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Abstract. A mixture of two types of atoms in an optical lattice is studied. Assuming that
one type of atoms is much heavier than the other, the complex interplay of the two species leads
to a correlated distribution of heavy atoms and to diffusion or Anderson localization of the light
atoms. The latter depends on the distribution of the heavy atoms, where diffusion appears only
at low temperatures.

1. Introduction

In search for a physical system where we can manipulate disorder systematically, a gas of
ultracold atoms turns out to be a good candidate. Ultracold atoms in an optical or magnetic
trap have been used to simulate various many-body systems. The main advantage of the trapped
ultracold gas is that most of the physical parameters can be tuned easily during the experiment.
First of all, the quantum statistics, i.e. bosons or fermions, can be chosen by using the proper
atomic species. For instance, 87Rb atoms are bosons and 6Li, 40K atoms are fermions. The
interaction between the atoms can be changed from attraction to repulsion by an external
magnetic field due to a Feshbach resonance [1, 2]. The underlying lattice structure of a solid-
state system can be provided in the atomic system by an optical lattice [4]. In such a structure
the atoms tunnel from one potential well to a neighboring one just like the electrons in a metal.
On the other hand, the optical potential, which is created by counter-propagating laser fields,
can easily be modified in strength by changing the laser intensity. Consequently, the tunneling
rate of the atoms can be tuned by the latter. This has been used to study the Bose-Einstein
condensate to Mott state transition in a Bose gas, where a Bose-Einstein condensate appears at
large tunneling rates and a Mott phase with commensurate filling of the optical lattice at small
tunneling rates [4].

Disorder in statistical or solid-state physics usually means that particles are scattered by a
disordered (i.e. a randomly produced) array of other particles. This disordered array is static and
does not change during the course of an experiment. For instance, the scattering of electrons in
a crystal with randomly distributed impurity atoms is a typical realization of disordered physics.
A comparable situation can be constructed in atomic systems subject to an optical lattice. The
periodic structure of the optical lattice is normally quite robust such that disorder in the sense
of impurities cannot easily be produced. However, in contrast to a crystal in solid-state physics,
two or more different types of atoms can be mixed and brought in an optical lattice, where one
type of the atoms is relatively light (e.g. 6Li) and the other type(s) is (are) heavy (e.g. 40K,
23Na [5], 87Rb). The different masses lead to different dynamical properties. In particular, the
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heavy atoms behave almost like static particles, whereas the light atoms tunnel freely in the
optical lattice. Consequently, the heavy atoms play the role of the impurity atoms in the crystal
and the light atoms the role of the electrons. Thus disorder physics can be studied in mixtures
of atoms which are available in experiments [6].

Disordered systems have attracted a lot of attention because they provide a new class of
physics, including new phases and new types of phase transitions. The main reason is that
scattering of quantum particles by a periodic structure is qualitatively different from scattering
by a disordered structure: while the former is governed by the Bloch theorem, the latter
experiences diffusion (for weak disorder) or even Anderson localization for strong disorder [7].
There is a phase transition between the diffusion-controlled regime and the localized regime
[8, 9].

A fundamental concept for a theoretical description of disordered system is that physical
quantities are averaged with respect to a statistical distribution of the random structures. It
will be discussed in this article that averaging over thermal fluctuations of heavy atoms provides
such a disorder (or quenched) average of physical quantities, like the density or the mean-square
displacement of light atoms.

2. Model

The prototype of fermionic many-body lattice systems is the Hubbard model which describes
tunneling of spin-1/2 fermions (e.g. electrons) between nearest-neighbor lattice sites and a local
interaction. This model can be generalized to describe the interaction of spinless fermion atoms
with localized atoms as

H = −tf
∑

〈r,r′〉

f †
r fr′ +

∑

r

[−µbb
†
rbr − µff †

r fr + Ubfb†rbrf
†
r fr + Ubbb

†
rb

†
rbrbr] . (1)

Here f †(f) are creation (annihilation) operators of the light fermionic atoms, b†(b) are the
corresponding operators of the heavy atoms (fermions or bosons). The interaction between the
light fermions at low temperatures is controlled by the Pauli principle, whereas the interaction
between light fermions and the heavy atoms is controlled by Ubf and the interaction between
the heavy atoms by Ubb. The chemical potentials µb and µf controls the number of heavy and
light atoms, respectively.

