22]. In the following, we will extend this description in accordance with a physical picture
of collective motion that has been developed over the last decade based on observations in agent-
based simulations of locally interacting, particle conserving systems [31, 32, 37, 39]. Among
the most pertinent phenomena that have been reported in the context of these studies is the
formation of intricate local structures pervading these systems in the vicinity of the ordering
transition. Densely packed cohorts of coherently moving particles—subsequently referred to
as clusters—incessantly ‘nucleate’ and ‘evaporate’ on local scales, even below threshold,
rendering the system isotropic and homogeneous only in the limit of macroscopic length scales.
Individual particles exhibit superdiffusive behavior in this regime, performing quasi-ballistic
‘flights’ as long as they are part of a cluster, and conventional particle diffusion if they are
not. Above threshold, collective motion manifests itself on macroscopic scales in the form of
coherently moving and dense bands, which are submersed in an isotropic low-density ‘particle
sea’. Spatially homogeneous flowing states, in contrast, are observed only well beyond the
ordering threshold [31]. Moreover, particle geometry was demonstrated to play an essential
role in the context of clustering dynamics, with higher aspect ratios facilitating the formation of
clusters of coherently moving particles [37].

In the light of the above, we suggest a simplified modeling framework to incorporate the
intricate role of clusters on the ordering behavior, which will be presented in greater technical
detail in the following section. Particles interact via binary collisions with a scattering cross
section that is explicitly derived as a function of particle shape. Depending on whether a
given particle is part of a cluster or not, it will be associated with one of two distinct particle
classes, which we will refer to as the class of cluster particles and the class of single particles,
respectively. Single particles are ‘converted’ to cluster particles by ‘condensation’ every time a
single particle collides with a cluster. Conversely, cluster particles are ‘converted’ back to single
particles by an ‘evaporation’ process which we assume to occur at some constant (possibly
particle shape dependent [37]) rate. Moreover, in the absence of interactions, cluster particles
will be assumed to move ballistically, whereas single particles will be assumed to perform
random walks. Taken together, the conversion dynamics and the class specificity of particle
motion provide a simple way of implementing the typical superdiffusive behavior of individual
particles, which was alluded to above. To assess the importance of particle conservation in the
context of pattern formation, we will analyze two variants of this model. Firstly, we study closed
systems in which the total number of particles is conserved (canonical scenario) and where,
consequently, the denser cluster phase grows at the expense of the single phase. Secondly, we
examine open systems in contact with a particle reservoir (grand canonical scenario), where the
particle current out of the single phase is compensated so as to retain the density of the isotropic
sea of single particles at a constant level; cf figure 1.

Our work is structured as follows. In section 2 the modeling framework for the
canonical and grand canonical models is introduced and the model equations are discussed
in detail. The corresponding hydrodynamic equations are derived in section 3 by means of an
appropriate truncation scheme in Fourier space. Therein, we also give explicit expressions of
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Figure 1. Illustration of the canonical and grand canonical modeling framework,
highlighting the quintessential differences in the context of pattern formation.
In the homogeneously polarized state (left), the cluster particles density (blue
arrows) constitutes the system’s macroscopic net momentum g0, while some
fraction of the system’s particles, the single particles (orange dots), exhibit
zero net momentum. Spatial perturbations of both density fields lead to two
fundamentally different outcomes: (i) In the case of a closed system obeying
total particle conservation (single particles + cluster particles), termed as the
canonical model, the homogeneously polarized state is longitudinally unstable,
with a wave vector q parallel to the polarized state g0, potentially enforcing a
wave-like pattern. (ii) In contrast, open systems turn out to be stable against this
kind of density fluctuation.

the kinetic coefficients as a function of the particles’ aspect ratio and velocity, noise level and
density for single particles and cluster particles. Section 4 is devoted to the analysis of the
homogeneous equations. The dynamic’s stationary fixed points are determined and the phase
boundary between the isotropic and homogeneous states is calculated. Section 5 deals with the
implications of the inhomogeneous equations in the framework of a linear stability analysis,
which are concluded in section 6.

2. A coarse-grained kinetic model

We consider rod-like particles of length L and diameter d moving in two dimensions with
a constant velocity v. A particle’s state is determined by its position x and the orientation
θ of its velocity vector. To describe the time evolution of the system, we adopt a kinetic
approach [16–18, 22].

On mesoscopic scales, the system’s spatio-temporal evolution is then governed by
Boltzmann-like equations for the one-particle distribution functions within the classes of single
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particles and cluster particles, respectively. Interactions enter this description by means of
collision integrals. The kernel of these integrals involves both a measure for the rate of
collisions, as well as a ‘collision rule’ implementing a mapping between pre- and post-
collisional directions θ and θ ′ of each of the two partaking particles. Here, we are led to consider
a simplified model of binary particle interactions, which builds on the distinction between single
particles and cluster particles. The details of this model will be described in the following
section.

2.1. Reaction equations

Let S(θ) and C(θ) refer to a particle moving in the direction of θ and being associated with the
class of single particles or cluster particles, respectively. In the absence of interactions, single
particles are assumed to perform a persistent random walk, which we model as a succession of
ballistic straight flights, interspersed by self-diffusion (‘tumble’) events. These tumble events
are assumed to occur at a constant rate λ and reorient the particle’s orientation θ by a random
amount ϑ0:

S(θ)
λ

→ S(θ ′
= θ +ϑ0). (1)

For simplicity we assume ϑ0 to be Gaussian distributed,

p0(ϑ0)=
1√

2πσ 2
0

exp (−ϑ2
0/2σ

2
0 ), (2)

with σ0 denoting the standard deviation. On time scales much larger than λ−1, this tumbling
behavior can be described as conventional particle diffusion, with the particles’ diffusion
constant being a function of λ and σ0 [40].

When two single particles S(θ1) and S(θ2) collide, they are assumed to assemble a cluster,
i.e. each of the two particles becomes a cluster particle (see figure 2(a)):

S(θ1)+ S(θ2)→ C(θ̄ +ϑ)+ C(θ̄ +ϑ), (3)

where3

θ̄ (θ1, θ2)=
1
2(θ1 + θ2) (4)

denotes the average of both pre-collisional angles θ1 and θ2, and where ϑ is a random variable
which we, again, assume to be Gaussian distributed:

p(ϑ)=
1

√
2πσ 2

exp (−ϑ2/2σ 2). (5)

The rate of binary collisions, such as equation (3), is determined by a particle-shape-dependent
differential scattering cross section, which will be discussed below; see section 2.2 and
appendix A.

Collisions involving cluster particles are distinct from single particle events. Due to the
close spatial proximity of particles within each cluster, these collisions correspond to many-
particle interactions. Needless to say, a detailed description of cluster formation and the ensuing
particle dynamics represents a highly complex matter, requiring explicit consideration of such

3 To make sure that θ̄ points into the ‘right’ direction (i.e. |θ̄ − θ1/2|6 π/2), we choose θ1 ∈ (−π, π] and
θ2 ∈ (θ1 −π, θ1 +π ].
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Figure 2. (a) Illustration of two single particle species (light orange) with a pre-
collisional relative angle of θ12, colliding such that they align collinear to the
average angle θ̄ . Both particles become a cluster species after the collision. (b)
Right: illustration of a possible scenario where a single particle joins a cluster by
perfectly aligning to the cluster particles (blue). Left: a particle leaves the cluster
by a random change of its direction at a characteristic rate ε.

many-particle interactions. For simplicity, we will resort to the following simplified interaction
picture. We assume that (binary) collisions between single particles and cluster particles lead
to a condensation process during which the single particle aligns to the cluster particle without
changing the direction of the cluster as a whole:

S(θ1)+ C(θ2)→ C(θ2)+ C(θ2). (6)

Equation (6) thus captures the net effect of collisions between single particles and cluster
particles, during which multiple collisions, involving neighboring particles belonging to the
same cluster, stabilize the cluster’s direction; cf figure 2(b) for an illustration.

