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Abstract—The automated handling of workpieces is one of the
main enablers for automatic production systems and requires
a stable grasping point determination. To select suitable grasp
candidates for STL based models with a planar parallel jaw
gripper we propose a two stage algorithm. First, the STL file
is remeshed to create a boundary layer containing triangles
for every surface of the handling object through a shifting of
its edges. In the second step, antipodal grasping positions are
determined with the use of local convex hulls, which are generated
via a Delaunay3D triangulation, and through an orientation
examination to classify the area as convex or concave. Based on
this classification all convex points are cross checked to identify
pairs of antipodal Points and the associated grasping position. An
evaluation of our approach was performed on a test set containing
10 different industrial and everyday objects ranging from gears
and shafts to sockets and a freeform body. For all objects a
highly diverse solution set could be generated and through the
remeshing process the number of grasping positions could be
enlarged by at least 38 % for all objects.

Index Terms—robotic grasping, grasping point determination,
convex hull, boundary layer mesher

I. INTRODUCTION

In industrial applications planar parallel jaw grippers are
commonly used because they are suitable for different objects,
e.g., boxes, cylinders, spheres, resulting in a variety of contact
shapes, e.g., surface-, line- and point contact [8]. While the de-
termination of surface contacts can be determined via collision
detection, shape matching algorithms or Boolean operations
[9], a different procedure is necessary for line- and point con-
tacts because their position is preferred to be at a convex place,
otherwise a unplanned contact between the gripper and the
object is generated. To satisfy this requirement we developed
a system for the automatic grasping point determination based
on STL files for rigid planar parallel jaw grippers, where we
use local convex hulls created from the surface triangles of
the CAD model to identify convex grasping positions at the
object. In some cases, e.g., extrusions, indentations, holes and
notches (cf. Fig. 1) the positioning of the neighbor triangles
leads to false negatives and therefore to an incomplete solution
set. To identify all solutions, we developed a boundary layer
mesher (BLM) which creates a thin boundary layer containing
triangles at every surface of the input model and then saves the

remeshed model as a STL file again. With the use of the edited
STL model the construction of local convex hulls enables us
to identify permissible grasping positions on the object even
for small and irregular contact shapes.

For the underlying algorithm and especially for the handling
of STL files and its tessellated representation containing
triangles, a few explanations for the geometrical representation
and clustering are introduced [12].

Face: A face represents the most basic geometrical structure
in a mesh and is a closed subset of the domain with a
Lipschitz-continuous boundary where all nodes are connected
through edges – for STL models a face equals a single triangle.

Facet: Adjacent faces of the mesh which have a common
normal vector represent a facet.

Surface: Multiple adjacent facets which are clustered to-
gether through the angle between their normal vectors γ (cf.
Section III-A) are a surface in the mesh.

Mesh: The sum of all constructed surfaces results in a mesh
which equals the original STL model.

The paper is organized as follows. Section II covers the past
work in the fields of grasping point detection with respect
to our problem definition. Afterwards, the methodology and
mathematical foundation of our BLM and grasping point
determination is formulated. The validity and reliability of
our approach is shown in an evaluation setting (cf. Section
IV) where we also discuss our results. Lastly, a summary and
outlook of our work is given in Section V.

(a) (b)

Fig. 1. Comparison of a STL file before (a) and after (b) the remeshing with
the BLM.



II. RECENT WORKS

To identify suitable grasping positions two main Methods
exist: An analytical approach which calculates the grasping
positions via physical and mechanical models [5] and an
empirical approach, where historic data is used for machine
learning (ML) [3] [16]. In the field of analytical approaches
many researchers focus to find a suitable wrench space [14] for
human like grasps with robotic hands. The analytical methods
also contain camera-based systems, where the grasping of pre-
viously unknown objects is possible but because our Algorithm
uses CAD models these systems are not described any further.
A good summary of existing vison based approaches is given
in [6].