A grand-canonical ensemble is defined by the partition function, which is the trace of
Boltzmann weights over all realizations of heavy and light atoms in the system:

Z = TrbTrfe−βH . (2)

Since there is no tunneling for the heavy atoms, they are characterized only by integer occupation
numbers: for bosons nr = 0, 1, 2, 3, ... and for fermions due to the Pauli principle nr = 0, 1. After
performing the trace over the light fermions we arrive at the partition function

Z =
∑

{nr}

eβ
∑

r
[µbnr−Ubbnr(nr−1)] det

[

1 + e−βhf

]

, (3)

where hf is a matrix with respect to the lattice sites that describes tunneling of light atoms and
includes a one-particle potential. The matrix elements are (hf )r,r′ = −t̂r,r′ + (Ubfnr − µf )δr,r′ .

2.1. Characterization of heavy atoms

According to Eq. (3) the heavy particles are distributed according to the probability distribution

P ({nr}) =
1

Z
eβ

∑

r
[µbnr−Ubbnr(nr−1)] det

[

1 + e−βhf

]

, (4)

with
∑

{nr} P ({nr}) = 1. Thus the density of heavy atoms at lattice site r is given by
〈nr〉b =

∑

{nr} nrP ({nr}).
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2.2. Characterization of light atoms

The characterization of the light atoms is controlled by quantum effects (i.e. tunneling between
the potential wells of the optical lattice) and the interaction with the classical heavy atoms.
Thus we need to describe the dynamics of the light atoms by the evolution of their quantum
state.

In general terms, we consider a quantum gas in the initial equilibrium state |Ψ0〉 and create

a new state by adding a light atom at site 0: c†0|Ψ0〉. Then we follow the evolution of the
state with the additional particle, controlled by the Hamiltonian H, until the time t, where we

get the (non-equilibrium) state |Φt〉 = e−iHtc†0|Ψ0〉. From this we obtain for the mean-square
displacement

∑

r

r2〈Φt|c
†
rcr|Φt〉 =

∑

r

r2〈Ψ0|c0e
iHtc†rcre

−iHtc†0|Ψ0〉 . (5)

Instead of using a fixed state |Ψ0〉 we average with respect to a Boltzmann ensemble at inverse
temperature β of energy eigenstates:

〈r2〉 =
∑

r

r2

∑

k e−βEk〈Ek|c0e
iHtc†rcre

−iHtc†0|Ek〉
∑

k e−βEk
=

1

Z

∑

r

r2Tr
[

e−βHc0e
iHtc†rcre

−iHtc†0

]

. (6)

where the right-hand side can also be expressed by the density of light atoms Nr as
∑

r r2Nr. For
long times and weak coupling Ubf (or low temperatures) diffusion is expected with 〈r2〉 ∼ Dt and
the diffusion coefficient D. On the other hand, for stronger coupling (or higher temperatures)
Anderson localization is expected. Thus there is no expansion at all, and the mean-square
displacement is finite for t ∼ ∞. Intermediate regimes with sub-diffusive behavior are also
possible, where 〈r2〉 ∼ Dtα with 0 < α < 1.

Returning to our specific case of the atomic mixture, we can separate the heavy atoms and
the light atoms as in the partition function (3). This allows us to write for the mean-square
displacement [10]

〈r2〉 =
1

Z

∑

{nr}

eβ
∑

r
[µbnr−Ubbnr(nr−1)] det

[

1 + e−βhf

]

×
∑

r

r2[eithf (1 + e−βhf )−1]0r[e
−ithf (1 + e−βhf )−1]r0. (7)

In the density 〈nr〉b and in the mean-square displacement there is the distribution density of
Eq. (4) as a common non-negative factor. This implies that density of light atoms Nr and
their mean-square displacement 〈r2〉 =

∑

r r2Nr appear as expectation values with respect to
the distribution density of Eq. (4) as

Nr = 〈[eithf (1 + e−βhf )−1]0r[e
−ithf (1 + e−βhf )−1]r0〉b . (8)