Collisions among cluster particles is an even more intricate process, since they actually
depend on the size and shape of both colliding clusters, and in general involve multi-particle
interactions. In the framework of a Boltzmann-like description, correlations in the particle
distribution are neglected and only binary interactions are considered. The frequency of
interactions is determined by a geometrical construction called the ‘Boltzmann cylinder’,
assuming that particle positions are homogeneously distributed on local scales. With regard
to many-particle interactions during collisions among cluster particles, we thus have to resort to
some kind of simplified, binary collision picture. Since our kinetic model lacks any direct notion
of cluster size or shape, we will stick to the assumption that, on average, collisions between
cluster particles are devoid of any directional bias, leading to the same type of collision rule as
for single particles:

C(θ1)+ C(θ2)→ C(θ̄ +ϑ)+ C(θ̄ +ϑ). (7)

Again, ϑ constitutes a Gaussian-distributed random variable given in (5). Moreover, due
to external (e.g. thermal background) and internal (e.g. noisy propelling mechanism) noise,
cluster particles evaporate to become single particles. In analogy to the self-diffusion of single
particles, we thus introduce a rate4 ε characterizing the following evaporation process:

C(θ)
ε

→ S(θ ′
= θ +ϑ0). (8)

4 As has been pointed out in [37], this rate may depend on particle shape.
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Also in this case, the strength of the angular changes is Gaussian distributed according to (2),
and for simplicity we use the same standard deviation σ0 as for the single particles’ persistent
random walk. As discussed above, cluster particles are strongly caged due to their close
proximity to neighboring, collinearly moving particles. Reorientations of cluster particles due
to noise are therefore strongly counteracted by realigning particle collisions, rendering cluster
particles considerably less susceptible to random fluctuations than single particles. Hence, we
assume

ε � λ, (9)

which is consistent with the observations in agent-based simulations slightly below the ordering
transition [31], finding coherently moving clusters in an unpolarized background of randomly
moving particles. In this regime individual particles exhibit superdiffusive behavior, performing
quasi-ballistic ‘flights’ as long as they are part of a cluster, and conventional particle diffusion
if they are not.

2.2. Constitutive equations

Building on the modeling framework defined above, we now set up a kinetic description for the
canonical model. We denote by s(θ, x, t) and c(θ, x, t) the one-particle distribution functions
within the class of single particles and cluster particles, respectively, i.e. s(θ, x, t) dθ d2x gives
the number of single particles located in an infinitesimal region [x, x + dx] with orientations
in the interval [θ, θ + dθ ] (and likewise for c(θ, x, t) dθ d2x). Both one-particle distribution
functions are subject to convection due to the propelling velocity v of each particle. Moreover,
local fluctuations in the one-particle distribution functions due to self-diffusion and collision
events are to be accounted for. We thus arrive at the following set of Boltzmann-like equations
for the canonical model:

∂ts(θ, x, t)+ v · ∇s(θ, x, t)= ṡ(θ, x, t), (10a)

∂tc(θ, x, t)+ v · ∇c(θ, x, t)= ċ(θ, x, t), (10b)

where the source terms ṡ(θ, x, t) and ċ(θ, x, t) read

ṡ = λ
[
D(+)s (θ)−D(−)s (θ)

]
+ εD(+)c (θ)− C(−)s (θ)−A[s, c; θ ], (11a)

ċ = −εD(−)c (θ)+ C(+)s (θ)+ C(+)c (θ)+A[c, s; θ ] − C(−)c (θ). (11b)

They give the net number of single particles and cluster particles entering the phase space
region dω = [x, x + dx] × [θ, θ + dθ ] per unit time and unit area, respectively. The various terms
correspond to gain (superscript (+)) and loss (superscript (−)) of particles by the following
processes.

1. Self-diffusion and evaporation. In these cases the source terms are products of the
corresponding rates and probability densities, with

D(−)f (θ)= f (θ) (12)

denoting the probability density for a particular species f to have a certain angle θ , and

D(+)f (θ)= 〈 f (θ −ϑ0)〉0 (13)

denoting the transition probability from θ ′
= θ −ϑ0 to θ averaged over all ϑ0 with respect

to the Gaussian weight (2). Note that, here and in the following, the argument of f is
understood modulo 2π .
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2. Collisions within the same class of particles. The collision integrals, representing the
processes defined in equations (3) and (7), are given by standard expressions [16–18, 22]

C(+)f (θ)=

〈∫
dI f (θ ′) f (θ ′′) δ(θ̄(θ ′, θ ′′)+ϑ − θ)

〉
, (14a)

C(−)f (θ)=

∫
dI f (θ ′) f (θ ′′)δ(θ ′

− θ). (14b)

Here 〈. . .〉 denotes an average over ϑ ∈ (−∞,∞) with respect to the Gaussian weight (5)
and the average angle θ̄ is given in equation (4). The integral measure∫

dI (. . .)≡

∫ π

−π

dθ ′

∫ θ ′+π

θ ′−π

dθ ′′ 0(L , d, |θ ′
− θ ′′

|) (. . .) (15)

contains the differential scattering cross section

0(L , d, |θ ′
− θ ′′

|)= 4 dv

∣∣∣∣sin

(
θ ′

− θ ′′

2

)∣∣∣∣ [1 +
(L/d)− 1

2

∣∣sin(θ ′
− θ ′′)

∣∣] (16)

characterizing the frequency of collisions (i.e. hard-core interactions) between rod-like
particles. The scattering function 0 itself carries all information concerning the shape
of the particles and is a function of the relative orientation of the colliding particles.
Reminiscent of the Boltzmann scattering cylinder, 0 can be derived on the basis of purely
geometric considerations assuming that all spatial coordinates within the cylinder are
equally probable; for details see appendix A.

3. Assembly events of a single particle joining a cluster. These events, represented by (6),
occur through binary collisions between single particles and cluster particles and are thus
represented by an analogous integral expression:

A[ f, g; θ ] =

∫
dI f (θ ′)g(θ ′′)δ(θ ′

− θ). (17)

3. Derivation of hydrodynamic equations

In order to reduce our kinetic description to a set of hydrodynamic equations valid on large
length and time scales, we follow the well-established procedure of Aranson and Tsimring [16]
and Bertin et al [17, 22], and analyze the angular dependence of equations (10a) and (10b)
in Fourier space. Due to the 2π -periodicity in θ , the one-particle distribution functions can be
expanded in Fourier series

s(θ, x, t)=
1

2π

∞∑
n=−∞

sn(x, t)e−inθ , (18a)

c(θ, x, t)=
1

2π

∞∑
n=−∞

cn(x, t)e−inθ , (18b)

where

sn(x, t)=

∫ π

−π

dθ einθs(θ, x, t), (19a)
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cn(x, t)=

∫ π

−π

dθ einθc(θ, x, t). (19b)

Upon identifying R2
↔ C, e.g. v ↔ v eiθ (v = |v|), the zeroth and first Fourier modes are

directly connected to the hydrodynamic densities ρs (single particle density) and ρc (cluster
particle density), and the corresponding current densities gs and gc, i.e.

ρs(x, t)= s0(x, t), (20a)

ρc(x, t)= c0(x, t), (20b)

gs(x, t)≡ ρs(x, t)us(x, t)= v s1(x, t), (20c)

gc(x, t)≡ ρc(x, t)uc(x, t)= v c1(x, t). (20d)

In equations (20c) and (20d), the ‘=’ signs indicate identification of vectors and complex
numbers. The quantities us/c denote the velocities of the macroscopic flow fields established by
single particles and cluster particles, respectively. Also note that the second Fourier components
are proportional to the nematic order parameter within the respective class of particles (as
reflected by the symmetry of ei2θ under θ → θ +π ). Using equations (18a) and (18b), the
Boltzmann-like equations (10a) and (10b) transform to

∂tsk +
v

2
[∂x (sk+1 + sk−1)− i∂y (sk+1 − sk−1)]

= −λsk + e−(kσ0)
2/2 (λsk + εck)−

∞∑
n=−∞

In,0 (sn + cn) sk−n, (21a)

∂tck +
v

2
[∂x (ck+1 + ck−1)− i∂y (ck+1 − ck−1)]

= −εck +
∞∑

n=−∞

[In,0(snck−n − cnck−n)+ e−(kσ)2/2 In,k (snsk−n + cnck−n)], (21b)

where the collision integrals In,k are defined as follows:

In,k =
1

2π

∫ π

−π

dφ 0(L , d, |φ|) cos

[(
n −

k

2

)
φ

]
. (22)

Note, in particular, that I0,0 gives the total scattering cross section.

3.1. Truncation scheme

Equations (21a) and (21a) constitute an infinite set of coupled equations in Fourier space, which
are fully equivalent to the Boltzmann-like equations (10a) and (10b). To derive a closed set
of hydrodynamic equations, we need to consider some additional assumptions, allowing us to
truncate this infinite Fourier space representation.

Here, our focus will be on virtually isotropic systems in the vicinity of an ordering
transition breaking rotational symmetry. In this case, deviations of the one-particle distribution
functions from the constant distribution ∼ 1/2π are small and contributions from large
wavenumbers in the Fourier series (21a) and (21a) are negligible. We further consider
sufficiently dilute systems, in which the number of (binary) particle collisions per unit time
and area [∼ (ρc + ρs)

2 I0,0] is much smaller than the corresponding number of single particle
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Table 1. Summary of relevant collision integrals In,k as a function of the aspect
ratio ξ = L/d, where L and d denote particle length and diameter, and where v
is the particle velocity. The quantities In,k/I0,0 depend only weakly on the aspect
ratio ξ . In particular, the signs of In,k/I0,0 do not change with ξ , leaving all our
present conclusions made on the basis of the kinetic coefficients qualitatively
unchanged.