A common usage for grasp planning and evaluation are
specific physic based simulation environments, e.g., GraspIt!
[17] and OpenGRASP [13] where algorithms and grasp evalu-
ation strategies can be implemented. In the GraspIt! simulation
environment Miller et al. [18] use primitive shapes to calculate
grasping positions. They decompose and model a 3D object
with primitive shapes such as cylinders, boxes and spheres
with predefined grasping rules. In one of the earlies works
Smith et al. [21] used a slicing tool to generate 2D views of the
object and calculate grasps for a parallel jaw gripper. Because
of the slicing tool their approach depends on the slicing
direction and neglects the 3D surrounding of the contact point.
Vahrenkamp et al. [22] plan robust grasps by calculating the
mean curvature skeletons for 3D mesh objects and align the
gripper at suitable positions along the skeleton. Liu et al.
[15] propose an algorithm which calculates suitable grasping
positions at 3D objects, represented by discrete points, through
combining a local heuristic search and a recursive problem
decomposition. While their approach is able to generate an-
tipodal contact points for parallel jaw grippers, they disre-
gard the surroundings of the contact point, so their solutions
could also be concave areas where a placement of a rigid
gripper would be difficult. Honarpardaz and Haschke [9] use
tessellated CAD models to build a 3D-kd-tree of face center
positions and their associated normal directions. From the kd-
tree suitable grasping positions are calculated and ranked. For
a selected location the gripping surface is automatically built
via a Boolean operation and therefore no knowledge about
the geometrical surrounding is needed. A first step towards
an automatic unloading process of a 3D printing process is
demonstrated in [1]. In their approach, Becker et al. derive
the GCode to calculate the position of the object on the build
plate and the grasping position. The grippers in their approach
are designed for a wide range of product geometries through
flexible end pieces at the gripper and therefore a detailed
grasping point determination is dismissed.

Harada et al. [7] use a clustering of the faces to identify
grasping positions. Their approach was designed for a flexi-
ble grasping surfaces which neglects the distinction between
concave and convex points at the identified clusters. Recently,
Kleeberger et al. [11] used a similar approach but instead of
clustering the triangles, their approach is based on a point

cloud representation derived from the CAD model. Every
datapoint in the point cloud is cross checked with all data
points to compute antipodal grips for a parallel jaw gripper.
Their strategy results in an extensive solution set but needs
N = 1

2 · (p
2− p) number of point combinations for p number

of points to determine antipodal positions.

III. METHODOLOGY

As described previously, the algorithm consists of two main
steps, which are a preprocessing step (BLM) and the actual
grasping point determination. The BLM (cf. Section III-A)
takes the STL file as an input and builds a thin boundary
layer into every surface on the handling object. Boundary
layer creation tools from available mesh generators which are
used in CFD-Simulations were not suitable for our application
because these types of boundary layers are created around
the selected mesh or surface and are inflating the surface
of the object [19]. Whereas in our application the geometry,
after remeshing the object, must be identical to the input
geometry and therefore a BLM was developed (cf. Fig. 2).
Another strategy would be a general smaller tessellation of
the STL file similar to a point cloud representation as in
[11], but this procedure would enlarge the number of faces
significantly and therefore the runtime of the algorithm. After
remeshing the handling object, the model is saved as an STL
file again and the grasping point determination is performed
(cf. Section III-B). The whole algorithm was built in a Python
3.8 environment and besides the vtk library we mainly used
Version 3.9.10 of Trimesh [4] to execute mesh operations
and manipulations. A model of the used gripper (Schunk
Co-act EGP-C 40) is deposited in the algorithm. For sake
of representation basic geometries are used in this section,
whereas in the evaluation setting more complex geometries
are used.

A. Boundary Layer Mesher

The developed BLM consists of 4 main steps: surface sub-
division, edge shifting, boundary layer insertion and surface
remeshing. Besides not changing the geometry of the object,
another criterion is to insert a minimal number of triangles to
keep the necessary computational effort as low as possible. For
a surface subdivision the triangles Tk(k = 1, 2, . . . , z), where
z denotes the number of triangles in the mesh, are clustered
in facets and then in surfaces through the angle γi,j between
their normal vectors:

γi,j = arccos
ni · nj
|ni| · |nj |

, (1)

where ni denotes the normal vector of a facet from
Fi(i = 1, . . . , n), nj the normal vector of the clustered
surfaces Sj(j = 1, 2, . . . ,m) and n,m denoting the number
of facets and surfaces in the mesh. If the angle γi,j is below
a set threshold γmax, Fi is added to the surface Sj . After
clustering the triangles in surfaces, the enclosing set of edge
Ej(j = 1, 2, . . . ,m) of every surface is determined (cf. Fig.
2 a). An edge is defined as the connection of all vertices which
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Fig. 2. Workflow of the boundary layer remesher for a hexahedron: (a)
clustering of the faces and extracting the surface edge (b) determining edge
vertices and center points (c) calculating optimized points and shift edge
vertices (d) create a reference point and choose correct optimized point (e)
insert triangle (f) loop over all surfaces to create a remeshed STL model.

belong to a minimum of two surfaces and is calculated through
the intersection of all facets from the selected surface with all
other facets.