Thus the distribution of heavy atoms is a realization of quenched correlated disorder.
Using the single-particle Green’s function

Grr′(t) = [e−ithf (1 + e−βhf )−1]rr′ , (9)

we obtain Nr = 〈G†
0r(t)Gr0(t)〉b. For a given configuration {nr} of heavy atoms the Green’s

function can also be expressed by eigenfunctions of the single-particle Hamiltonian hf (hfφk =
ekφk). The spatial properties of these eigenfunctions determine the spreading of the average
particle density Nr through the Green’s function:

Gr0(t) =
∑

k

e−iekt
φ∗

k,rφk,0

1 + e−βek
. (10)
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The denominator represents the Fermi-Dirac function, reflecting the fact that our atoms are
fermions. At low temperatures all states with ek > 0 (i.e. states with energy below the chemical
potential according to the definition of hf ) contribute equally to the Green’s function. According

to the theory of Anderson localization, it can be assumed that |φk,r| ∼ e−|r|/ξk , where ξk is the
localization length. After a Fourier transformation of the time-dependent density in Eq. (8),
the ω = 0 Fourier component of Nr reads

∫ ∞

0
Nrdt =

∑

k

|φ∗
k,rφk,0|

2

(1 + e−βek)2
∼

e−2|r|/ξ

(1 + e−βek0 )2
(r ∼ ∞) , (11)

where ξ is the largest localization length and ek0
the corresponding energy level. Thus the

expansion of the wave packet on large scales is controlled by ξ. This result suggests that the
spatial expansion of an atomic cloud is governed by the largest length scale of the system.

3. Strong-coupling expansion: classical Ising model

In order to evaluate the distribution of heavy atoms and the localization length of the light
atoms, we employ an approximation to the distribution function. The simplest case is a weak-
coupling expansion for Ubf/tf ≪ 1. However, this leads only to a renormalized chemical potential
[11] and is not very useful here. A strong-coupling expansion with tf/Ubf ≪ 1, on the other
hand, provides an effective coupling of heavy atoms between nearest-neighbor potential wells
[11, 12, 13, 14]. In leading order of this expansion the determinant in Eq. (3) reduces to (cf.
[15])

det
[

1 + e−βhf

]

≈ e
β

2

∑

〈r,r′〉
E(nr ,nr′)

∏

r

[

1 + eβAr

]

(12)

with Ar = µf − Ubfnr and

E(nr, nr′) =
eβAr − eβAr′

Ar − Ar′

t2f
(1 + eβAr)(1 + eβAr′ )

. (13)

Then the partition function in Eq. (3) reads

Z ≈
∑

{nr}

e−β
∑

r
F (nr)e

β

2

∑

〈r,r′〉
E(nr ,nr′) , (14)

where

F (n) = −
1

β
log

[

1 + eβ(µf−Ubf n)
]

− (µb + Ubb)n + Ubbn
2 . (15)

As the temperature is reduced, the bosons organize themselves in a low-energy state. Beginning
with a small tunneling rate tf we can neglect the second factor in the Boltzmann weights of Eq.
(14) and determine the number n̄ which minimizes F (n). At least one minimum exists because
F (n) increases monotonously for large values of n. Assuming that the value for the minimum of
F (n) is a number between the two integers [n̄] and [n̄] + 1, we study small fluctuations around
n̄ with nr = [n̄] and nr = [n̄] + 1. This enables us to rewrite the function E(nr, nr′), since only
four different values are possible for Sr = 2(nr − [n̄]) − 1 with Sr = ±1:

E(nr, nr′) = E0 + E1(Sr + Sr′) + E2SrSr′ , (16)

where the coefficients, using the short-hand notation ǫ(S, S′) = E([n̄] + (S + 1)/2, [n̄] + (S′ +
1)/2)/4, are

E0 = ǫ(1, 1)+ǫ(−1,−1)+2ǫ(1,−1), E1 = ǫ(1, 1)−ǫ(−1,−1), E2 = ǫ(1, 1)+ǫ(−1,−1)−2ǫ(1,−1) .
(17)
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Figure 1. The distribution of heavy bosons at half-filling for Ubb = Ubf = 10tf . The left
plot is for kBT = 0, where bosons form perfect chess-board-like pattern. The middle plot is
for kBT = 2tf , where the heavy bosons form chess-board-like clusters and clusters with more
homogeneous patterns. The right plot is for kBT = 8tf : at some lattice sites there are more
than one boson as compared to the previous cases.