Integral I0,0 I1,0/I0,0 I1,1/I0,0 I2,0/I0,0 I2,1/I0,0

Value 8 dv(2+ξ)
3π −

4+ξ
5(2+ξ)

3
16

8+π(ξ−1)
2+ξ

6−13ξ
35(2+ξ)

3
16
π(1−ξ)−8

2+ξ

diffusion events [∼ λ ρs]. Together with ε � λ (equation (9)), stating that disassembly from
a cluster is strongly hindered by particle caging, allows us to treat single particle diffusion
as a fast process. The single particle phase thus acts as an isotropic sea of particles where
particle orientations (but not necessarily particle densities) are equilibrated, and hence the net
hydrodynamic flow vanishes (us = 0). Finally, from a dimensional analysis of equations (19a)
and (19b), together with (20c) and (20d), one finds ck/ρc ∼O(|uc|

k/vk). Near the onset of order,
where |uc|/v � 1, we only consider the density (c0) and polarity (c1) of cluster particles, and
use the stationary equation for c2 as a closure relation, neglecting all contributions from higher
order coefficients.

In summary, we resort to the following truncation scheme, leading to a set of hydrodynamic
equations, valid near the onset of the ordering transition:

sk = 0, ∀|k|> 0, (23a)

ck = 0, ∀|k|> 2. (23b)

3.2. Derivation of the hydrodynamic equations

With the above truncation scheme, (21a) and (21b) reduce to

∂ts0 = εc0 − I0,0

(
s2

0 + s0c0

)
, (24a)

∂tc0 = −v
[
∂xR(c1)+ ∂yI(c1)

]
− ∂ts0, (24b)

∂tc1 = −
v

2
[∂x(c2 + c0)− i∂y(c2 − c0)] + [(2 e−σ 2/2 I1,1 − I1,0 − I0,0)c0 − ε + I0,0s0]c1

+[2 e−σ 2/2 I2,1 − I1,0 − I2,0]c∗

1c2, (24c)

∂tc2 = −
v

2
[∂x + i∂y]c1 + [(2 e−2σ 2

I1,0 − I2,0 − I0,0)c0 − ε + I0,0s0]c2

+[e−2σ 2
I0,0 − I1,0]c1c1, (24d)

where we used f−k = f ∗

k , since f (θ) ∈ R ( f ∈ {s, c}), and where R(a) (I(a)) denotes the real
(imaginary) part of a. Moreover, as can be seen from the definition in (22), the collision integrals
In,k only depend on the value |n − k/2|, whence only five of the collision integrals appearing in
the above equations are independent. These integrals as a function of the particle’s aspect ratio
are evaluated and summarized in table 1. Also note that the entire set of equations (24a)–(24d) is
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independent of the fast single particle diffusion time scale λ−1 (and, hence, also of the diffusion
noise parameter σ0). In our present approach, λ has only a conceptual meaning in maintaining a
well-mixed particle bath within the class of single particles.

For given particle densities, the time scales governing the dynamics of the polar and
nematic order parameter fields, represented by c1 and c2, are given by the linear coefficients
in the second line of (24c) and (24d), respectively. As will be detailed in section 4.2, the onset
of collective motion is hallmarked by a change in sign of the linear coefficient in (24c), implying
a diverging time scale for the dynamics of the polarity field. On the other hand, the time scale
for c2 is finite for all densities, which implies that the relaxation of the nematic order parameter
field is fast compared to the polarity field. This allows us to set ∂tc2 ≈ 0 in (24d).

In the following, it will be convenient to write down equations in dimensionless form. To
this end, we construct the following characteristic scales: time and space will be measured in
units of the cluster evaporation time and length scale

τ̂e = ε−1 and ˆ̀e = v/ε. (25)

From the cluster evaporation time scale τ̂e and the total scattering cross section I0,0, we can
construct the characteristic density scale

ρ̂b =
1

I0,0 τ̂e
. (26)

The single particle and cluster particle phases constantly exchange particles at rates that are
determined by cluster evaporation (ε) on the one hand (cluster particles → single particles)
and cluster nucleation due to particle collisions on the other hand (single particles →cluster
particles) which occur with a rate ∼ρ I0,0. Therefore the characteristic density scale ρ̂b marks
the particle density, where both rates balance. In particular, ρ/ρ̂b = (ρs + ρc)/ρ̂b gives the rate of
inter-particle collisions relative to cluster evaporation events. Thus, the numerical quantity ρ/ρ̂b

provides a direct measure expressing the competition between the randomizing effects of noise
and the order creating effects of particle collisions, hallmarking the onset (and maintenance) of
collective motion [29].

We thus arrive at the following rescaling scheme:

t → t · τ̂e, (27a)

x → x · ˆ̀e, (27b)

ρs/c → ρs/c · ρ̂b, (27c)

g → g · ρ̂b

ˆ̀e

τ̂e
, (27d)

In,k → In,k ·
1

ρ̂b τ̂e
, (27e)

where the characteristic scales for momentum (g) and scattering cross section (In,k) have been
constructed from those of time, space and density. In this rescaling the momentum current
density is equal to one if the corresponding fluid element with a characteristic density ρ̂b, for
which cluster evaporation and nucleation balance, is convected with the particle velocity v.

Then, upon eliminating c2 from (24c) as discussed above, and using the relations
between Fourier modes and hydrodynamic fields (for details see appendix B), (20a)–(20d),
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equations (24a)–(24d) give rise to the hydrodynamic equations corresponding to the canonical
model. In rescaled variables they read

∂tρs = ρc − (ρs + ρc) ρs, (28a)

∂tρc = −∇ · g − ρc + (ρs + ρc) ρs, (28b)

∂tg = −ν1g −
µκ

ν2
g2g −

1

2
∇ρc +

1

4ν2
∇

2g +
ζ+

ν2
(g · ∇)g +

ζ−

ν2
[(∇ · g)g −

1

2
∇(g2)]

+
µ

ν2
2

[g(g · ∂[ρc, ρs])−
1

2
g2∂[ρc, ρs]] +

1

4ν2
2

[(∇ · g)∂[ρc, ρs]

−(∇g + ∇gt)∂[ρc, ρs]], (28c)

where

∂[ f, g] =
(
∂ f ν2

)
∇ f +

(
∂gν2

)
∇g, (29)

and where we have introduced the following abbreviations:

ν1 = 1 − (ρs − ρc)+ (I1,0 − 2e−σ 2/2 I1,1)ρc, (30a)

ν2 = 1 − (ρs − ρc)+ (I2,0 − 2e−2σ 2
I1,0)ρc, (30b)

µ= e−2σ 2
− I1,0, (30c)

κ = I1,0 + I2,0 − 2 e−σ 2/2 I2,1, (30d)

ζ± = −µ±
κ

2
. (30e)

Equations (28a)–(28c) capture the evolution of our canonical model system on a
hydrodynamic level. More specifically, (28a) and (28b) describe the spatio-temporal evolution
of the particle densities ρs and ρc. Since, by the assumptions underlying our model, no
macroscopic flow of single particles can build up, only the density of cluster particles (ρc)
is subject to convection. This implies that the genuine hydrodynamic momentum field g =

gc + gs ≡ gc is carried solely by the subset of cluster particles. Therefore we omit the subscript
c in (28b) and (28c) and denote g ≡ gc. The dynamics of both densities is, moreover, driven by
source terms, as determined by the reactions discussed in section 2.1. The gain and loss parts in
these source terms of ρc and ρs are exactly balanced, such that the total density ρ = ρc + ρs is
conserved. As an aside we note that any distinction between single particles and cluster particles
is a purely conceptual matter. Experimentally, only the total density ρ and the momentum field
g are accessible.

Equation (28c), governing the evolution of the current density g, can be interpreted as a
generalization of the Navier–Stokes equation to active systems. The terms on the right-hand side
of (28c) can be given by the following interpretation. In the first line, the first two terms account
for the local dynamics of g. They play a crucial role in establishing and maintaining a state of
macroscopic flow, as will be detailed below. The Navier–Stokes equation itself, which conserves
momentum, is devoid of these terms. In formal analogy to the Navier–Stokes equation, the
density gradient in the first line together with the last term in the second line can be interpreted
as a pressure gradient. This effective pressure is given by 1

2(ρc + ζ−
ν2

g2), when neglecting the

New Journal of Physics 15 (2013) 045014 (http://www.njp.org/)

http://www.njp.org/


13

density dependence of ν2. The last term in the first line is analogous to the shear stress term
in the Navier–Stokes equation, with a kinematic viscosity ∼ ν−1

2 . The second line in (28c) is
a generalization of the convection term to systems not obeying Galilean invariance, where all
combinations of ∇ and factors second order in g transforming as vectors are allowed [41].
Finally, the last two lines describe couplings of the current density g and gradients thereof to
density gradients. Note that the density gradients in these coupling terms are all of the same
generic structure (29).