Ej = {Tn|(Tn ∈ Fi(Sj) ∩ (Tn ∈ Fi(/∈ Sj))}. (2)

Based on a shallow copy of Ej the edge is modified
and shifted inwards. For the insertion of a new boundary,
the intersecting vertices Vj,l(l = 1, 2, . . . , x) where x is the
number of edge vertices for surface Sj are shifted with two
constraints (cf. Fig. 2 c):

Constraint 1: The distance d from the vertex Vj,l to
the plane Pj,l,cmp of the compared facet is defined by the
hyperparameter α which must be set by the operator. The
distance from a point to a plane is defined as follows:

Pj,l,cmp : aj,l,cmp · xj,l + bj,l,cmp · yj,l
+ cj,l,cmp · zj,l = d, (3)

where aj,l,cmp,bj,l,cmp and cj,l,cmp represent the hyperparam-
eters of the plane Pj,l,cmp. With this equation the distance d
results in:

d(Vj,l, Pj,l,cmp) = α =
|aj,l,cmp · xj,l + bj,l,cmp · yj,l

(a2j,l,cmp + b2j,l,cmp

+ cj,l,cmp · zj,l − d|
+ c2j,l,cmp)

1
2

. (4)

Constraint 2: The distance from the vertex Vj,l to the plane
Pj,l of its own facet must be zero d(Vj,l, Pj,l) = 0. This
equation guarantees that the shifted vertex is in the same facet
as before and the geometry of the object is not changing.

To determine the positions of the shifted vertices with a
minimum distance to the original vertex an optimization is
performed which satisfies the two mentioned constraints. For
the optimization a Sequential Least Squares Programming
(SLSQP) optimization [20] was used. The optimization results

in two points OPj,l,1 and OPj,l,2 (cf. Fig. 2 c), where one
point is located inside the surface and the other outside the
mesh. In addition, a created center point CP is used to classify
the edge as an outside edge or an inside edge. Depending on
the classification, a new reference point RPj,l is inserted with
the distance 2α from Vj,l in the direction of the inside edge or
contrary to the outside edge (cf. Fig. 2 d). The correct vertex of
the two optimized points is the point with the shorter distance
to the reference point RPj,l. After this selection, the calculated
vertex is saved as a new node in the STL model and must be
provided with a new node id. The allocation occurs in order
of the vertices along the edge of the surface (cf. Fig. 2 e). This
process is performed for all intersecting vertices resulting in a
boundary layer (cf. Fig. 2 f). To ensure a consistent thickness
of the boundary layer multiple shifted intersecting vertices are
moved equally in all directions through a consideration of their
individual unit vectors.

B. Grasping Point Determination

With the updated STL model from the BLM, the subsequent
grasping point determination is performed to calculate antipo-
dal convex grasping positions. For a selected triangle Tk in the
mesh, the center of gravity is calculated as an auxiliary point
APk and all adjacent triangles are clustered to span a new
surface (cf. Fig. 3 a). For the clustered triangles a convex hull
is created with the Delaunay3D triangulation (cf. Fig. 3 c).
The next steps of the algorithm aim to classify the clusters
as convex or concave. For this purpose, the auxiliary point is
shifted along the normal vector nk of the selected triangle.
Through the displacement in this direction with a small value
dshift (cf. Fig. 3 d), the auxiliary point is positioned outside
the mesh but not necessary outside the convex hull. After
displacing the auxiliary point, the triangle is classified as a
convex or concave point via two rules:
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Fig. 3. : Individual steps of the grasping point determination: a) determing the
auxiliary point for the selected triangle b) clustering all neighbor triangles c)
construct a convex hull via a Delaunay3D triangulation d) shift the auxiliary
point and classifiy triangle as convex or concave e) Find antipodal convex
triangles f) verify overlapping.



Convex classification: The auxiliary point is positioned
outside the convex hull or on its boundary.

Concave classification The auxiliary point is positioned
inside the convex hull.

If Tk is classified as convex, the face and its center of
gravity are saved as a potential convex grasping position. This
procedure is done for all triangles in the mesh resulting in a
set PCGPv(v = 1, 2, . . . , s) containing all possible solutions
s. For the determination of valid grasping positions antipodal
combinations from the PCGP set are computed. To represent
a grasp, the distance between two points must be smaller than
the maximum opening of the gripper d(PCGPv,1, PCGPv,2)
and the angle between their normal vectors nk(v,1) and nk(v,2)
must be below a set threshold β = 180± 2◦ (cf. Fig. 3 e). In
addition, both faces are checked for an overlapping to ensure a
fit to the parallel kinematics and the geometry of the gripper.
For this verification, the auxiliary point APv,1 is moved in
negative direction of its normal vector −nk(v,1) with the length
|d(APv,1, APv,2)|. After displacing the auxiliary point to the
new point APv,1,shifted the distance |d(APv,1,shifted, APv,2)| is
computed. If the calculated value is below a set threshold ε, an
overlapping is confirmed, otherwise the pairing is dismissed.