Eq. (16) provides an interpretation in terms of a classical Ising model for the spin Sr =
±1: E1 is proportional to an external magnetic field and E2 is the nearest-neighbor spin-
spin coupling. Closer inspection reveals that the latter is negative, which indicates an
antiferromagnetic coupling. This produces a staggered configuration with alternating nr =
[n̄], [n̄]+1 occupation for small E1. Then there is also competition between the antiferromagnetic
spin-spin coupling and the magnetic field term E1Sr, where the latter favors ferromagnetic order
with homogeneous occupation. This implies a first-order transition between homogeneous and
staggered (checkerboard in d = 2) order of the heavy atoms. In the proximity of this first-order
transitions there is phase separation, leading to the coexistence of homogeneous and staggered
clusters. This is shown in the second plot of Fig. 1.

4. Results and conclusions

distribution of heavy atoms: The strong-coupling expansion, leading to an Ising model
with antiferromagnetic coupling and an effective magnetic field, indicates already a complex
distribution of heavy atoms. Now we employ a numerical approach to study the distribution in
more detail and to evaluate the finite-size properties of localization length ξ of the light fermions
in Eq. (11). For this purpose we consider a two-dimensional lattice with N = N ×N (N = 20)
lattice sites and derive the statistically relevant realizations by Monte-Carlo sampling of the
distribution of {nr}. Examples at different temperatures are presented in Fig. 1.
expanding cloud of light atoms: An initial state of light atoms with high density at the center is
prepared. Evolution under the effect of e−iHt, as described in Sect. 2.2, leads either to diffusive-
like expansion (cf. left panel in Fig. 2) or stays approximately in the initial state (cf. right
panel in Fig. 2), depending on the strength of disorder created by the heavy atoms.
Localization transition of light atoms: The localization length ξ is studied under the change
of length scales of a finite lattice of length L and width M [9], representing an adiabatically
expanding atomic cloud. In particular, we analyze the change of the localization length with
respect to the width M . For this purpose, we define a reduced localization length of light atoms
as ΛM = ξ/M and calculate this quantity by means of a numerical transfer-matrix approach for
a given realization {nr} of heavy atoms [16]. For the latter statistically relevant realizations are
chosen by Monte-Carlo sampling of the distribution of heavy atoms. Since for sufficiently large
values of L (we use typically L ∼ 108) the localization length is presumably self-averaging, there
is no need for additional averaging over different realizations. We use open boundaries along the
action of the transfer matrix and periodic boundary conditions in the perpendicular direction.
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Figure 2. Evolution of a cloud of light atoms after t = 10h̄/tf . Left panel: expansion of the
wave packet for weak disorder at kBT = 0.05tf . Middle panel: localization of the wave packet
for strong disorder at kBT = 0.2tf . Right panel: Scaling of the localization length near the
Anderson transition (from Ref. [18]).

ΛM either increases (delocalized states) or decreases (localized states) with the width M ,
depending on the system parameters (e.g. the inverse temperature β). There can also be a
marginal behavior (e.g. for a special value β′

c), where ΛM does not change with M . The latter
indicates the existence of a phase transition from localized to delocalized states. A quantitative
description of the behavior near β′

c can be based on the one parameter scaling hypothesis [9, 17]:
Using the parameter ζ = |β − β′

c|
−ν , we can fit our numerical data for ΛM quite well with

ΛM = Λc exp

[

±A

(

ζ

M

)−1/ν
]

, (18)

with Λc ≈ 10.9, A ≈ 0.09, and ν ≈ 0.88, as shown in the right panel of Fig. 2 [18].
From these results we can conclude that (i) a mixture of two atomic species creates a

correlated distribution of heavy atoms and (ii) the light atoms undergo an Anderson transition,
where localized (delocalized) states appear at high (low) temperatures.
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