As already noted, the canonical model equations (28a)–(28c) conserve the total number of
particles. To make this explicit, we define

ρ ≡ ρc + ρs, (31a)

η ≡ ρc − ρs, (31b)

where ρ denotes the overall particle density and η measures the density difference between the
two particle classes. The canonical model equations then attain the following form:

∂tρ = −∇ · g, (32a)

∂tη = −∇ · g + ρ2
− (ρ + 1)η− ρ, (32b)

∂tg = −ν1g −
µκ

ν2
g2g −

1

4
∇(ρ + η)+

1

4ν2
∇

2g +
ζ+

ν2
(g · ∇)g +

ζ−

ν2

[
(∇ · g)g −

1

2
∇

(
g2

)]
+
µ

ν2
2

[
g(g · ∂[ρ, η])−

1

2
g2∂[ρ, η]

]
+

1

4ν2
2

[(∇ · g)∂[ρ, η] − (∇g + ∇gt)∂[ρ, η]].

(32c)

The equation governing ρ expresses the overall conservation of particle number, whereas the
source terms of equations (28a) and (28b) combine to determine the local dynamics of the
relative density η in (32b).

Now we turn to the grand canonical model, where the single particle phase is coupled
to a particle reservoir, resulting in a situation where single particles constitute an isotropic
sea of particles that is maintained at a constant density ρ0

s . Particle number conservation is
now violated, and the only non-trivial density dynamics takes place within the phase of cluster
particles. The hydrodynamic equations corresponding to the grand canonical model can be
obtained immediately by setting in (28a)–(28c) the density of single particles to a constant
value, yielding

ρs = ρ0
s = const., (33a)

∂tρc = −∇ · g − ρc +
(
ρ0

s + ρc

)
ρ0

s , (33b)

∂tg = −ν1g −
µκ

ν2
g2g −

1

2
∇ρc +

1

4ν2
∇

2g +
ζ+

ν2
(g · ∇)g +

ζ−

ν2

[
(∇ · g)g −

1

2
∇

(
g2

)]
+
µ∂ρcν2

ν2
2

[
g(g · ∇ρc)−

1

2
g2

∇ρc

]
+
∂ρcν2

4ν2
2

[(∇ · g)∇ρc − (∇g + ∇gt)∇ρc]. (33c)

One final remark is in order. The rescaling scheme introduced in equations (27a)–(27e) renders
both the canonical and grand canonical model equations virtually independent of particle shape.
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While these equations exhibit a weak dependence on the particles’ aspect ratio L/d (via the
rescaled collision integrals In,k), this dependence introduces only minor quantitative effects,
which are negligible for all present purposes. To a good approximation we can thus set L/d = 1
while working with dimensionless variables, and assess the effects entailed by particle shape
by restoring original units. Within our present approach, the effects of particle shape are purely
quantitative, causing a numerical shift in the characteristic scales, but leaving the qualitative
features of the problem unaffected. Deep within the ordered phase, i.e. for large densities, we
indeed find a qualitative change of the ensuing hydrodynamic instability, as detailed in section 5.
Nevertheless, this statement has to be taken with a grain of salt because corresponding threshold
densities are far beyond the validity of the hydrodynamic equations.

4. Spatially homogeneous systems

To investigate the implications of the hydrodynamic equations, we start with the simplest case
by analyzing spatially homogeneous solutions. These considerations will provide the basis for
the study of spatially inhomogeneous systems, which will be the subject of section 5. Dropping
all gradients, the hydrodynamic equations for spatially homogeneous systems for the canonical
model read

∂tρ = 0, (34a)

∂tη = ρ2
− (ρ + 1)η− ρ, (34b)

∂tg = −ν1g −
µκ

ν2
g2g. (34c)

For the grand canonical model we obtain

∂tρc = −ρc +
(
ρ0

s + ρc

)
ρ0

s , (35a)

∂tg = −ν1g −
µκ

ν2
g2g. (35b)

In both cases, the density dynamics decouples from the momentum current dynamics and can
be addressed separately.

In this section, our focus is on the stationary properties of the canonical and grand
canonical models, respectively. While the dynamical approach to the stationary state is model
dependent, the system’s composition in terms of single particles and cluster particles, for
given total density ρ, in the limit t → ∞ is identical in both cases (refer to (28a)–(28b)
and (33a)–(33b)). Since, moreover, the momentum current densities g obey identical dynamical
equations, the ensuing analysis of the stationary state is equal for both models.

4.1. Crossover to clustering

To assess the density difference between the cluster particle and the single particle phase η, we
calculate the dynamical fixed point η∗ of (34b), attracting the dynamics of η(t) in the long time
limit t → ∞:

η∗(ρ)=
ρ2

− ρ

ρ + 1
. (36)
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Figure 3. Fixed points of the homogeneous equations for the grand canonical
and canonical models: the stationary relative density η∗/ρ, as well as the
stationary cluster and single particle density, ρ∗

c /ρ and ρ∗

s /ρ, respectively. The
larger the ρ, the more the cluster particles existing in the system. The vertical line
corresponds to the density ρ̄ above which the number of cluster particles exceeds
the number of single particles. Note that ρs < 1 holds for all finite values of the
total particle density ρ. (This is of particular relevance in the context of the grand
canonical model, where ρs can be considered as a control parameter.)

The defining equations (31a)–(31b) can be used to determine the corresponding
(stationary) fixed point densities of single particles (ρ∗

s ) and cluster particles (ρ∗

c ) as a function
of the total density ρ. Figure 3 summarizes these findings. Upon increasing the total density
ρ, the ratio η∗/ρ continuously grows from η∗/ρ = −1 at ρ = 0, asymptotically approaching
η∗/ρ = 1 as ρ → ∞. Based on the sign of η∗, two density regimes can be distinguished. In the
low-density regime (ρ � 1, η∗ < 0), particle collisions, underlying the formation of clusters,
occur at much smaller rates than cluster evaporation events. Only a small fraction of all particles
organize themselves in clusters, leading to a relatively dense population of single particles
and a correspondingly small density of cluster particles. In the high-density regime (ρ � 1,
η∗ > 0), the situation is reversed: large overall densities imply frequent particle collisions and,
consequently, cluster formation and cluster growth dominate over cluster evaporation. In this
regime, the number of cluster particles exceeds the number of single particles.

The crossover between the single particle dominated low-density regime and the cluster
particle dominated high-density regime occurs at the crossover density ρ̄ = ρ̂b = 1, where both
the single particle and the cluster particle populations are of equal size (i.e. η∗(ρ̄)= 0). The
relation between the crossover density to clustering, and the geometrical shape of the constituent
particles has been addressed previously in [37], based on agent-based simulations and a mean-
field-type analytical analysis. Using our definition of the crossover density ρ̄, we can establish
the corresponding relation simply by restoring original units (equation (26)). Using packing
fraction p̄ ' ρ̄ Ld instead of particle density, and assuming for the sake of simplicity L/d � 1,
which allows us to estimate the particle surface A0 ' Ld , we find that

p̄ '
ε Ld

I0,0
=

3π

8v

εL

2 + L/d
, (37)
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which correctly reproduces the findings of [37] (taking into account that the cluster evaporation
rate is assumed to be proportional to the inverse particle length, ε ∝ L−1). For the sake of
completeness, we note that the definition of the clustering crossover density in [37] is based on
the cluster size distribution, and thus does not necessarily coincide with our definition. We stress,
however, that in our description the scaling structure in equation (37) is completely generic.
It is an immediate consequence of the characteristic scales of our model and of the fact that
the rescaled hydrodynamic model equations are (virtually) independent of particle shape. The
structure of equation (37) is thus robust under an arbitrary redefinition of the (rescaled) crossover
density ρ̄.

4.2. Homogeneous equations for momentum current density

Having examined the composition of the system in terms of single particle and cluster particle
densities, we now turn to a discussion of the spatially homogeneous solutions for the momentum
current density g. Due to rotational invariance of (34c), only the magnitude g = |g| of the
momentum current density, but not its direction, evolves in time. We can thus concentrate on
the scalar equation

∂t g = −ν1 g −
µκ

ν2
g3, (38)

which leads to the following fixed points g∗ as the attractor of the dynamics of g in the limit of
long times:

g∗
=

{
0 for ν1 > 0,

g0 =

√
−
ν1ν2
µκ

for ν1 < 0. (39)

It can be shown that the coefficient in front of the cubic term in (38) is indeed strictly positive for
all control parameters of density ρ and noise σ consistent with ν1 < 0, ensuring the existence of
the non-trivial fixed point in the second line of (39).

Depending on the sign of the linear coefficient ν1, two parameter regimes can thus be
distinguished. Parameters leading to ν1 > 0 render stable an overall homogeneous and isotropic
state with vanishing macroscopic flow g = 0. Upon crossing the phase boundary

ν1(ρ, σ )= 0 (40)

in parameter space, the isotropic solution gets unstable and a macroscopic current density of
non-zero amplitude builds up. In equation (40) we used the fact that the density difference η, in
the stationary limit, is a function of the total density ρ; cf equation (36). Hence, in the limit of
long times, ν1 is a function of the total density ρ and the noise parameter σ , only.