IV. EVALUATION

In the following, we present the results of our developed
BLM and the grasping point determination for a test case. We
used 10 different objects from the Fraunhofer IPA Bin-Picking
database [10] which is an extension of the Siléane dataset [2]
(cf. Fig. 4). The resulting database displays a wide spectrum
of different shaped objects. As the gripper parameters we used
the specifications of a Schunk Co-act EGP-C 40 which has a
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Fig. 4. : CAD models of the 10 test objects: a) SileaneBrick b) IPAGearShaft
c) SileaneCandleStick d) SileanePepper e) SileaneTLess22 f) SileaneTLess20
g) SileaneTLess29 h) IPARingScrew i) SileaneGear j) SileaneBunny.

max opening of 50 mm in our configuration. Additional default
values are dshift = 0.01 mm and ε = 5.0 mm which proved
to be appropriate values for our test objects. Some of the test
objects where scaled to fit into the wrench space of the gripper.

A. Results

For all objects except the SileaneBunny (cf. Section IV-B)
we performed the BLM with suitable parameters for α and
ε and calculated the number of grasping positions for the
original STL file and then for the remeshed STL file. The
results for all objects are shown in Table I.

A sizeable number of convex grasps, often more than a few
hundred, could be determined for nearly all objects only using
our grasping point determination algorithm. For all objects
the number of grasping positions was significantly enlarged
after using the BLM. The number of grasps in all cases
increased by at least 38 % and in most cases many times more.
Not only was the solution size significantly enlarged but also
the distribution (cf. Fig. 5).In two cases (SileaneCandleStick
and SileaneTLess29), no feasible grasping positions could be
computed with the original STL file and through the BLM a
number of positions could be computed resulting in a sizeable
solution set. The low number of positions for the SileaneBunny
results from its overall large dimensions compared to the
Schunk gripper.

B. Discussion

For all test objects our algorithm was successful in finding
grasping positions, however a few results need a more de-
tailed discussion. Up until now, the parameters and are set
manually for the BLM and identifying their optimal values
can sometimes be time consuming (cf. Table I). The best
practice right now is to start at values for a coarse mesh
(α = 2 mm and γ = 95◦) which results in a relatively thick
boundary layer and few surfaces and then gradually change
the values until a suitable combination is found. The BLM
performs good for basic objects and generally for meshes
with sharp edges because the surfaces can be identified well.
Objects with smooth edge transitions and in general complex
curved freeform surfaces are more difficult or in some cases,
e.g., SileaneBunny not possible to remesh because the edge
detection is much more challenging. Depending on the number
of faces in the mesh and calculated convex points, the runtime

(a)

Gripper Contact Points

(b)

Fig. 5. Contact points (red) for the grasping point determination before (a)
and after (b) using the BLM on the SileaneBrick.



TABLE I
PARAMETERS AND RESULTS FOR THE GRASPING POINT DETERMINATION WITH AND WITHOUT THE BLM.

Object Name BLM α [mm] γi,j [◦] Triangles pre-BLM Triangles post-BLM # Positions pre-BLM # Positions post-BLM
SileaneBrick Yes 0.1 130 532 1636 709 984
IPAGearShaft Yes 0.5 95 4260 9468 145 16543

SileaneCandleStick Yes 0.01 1206 2686 120 0 2116
SileanePepper Yes 0.001 135 3738 4878 57 4488

SileaneTLess22 Yes 0.1 135 4692 9244 3260 5096
SileaneTLess20 Yes 0.01 95 21124 24348 4787 20031
SileaneTLess29 Yes 0.01 100 1152 2608 0 1876
IPARingScrew Yes 0.001 135 4984 5752 1776 8932

SileaneGear Yes 0.1 100 4404 5380 25057 46596
SileaneBunny No - - 7000 - 3 -

of the algorithm ranged from a few seconds up to some hours.
The most time-consuming part was the search for antipodal
points from the set of concave points because every point in
the solution set is cross checked for a potential fit. For our test
objects this step required at least 50 % of the total time and
offers the most potential for optimization. Resulting from the
BLM, the size of the CAD files was enlarged between 1.5×
and 10× the original size. The biggest file from our test set
was the SileaneTLess20 object which had a size of 4.8 Mb.

V. CONCLUSION AND FUTURE WORK

In this work, we presented an approach to determine an-
tipodal and convex grasping positions for parallel jaw grippers
with the use of convex hulls and the developed BLM. Based on
tessellated CAD models, a triangle boundary layer is inserted
into every surface in the mesh and afterwards convex grasping
points are calculated. Evidently from Fig.5, not every resulting
grasping position is suitable for a gripper because at this point
no global collision detection is performed which is planned for
the next development stage. While we showed the validity of
our proposed grasping point determination algorithm and the
benefits of the BLM through our evaluation a friction analysis
and component stress calculation will be implemented to allow
a detailed classification of the calculated grips and ensure a
successful grasp. To reduce the number of grasps, a clustering
algorithm will be tested and process parallelization will be
implemented to reduce the runtime of the algorithm.
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