Using the definition of the coefficient ν1, equation (30a), we can readily calculate the shape
of the phase boundary in the σρ-plane:

σc(ρ)=

√
−2 ln

(
2

3
+ ρ−2

)
(ρ >

√
3), (41)

where we used I1,0 = −
1
3 and I1,1 =

1
2 . The corresponding phase diagram is shown in figure 4.

To conclude this section, we note that the analysis of spatially homogeneous systems
corroborates the general physical picture of active systems, which was alluded to in the
introduction (e.g. cf [31]). Even in the absence of noise, σ = 0, for which the threshold
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Figure 4. Phase diagram given by the homogeneous equations for the canonical
and grand canonical models. For noise values smaller than the critical value,
σ < σc, the isotropic state becomes unstable, giving rise to a state of collective
motion of non-zero macroscopic momentum current. For σ > σc the isotropic
state (g0 = 0) represents a stable solution. The vertical dotted line indicates the
transition density ρ(c) at zero collision noise σ = 0, and the vertical dashed
line corresponds to the crossover density ρ̄, above which the number of cluster
particles exceeds the number of single particles.

density ρ(c) is lowest, the fully isotropic state g = 0 remains stable up to a critical density
ρ(c)(σ = 0)=

√
3 ρ̄, which lies well beyond the density ρ̄ indicating the crossover to clustering.

We thus extract the following physical picture; cf figure 4. For low densities, ρ < ρ̄, cluster
evaporation dominates over cluster assembly via particle collisions and clusters form only
transiently. The system most closely resembles a structureless, isotropic ‘sea of particles’. At
intermediate densities, ρ̄ < ρ < ρ(c), particle collisions are more frequent. The emergence of
clusters is now a virtually persistent phenomenon, with cluster evaporation occurring at a lower
rate than cluster formation and growth. Yet, the collision rates between clusters (i.e. collisions
among cluster particles) are still too low to orchestrate macroscopic order, leading to an overall
isotropic ‘sea of clusters’. Finally, for large densities, ρ > ρ(c), the frequency of collisions
among clusters is high enough to establish collective motion even on macroscopic scales.

5. Stability of inhomogeneous hydrodynamic equations

From our discussions hitherto, we have ascertained that the isotropic, homogeneous state
(ρ = const. and g = 0) becomes unstable for sufficiently large densities. Yet, from a purely
homogeneous analysis we cannot say anything about the spatial structure of such a macroscopic
broken-symmetry state. Nor can we be sure that the isotropic and homogeneous solution for ρ <
ρc(σ ) is indeed stable with respect to spatially inhomogeneous perturbations. In this section, we
therefore test the linear stability of the homogeneous isotropic and non-isotropic base states with
respect to wave-like perturbations of arbitrary wavenumber. Unlike the homogeneous model
equations, the full hydrodynamic model equations are different for both the canonical and
grand canonical models, implying different dispersion relations describing the growth of such
wave-like perturbations. We will thus analyze both models separately, and show that particle
conservation does indeed influence pattern formation in essential respects.
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5.1. Linearization about stationary, spatially homogeneous base states

We start by linearizing the hydrodynamic equations for the canonical model. In the canonical
model, the total number of particles is conserved, and the appropriate base state reads
(cf section 4)

ρ = ρh = const., (42a)

η = η∗(ρh)=
ρ2

h − ρh

ρh + 1
, (42b)

g = gh ∈

{
0, g0 =

√
−
ν1ν2

µκ

}
êg, (42c)

where êg denotes the unit vector in the direction of the homogeneous polarization, and where
all fields of the base states are assumed to be constant in both space and time. We are going
to investigate the linear stability of the solutions (42a)–(42c) against wave-like perturbations,
employing the following ansatz:

ρ(x, t)= ρh + δρ(x, t), (43a)

η(x, t)= η∗ + δη(x, t), (43b)

g(x, t)= gh + δg(x, t), (43c)

where the perturbations are plane waves

δρ(x, t)= δρ0 est+iq·x, (44a)

δη(x, t)= δη0 est+iq·x, (44b)

δg(x, t)= δg0 est+iq·x. (44c)

In the equations above, q denotes the wave vector and s is the growth rate. Inserting this ansatz
into the hydrodynamic equations (32a)–(32c), we obtain the following eigenvalue problem:

s δρ0 = −iq · δg0, (45a)

s δη0 = (2ρh − η∗
− 1) δρ0 − (1 + ρh) δη0 − iq · δg0, (45b)

s δg0 =

[
∂ρν2 µ

ν2
2

(
κ g2

h gh + (gh · iq) gh −
iq
2

g2
h

)
− ∂ρν1 gh −

iq
4

]
δρ

+

[
∂ην2 µ

ν2
2

(
κ g2

h gh + (gh · iq) gh −
iq
2

g2
h

)
− ∂ην1 gh −

iq
4

]
δη

+

[
ζ+

ν2
(iq · gh)−

q2

4ν2
− ν1 −

µκ

ν2
g2

h

]
δg0 −

2µκ

ν2
gh (gh · δg0)

+
ζ−

ν2
[gh(iq · δg0)− iq (gh · δg0)]. (45c)

Unlike the canonical model, the grand canonical model conserves the number of single
particles, but not the total number of particles. The appropriate base state in this case reads

ρs = const., (46a)
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ρc = ρ∗

c (ρs)=
ρ2

s

1 − ρs
, (46b)

g = gh ∈

{
0, g0 =

√
−
ν1ν2

µκ

}
êg. (46c)

We investigate the linear stability of these solutions, using a perturbation ansatz analogous to
equations (43a)–(44c):

ρc(x, t)= ρ∗

c + δρc(x, t), (47a)

g(x, t)= gh + δg(x, t), (47b)

with

δρc(x, t)= δρ0
c est+iq·x, (48a)

δg(x, t)= δg0 est+iq·x. (48b)

Inserting this ansatz into equations (33a)–(33c), we obtain

s δρ0
c = (ρs − 1) δρ0

c − iq · δg0, (49a)

s δg0 =

[
∂ρcν2 µ

ν2
2

(
κ g2

h gh + (gh · iq) gh −
iq
2

g2
h

)
− ∂ρcν1gh −

iq
2

]
δρ0

c

+

[
ζ+

ν2
(iq · gh)−

q2

4ν2
− ν1 −

µκ

ν2
g2

h

]
δg0 −

2µκ

ν2
gh (gh · δg0)

+
ζ−

ν2

[
gh(iq · δg0)− iq (gh · δg0)

]
. (49b)

5.2. Stability of the disordered state g0 = 0

We start by considering the homogeneous and isotropic base states, which was shown to be
stable against spatially homogeneous perturbations for ρ < ρ(c)(σ ); cf section 4.2. To assess the
stability of this state with respect to perturbations of arbitrary (non-zero) wave vectors in
the canonical model, we use the linearized hydrodynamic equations (45a)–(45c) with gh = 0.
The resulting eigenvalue problem is most conveniently expressed in matrix form:

s

δρ0

δη0

δg0

 =

 0 0 −iq
2ρh − η∗

− 1 −(1 + ρh) −iq
−iq/4 −iq/4 −ν1 − q2/(4ν2)

 δρ0

δη0

δg0

 . (50)

The corresponding eigenvalue problem for the grand canonical model is found from
equations (49a)–(49b), and attains the following form:

s

(
δρ0

c
δg0

)
=

(
(ρs − 1) −iq
−iq/2 −ν1 − q2/(4ν2)

) (
δρ0

c
δg0

)
. (51)

For gh = 0, (45c) or (49b), respectively, implies q ‖ δg0, allowing us to replace the vectors
q and δg0 by their respective magnitudes q and δg0. We solved both eigenvalue problems
numerically for arbitrary wavenumbers q > 0 with the results shown in figure 5. Note that in
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Figure 5. Fastest growth rate of <[s(q)] as a function of the wavenumber q = |q|

for the canonical (a) and grand canonical models (b), each for σ = 0. The
disordered state is stable for all wavenumbers q if ρ < ρ(c)(σ ). The marginal
case, ρ = ρ(c)(σ ), is dashed. An instability (gray) occurs for densities larger
than the corresponding homogeneous critical density ρ(c)(σ ). Similar behavior
is found for σ 6= 0.

both models the real parts of all eigenvalues are negative for all wavenumbers q > 0, provided
the particle density ρ < ρ(c). The spatially homogeneous, isotropic state is thus stable against
small perturbations with arbitrary wave vectors.

For densities ρ > ρ(c), in contrast, a narrow band of positive eigenvalues emerges in both
models, located at wavenumbers q � 1. Equations (50) and (51) evaluated at q = 0 return
nothing but the linearized versions of the homogeneous hydrodynamic equations, (34a)–(34c)
and (35a)–(35b). To gain new insights, we will therefore examine the limit q → 0 and consider
the eigenvalues of the above coefficient matrices to leading order in the wavenumber q.

In this limit of small wavenumbers, the grand canonical coefficient matrix, given in (51),
approaches diagonal form and the dynamics of density fluctuations δρ0

c and momentum current
density fluctuations δg0 practically decouple. Since ρs < 1 (cf figure 3), the first eigenvalue
s(GC)

1 = ρs − 1 +O(q2) is strictly negative and density fluctuations decay exponentially. The
second eigenvalue, s(GC)

2 = −ν1 +O(q2), is positive at small wavenumbers, leading to an
instability in the momentum current density against long-wavelength fluctuations.

In the case of the canonical model (50), the coefficient matrix approaches block diagonal
form in the limit of small wavenumbers. Again, the dynamics of momentum current density
fluctuations δg0 practically decouples from density fluctuations (δρ0 and δη0), with momentum
current density fluctuations being amplified by virtue of a positive eigenvalue s(C)3 = −ν1 +
O(q2) at small wavenumbers. In contrast to the grand canonical model, however, particle
conservation entails a marginally stable mode s(C)1 (q = 0)= 0, which turns positive for q & 0:
s(C)1 ∝ q2 (the remaining eigenvalue s(C)2 = −(1 + ρh)+O(q2) is strictly negative).

To sum up, the study of the linear stability of the homogeneous, isotropic state against
spatially inhomogeneous perturbations of arbitrary wave vectors strongly suggests that particle
conservation plays a vital role in the context of pattern formation. Both models exhibit
spontaneous symmetry breaking by establishing a state of macroscopic collective motion. In the
canonical model, in addition, conservation of total particle number entails a marginally stable
density mode at q = 0 which is absent in the grand canonical model. This mode, in turn, gives
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rise to a density instability at small, non-zero wavenumbers, accompanying the spontaneous
symmetry breaking event for ρ > ρ(c). We note, however, that, at this point of the discussions,
the existence of a narrow band of unstable modes at small wavenumbers does not allow for any
conclusions concerning the structure of the macroscopic density and momentum current density
for ρ > ρ(c). We will address this issue in greater detail in the following section.

5.3. Stability of the broken symmetry state g0 > 0

Both the canonical and grand canonical models exhibit spontaneous symmetry breaking for
overall densities ρ > ρ(c)(σ ). To shed light on the spatial structure of this broken symmetry
state, we start from the most simple case of a spatially homogeneous state of collective motion,
and examine its stability with respect to wave-like perturbations in the hydrodynamic particle
and momentum current densities. Without loss of generality, we assume that the direction
of the macroscopic momentum current density coincides with the x-direction and choose
gh = g0 êx . The wave vector q of the perturbation fields is assumed to make an angle ψ with the
macroscopic momentum current density gh, yielding ψ = 6 (q, ex) and q = q (cos(ψ), sin(ψ))
with q = |q|.

The linearized canonical model equations (45a)–(45c) then attain the following form:

s δρ0 = −iq cos(ψ)δgx,0 − iq sin(ψ)δgy,0, (52a)

s δη0 = (2ρh − η∗(ρh)− 1) δρ0 − (1 + ρ0) δη0 − iq cos(ψ)δgx,0 − iq sin(ψ)δgy,0, (52b)

s δgx,0 =

[
1

2
iq cos(ψ)

(
g2

0

µ

ν2
2

∂ρν2 −
1

2

)
− g0

(
∂ρν1 −

µκ

ν2
2

g2
0∂ρν2

)]
δρ0

+

[
1

2
iq cos(ψ)

(
g2

0

µ

ν2
2

∂ην2 −
1

2

)
− g0

(
∂ην1 −

µκ

ν2
2

g2
0∂ην2

)]
δη0

+

(
iq cos(ψ)

ζ+

ν2
g0 −

q2

4ν2
−

2µκ

ν2
g2

0

)
δgx,0 + iq

ζ−

ν2
sin(ψ)g0δgy,0, (52c)

s δgy,0 = −
1

2
iq sin(ψ)

(
g2

0

µ

ν2
2

∂ρν2 +
1

2

)
δρ0 −

1

2
iq sin(ψ)

(
g2

0

µ

ν2
2

∂ην2 +
1

2

)
δη0

−iq sin(ψ)
ζ−

ν2
g0 δgx,0 +

(
iq cos(ψ)

ζ+

ν2
g0 −

q2

4ν2

)
δgy,0. (52d)

The corresponding equations for the grand canonical model read

s δρ0
c = (ρs − 1) δρ0

c − iq cos(ψ)δgx,0 − iq sin(ψ)δgy,0, (53a)

s δgx,0 =

[
1

2
iq cos(ψ)

(
g2

0

µ

ν2
2

∂ρcν2 − 1

)
− g0

(
∂ρcν1 −

µκ

ν2
2

g2
0∂ρcν2

)]
δρ0

c

+

(
iq cos(ψ)

ζ+

ν2
g0 −

q2

4ν2
−

2µκ

ν2
g2

0

)
δgx,0 + iq

ζ−

ν2
sin(ψ)g0 δgy,0, (53b)
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Figure 6. Largest growth rate of <[s(q)] as a function of the wavenumber
q for σ = 0 and several values for the total particle density ρ. The marginal
ρ = ρ(c) is dashed. Further values are ρ = ρ(c) +1 with 1 indicated in the
figure. (a) Canonical model: for ρ > ρ(c), longitudinal perturbations (ψ = 0)
are unstable. (b) Grand canonical model: transversal (|ψ | = π/2) perturbations
are unstable closely above the critical density ρ(c) (refer to the green and
blue curve corresponding to 1 ∈ {0.05, 0.5}). For larger densities, i.e. 1>
0.7 for σ = 0, the transversal instability re-stabilizes again (dotted curves,
1 ∈ {0.8, 1}). However, the density regime hosting this transversal instability
vanishes completely for noise values larger than σr , as illustrated in figure 7.

s δgy,0 = −
1

2
iq sin(ψ)

(
g2

0

µ

ν2
2

∂ρcν2 + 1

)
δρ0

c − iq sin(ψ)
ζ−

ν2
g0 δgx,0

+

(
iq cos(ψ)

ζ+

ν2
g0 −

q2

4ν2

)
δgy,0. (53c)

In equations (52a)–(53c) we used −ν1 −
µκ

ν2
g2

0 = 0, which directly follows from the definition
of g0, given in equation (39). We numerically solved both eigenvalue problems in the immediate
vicinity of the ordering transition line ρ = ρ(c)(σ ).

In the case of the canonical model, we find that the most unstable mode occurs for
longitudinal perturbations, i.e. perturbations with wave vectors parallel to the direction of
macroscopic motion, q ‖ g0 (ψ = 0). Figure 6(a) shows the corresponding eigenvalues as
functions of the wavenumber q for a set of density values slightly beyond ρ = ρ(c). Further
inspection of the coupling coefficients in equations (52a)–(52d) reveals that this longitudinal
instability only affects the amplitude of g leaving the direction unchanged. For ψ = 0, the
dynamics of δgy,0 decouples and momentum current density fluctuations perpendicular to the
direction of macroscopic motion decay exponentially,

δgy,0 = s(C)4 δgy,0, (54)

with a rate

<

[
s(C)4

]
= −

q2

4ν2
< 0, (55)

which approaches zero for q → 0, as expected for a broken symmetry variable. To assess the
nature of the instability in greater detail, we calculated the eigenvector corresponding to the
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Figure 7. Phase diagram determined from the homogeneous equations of the
grand canonical model, as a function of noise level σ and single particle density
ρ0

s , now complemented by the results obtained from the stability analysis of the
linearized inhomogeneous equations: whereas longitudinal perturbations decay
within the homogeneous phase boundary, there is a zone (gray shaded) where
transversal modes become linearly unstable. The width of this zone gradually
decreases for increasing noise values σ , and vanishes completely above some
critical noise value σr (horizontally dotted line).

most unstable longitudinal mode (evaluated at the most unstable wavenumber). It turns out that
this eigenvector has approximately equally large components along the remaining fluctuation
amplitudes δgx,0, δρ0 and δη0. This is consistent with our previous findings, indicating that
the density mode, which was alluded to in section 5.2 and which turns unstable at ρ = ρc,
renders the state of homogeneous collective motion unstable to fluctuations of the magnitude of
the momentum current density. We further note that this picture is in agreement with previous
numerical [31] and analytical [22] results (cf figure 1).

The stability regions of the grand canonical model strongly deviate from the above picture.
Setting ψ = 0 (longitudinal perturbations), we calculated the largest eigenvalue s(GC)

max of the
linear system of equations (53a)–(53c):

<
[
s(GC)

max

]
= −

(1 − ρs) q2

4
[
(1 − ρs)2 + ρ2

s

(
14
15 + 2

3 e−2σ 2
)] , (56)

which is always negative since ρs < 1. In contrast to the canonical model, longitudinal
perturbations thus always decay exponentially fast in the grand canonical model. For
perturbations in transverse directions, in contrast, a positive eigenvalue can be found for
sufficiently low noise levels σ < σr , with the fastest growing modes possessing wave vectors
q ⊥ g0. Figure 6(b) shows the eigenvalue of the most unstable modes, which occur for σ = 0. To
assess the implications of this instability for the dynamics of the various fluctuation amplitudes,
we numerically examined the eigenvector corresponding to the positive eigenvalue, evaluated
at the most unstable wavenumber. For densities in the vicinity of the ordering transition, we
find that this eigenvector has approximately equal components in both momentum current
density fluctuation amplitudes, δgx,0 and δgy,0, but an essentially vanishing component along
the direction of density fluctuations δρ0

c . The corresponding instability can thus be classified as
a hybrid shear/splay instability, leaving the spatially homogeneously distributed particle density
virtually unaffected.
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Three remarks are in order. Firstly, for noise values σc(ρ → ∞) > σ > σr , the state of
homogeneous collective motion becomes linearly stable with respect to arbitrary perturbations,
including transverse perturbations. Secondly, even the most unstable eigenvalues ‘restabilize’
for densities that are in the vicinity of the ordering transition threshold, which is depicted in
figure 7. Finally, a restabilization can also be ‘observed’ for the longitudinal instability in the
canonical model. In this case, however, the restabilization occurs for relatively large densities
and thus lies outside the range of validity of the linearized equations (52a)–(52d).

6. Discussion and conclusion

To conclude, we discuss and summarize our main findings. To study the onset of collective
motion in active media, we started out with a simplified model for a system of self-propelled
rod-like particles of variable aspect ratio. Collective motion was assumed to be established
in a completely self-organized fashion solely by means of interactions among the constituent
particles and in the absence of any external alignment fields. These interactions were assumed
to occur via binary, inelastic particle collisions, during which the rods align their direction of
motion. Moreover, interactions were assumed to be subject to noise, which we controlled by
a single model parameter σ . To assess some of the structural properties of such systems, we
associated each of the particles with one of two classes: single particles and cluster particles,
each with the corresponding density fields denoted as ρs and ρc. The class of cluster particles
hosts all particles belonging to some coherently moving group of particles, which we referred
to as cluster. The rest of the particles can be imagined to make up an isotropic sea of particles
and are associated with the class of single particles. Using this classification scheme, we
implemented simple interaction rules, representing cluster nucleation, cluster growth and cluster
evaporation; the latter is assumed to occur at some fixed rate ε.

To illuminate the self-organization of collective motion, we set up an analytical, kinetic
description of such systems, focusing on two archetypical modeling frameworks. Firstly, we
considered isolated systems in which the total number of constituent particles is a conserved
quantity. This case was referred to as the canonical model. Secondly, we examined open
systems, which we referred to as the grand canonical model. Open systems are in contact with
a particle reservoir which keeps the density of single particles at a constant level.

Inspecting the corresponding hydrodynamic equations, we were able to establish the
following physical picture, portraying the formation of collective motion via dissipative
particle interactions. For both the canonical and the grand canonical model, we identified two
characteristic density scales ρ̄ and ρ(c)(σ ), with ρ(c)(σ ) > ρ̄, which allowed us to distinguish
three density regimes.

For low densities, ρ < ρ̄, the rate at which particles collide is much smaller than the rate
at which clusters disassemble. In terms of a particle-based picture, this regime corresponds to
a situation where particle clusters are unstable, evaporating shortly after their nucleation. In
the stationary state, the vast majority of particles populates the single particle phase, rendering
the system homogeneous and isotropic even on mesoscopic scales. This low-density regime
terminates at the characteristic density ρ̄, where both classes exchange particles at equal rates.

In the contiguous regime of intermediate densities, ρ̄ < ρ < ρ(c), the overall rate of cluster
formation and growth outstrips the rate at which clusters evaporate, and the majority of particles
becomes organized in clusters. Translated to a particle-based notion, clusters grow to finite
sizes and persist over macroscopic time scales. Clusters of coherently moving particles now
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dominate the physical picture on mesoscopic scales. Yet, interactions among clusters are too
rare to establish a macroscopic state of collective motion. On hydrodynamic length scales, the
system can be viewed as a homogeneous and isotropic sea of clusters.

For densities exceeding the critical density, ρ > ρ(c)(σ ), collisions within the cluster phase
occur at sufficiently high rates, and macroscopic collective motion emerges. The homogeneous
and isotropic state, which has been shown to be stable within the two preceding regimes, thus
gets unstable and rotational symmetry is spontaneously broken. Resorting to a particle-based
image, we can imagine the mean cluster size to reach a ‘percolation threshold’, leading to
coagulation and net alignment between clusters.

While the qualitative features of the canonical and the grand canonical model are the
same in the low and the intermediate density regimes, the establishment of collective motion
in the high-density regime differs in important respects in both models. We found that in the
grand canonical model, a broadly extended region in parameter space exists, where a spatially
homogeneous state of macroscopic collective motion exists and is actually stable. Except
density, the key parameter controlling the stability of a spatially homogeneous flowing state is
the noise amplitude σ . For low noise levels the homogeneous flowing state gets unstable toward
transverse perturbations (i.e. perturbations with wave vectors q perpendicular to the direction of
the macroscopic flow). We note, however, that these instabilities are remarkably weak, i.e. the
corresponding growth rates are smaller than those of the longitudinal instability in the canonical
model by a factor of ∼10 (cf figure 7), and ‘restabilization’ of the spatially homogeneous
flowing state occurs upon increasing the density only slightly beyond the threshold ρ(c)(σ ).
Interestingly, this transverse instability vanishes altogether, if angular diffusion is slightly en-
hanced upon increasing σ . Hence, for intermediate values of σ , the system directly establishes a
homogeneous state of collective motion, which is stable against arbitrary perturbations of small
magnitude. Finally, if the noise is too strong, order is destroyed and the system remains isotropic
even for arbitrarily large densities. This last statement is, of course, shared among all active
systems [29], particle conserving or not, and thus applies equally well to the canonical model.

In the case of the canonical model, a spatially homogeneous base state is unstable toward
longitudinal perturbations (i.e. perturbations with wave vectors q parallel to the direction of
the macroscopic flow) for all values of the noise parameter σ . Both the magnitude of the
macroscopic velocity field and the particle density are prone to this kind of instability. This is
in agreement with previous analytical [22] and numerical [31] results for particle conserving
systems, where the emergence of solitary wave structures has been reported in the vicinity
of the ordering transition ρ & ρ(c)(σ ). The longitudinal instability thus seems to be a quite
generic feature of particle conserving systems with hard core interactions. For an interesting
counter example we refer the reader to [26], where a particle conserving system with topological
interactions has been studied.

We can now combine our findings for both the canonical and the grand canonical model
to offer the following mechanistic explanation concerning the emergence of the longitudinal
instability. The prerequisite, underlying the establishment of coherent motion, is embodied
by two basic processes: cluster nucleation by collisions among single particles and cluster
growth by alignment of single particles to clusters. Only if, by virtue of these processes, the
concentration of cluster particles grows sufficiently large, clusters are able to synchronize their
movements by coagulation and macroscopic collective motion emerges.

Now consider the effect of a density fluctuation in an otherwise homogeneous state of
macroscopic collective motion. In the grand canonical model, where the density of single
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particles is kept fixed by virtue of a particle reservoir, this fluctuation occurs within the class of
cluster particles. We can use the right-hand side of equation (35a) to assess the implications of
such a fluctuation on the local composition of the system in terms of cluster particles and single
particles:

(ρ0
s + ρc)ρ

0
s = ρc. (57)

Note that this equation captures the balance of the two particle currents between the single
particle and the cluster particle phase in the stationary limit. As can be seen from this equation,
locally enhancing the density of cluster particles implies a net current from the cluster particle
phase into the single particle phase, thus counteracting the effect of the original density
fluctuation. Conversely, locally diminishing the density of cluster particles leads to the opposite
effect. Density fluctuations are thus damped in the grand canonical model and do not impact
the macroscopic velocity field, which is set up by the cluster particles.

Exactly the opposite happens in the particle conserving canonical model. Again, consider
a spatially homogeneous base state of macroscopic collective motion. Particles are then
distributed among the phases of cluster particles and single particles as determined by the
balance equation (cf (34b))

ρ(ρ− η)= ρ + η, (58)

where the left-hand side describes cluster nucleation and condensation, and the right-hand side
corresponds to cluster evaporation. This can be seen by using the definitions of the relative
density η = ρc − ρs and the total particle density ρ = ρs + ρc. Now, consider a fluctuation in the
total density ρ, where, for the sake of simplicity, we assume the relative density η to remain
constant. In regions where the fluctuation leads to an increase in the total density by a factor
k > 1, we have

kρ(kρ− η) > kρ + η. (59)

Hence, the particle current into the cluster particle phase grows. As a consequence, the local
value of the momentum current density increases, since the cluster particles are the ‘carriers’
of the macroscopic momentum. In contrast, in regions where the fluctuation decreases the total
density by a factor k ′ < 1, we have

k ′ρ(k ′ρ− η) < k ′ρ + η. (60)

There the cluster particle phase gets depleted and the local magnitude of the momentum
current density declines. As a result, high-density regions move at faster speeds than low-
density regions, gathering more and more particles on their way through the system. Conversely,
lower density regions continually lose particles to the faster high-density structures. In particle
conserving systems, every density fluctuation thus automatically triggers a corresponding
fluctuation in the momentum current density, which in turn amplifies the density fluctuation.
As a result of this process, high-density bands of collectively moving cluster particles might
emerge [31]. These bands are interspersed by regions where the particle density has fallen
below the critical density ρ(c) (and possibly below ρ̄), leading to local destruction of clusters
and collective motion.

We close by adding some remarks on the importance of the particles’ shape on the
establishment of collective motion on hydrodynamic scales. We found that the impact of particle
shape on the macroscopic properties of such systems is purely quantitative in the framework of
our present study: varying the particles’ aspect ratio results in a shift of the characteristic density
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scales ρ̄ and ρ(c)(σ ), which we quantified in equation (37). Qualitatively, our conclusions
concerning the macroscopic properties of these systems remain unaffected by a change in the
particles’ aspect ratio. Note that, in our approach, the aspect ratio basically determines the total
scattering cross section and thus ‘merely’ impacts the rate at which particles collide. We stress,
however, that in real systems particle shape is likely to have a profound impact on the entire
physical picture of particle interactions, and not just on their rate. The study of those effects lies
outside the scope of our present work and would be an interesting topic for future research.
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Appendix A. Derivation of the Boltzmann collision cylinder for driven rods

In the framework of our Boltzmann-like description, binary collisions, such as equations (3), (6)
and (7), occur with a certain rate 0 depending on particle shape (L and d), relative angle of
both collision partners θ12 = |θ1 − θ2| and the constant velocity v. The quantity 0(L , d, θ12)

characterizes the collision area per unit time—more commonly referred to as a Boltzmann
collision cylinder. On the scale of the Boltzmann equation, binary collisions occur locally, say
in an infinitesimal volume element centered at r. Assume that particle 1 has an orientation θ1.
Then, 0(L , d, θ12) dt gives the area around particle 1 in which every particle with orientation
θ2 will collide during a time interval [t, t + dt] with particle 1. As a consequence,
0(L , d, θ12) f (r, θ1, t) f (r, θ2, t)dθ1 dθ2 equals the number of collisions per unit time and unit
area at time t , with f (r, θ, t) denoting the one-particle distribution function.

To determine 0(L , d, θ12), we take a microscopic point of view. Since the model employed
in this work assigns to each particle a velocity vector pointing along its rod axis, we can
distinguish ‘head’ and ‘tail’. Referring to figure A.1, without loss of generality we assume
π − θ12 ≡ θ ∈ [0, π] (negative relative angles lead to the same result), and consider the blue
rod, with the position of its head indicated by the blue dot. All rods of relative orientation
θ12 = θ1 − θ2, and with their heads lying in the area S = A ∪ S1 ∪ S2 at time t , will collide with
the blue rod during the time interval [t, t + dt]. Since A, S1 and S2 are disjoint,

|S| = |B| + |S1| + |S2|, (A.1)

where |X | denotes the area of the region X . The respective areas are given by

|A| = dt vrel (L − d)| sin θ | = dt vrel (L − d)| sin θ12| (A.2)

and

|S2| + |S1| = dt vrel d
∫ π−θ

−θ

dφ sin(φ + θ)= 2 dt vrel d. (A.3)
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Figure A.1. Illustration of the collision cylinder in the rest frame of the blue rod.
The red lines indicate the excluded volume due to the finite expansion of the
rods. The quantity vrel denotes the magnitude of the relative velocity of those
rods making a relative angle θ12 = π − θ with the blue rod’s axis, and is given
by vrel = v|ê(θ)− ê(0)| = 2v| sin(θ12/2)|.

Figure A.2. 0(L , d, θ12) as a function of the relative angle θ12 for different
values of aspect ratio ξ . For the figure, we chose for particle width d = 1 and
for particle velocity v = 1. Increasing the aspect ratio L/d , the most probable
collision approaches θ12 = π/2, whereas for L/d = 1 the most probable collision
is the head–head collision with θ12 = π .
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Returning to the laboratory frame we have vrel = v|ê(θ1)− ê(θ2)| = 2 v| sin(θ12/2)|. Noting that
0 = |S|/dt (cf equation (A.1)), we find that

0(L , d, θ12)= 4v d

∣∣∣∣sin

(
θ12

2

)∣∣∣∣ (1 +
L/d − 1

2
|sin θ12|

)
. (A.4)

In figure A.2, 0(L , d, θ12) is shown as a function of relative angle θ12 for different particle
lengths, whereby the particle width d is kept fixed. Increasing L/d shifts the most probable
collision from θ12 = π for L/d = 1 (the case of a sphere; θ12 = π leads to the largest value of
the relative velocity) toward θ12 = π/2 for L/d → ∞ (limiting case of a needle; largest target
area for θ12 = π/2).

Appendix B. Derivation of the gradient terms in the hydrodynamic equations

To assist the reader in tracing back the emergence of the gradient terms in the hydrodynamic
equations (28a)–(28c) (and, likewise, in equations (32a)–(32c) and (33a)–(33c)), we briefly
summarize the main steps in the derivation of these equations. All gradient terms in the
hydrodynamic equations ultimately arise from the convection term in the first line of
equation (24c) and the closure relation obtained by quasi-statically approximating (24d). Here
we collect all such (complex) gradient terms and give a brief derivation of their vector-analytic
counterparts. As in the main text, we identify C and R2, i.e.

f = fx + i fy ∈ C↔ f =

(
fx

fy

)
∈ R2. (B.1)

To distinguish (genuinely) complex from purely real quantities, we assume f ∈ C and ρ ∈ R in
the following.

(∂x + i∂y)ρ:

Using (B.1) we immediately obtain

(∂x + i∂y)ρ ≡ ∇ρ. (B.2)

(∂x − i∂y)(∂x + i∂y) f :

By straightforward expansion we find

(∂x − i∂y)(∂x + i∂y) f = (∂2
x + ∂2

y ) f ≡ ∇
2f. (B.3)

(∂x − i∂y) f 2:

Decomposing f into real and imaginary parts and expanding, we find

(∂x − i∂y)( f 2
x − f 2

y + 2i fx fy)= ∂x f 2
x − ∂x f 2

y + 2∂y( fx fy)+ i
[
∂y f 2

y − ∂y f 2
x + 2∂x( fx fy)

]
≡ 2

[
∂i( fi f j)−

1

2
δi j∂i f2

]
e j (B.4)

= 2f(∇ · f)+ 2(f · ∇)f − ∇f2,

where e j denotes the j th Cartesian unit vector.

[(∂x + i∂y) f ][(∂x − i∂y)ρ]:
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Expanding and collecting real and imaginary parts, we find

[(∂x + i∂y) f ][(∂x − i∂y)ρ] = ∂x fx∂xρ− ∂y fy∂xρ + ∂x fy∂yρ + ∂y fx∂yρ

+i(−∂x fx∂yρ + ∂y fy∂yρ + ∂x fy∂xρ + ∂y fx∂xρ).

Thus,

[(∂x + i∂y) f ][(∂x − i∂y)ρ] ≡ ((∂i f j)∂iρ + (∂ j fi)∂iρ)e j − (∇ · f)∇ρ

= [(∇f)+ (∇f)t ]∇ρ− (∇ · f)∇ρ. (B.5)

f 2(∂x − i∂y)ρ:

We find

f 2(∂x − i∂y)ρ = f 2
x ∂xρ− f 2

y ∂xρ + 2 fx fy∂yρ + i(− f 2
x ∂yρ + f 2

y ∂yρ + 2 fx fy∂xρ).

Hence,

f 2(∂x − i∂y)ρ ≡ 2 fi f j∂ jρ ei − f2
∇ρ = 2 f(f · ∇ρ)− f2

∇ρ. (B.6)
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[27] Peshkov A, Aranson I S, Bertin E, Chaté H and Ginelli F 2012 Nonlinear field equations for aligning self-

propelled rods Phys. Rev. Lett. 109 268701
[28] Wensink H H, Dunkel J, Heidenreich S, Drescher K, Goldstein R E, Löwen H and Yeomans J M 2012 Meso-
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