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Abstract. The Mott insulator is found in the two-channel Kondo lattice by using the
dynamical mean-field theory combined with continuous-time quantum Monte Carlo method. At
quarter filling of two conduction bands, the paramagnetic state shows metal-insulator crossover
with increasing the coupling constant at low temperatures. The insulating state is explained by
the strong coupling limit, where the system is effectively interpreted as the half-filled Hubbard
model. It is shown that the present Mott insulating state is well described by the Hubbard I
approximation.

1. Introduction
In Pr- and U-based systems with even number of f electrons per site, the ground state can
be a non-Kramers doublet [1]. When this doublet strongly couples with conduction electrons,
exotic behaviors are expected as in URu2Si2 [2, 3] and PrAg2In [4, 5]. Recently non-Kramers
doublet systems attract renewed attention due to the discovery of Γ3 doublet compounds such
as PrIr2Zn20 [6, 7] and PrV2Al20 [8]. Theoretically, the simplest description of the non-Kramers
doublets coupled with conduction electrons is given by the two-channel Kondo lattice (2ch KL)
[9]. It is desirable to reveal basic properties of this fundamental model, since it is not restricted
to a particular compound.

The 2ch KL is described by the following Hamiltonian:

H =
∑
kασ

(εk − µ)c†kασckασ + J
∑
iα

Si · sciα, (1)

where ckασ is the annihilation operator of conduction electrons with channel α and spin σ.
The operators Si and sciα = 1

2

∑
σσ′ c

†
iασσσσ′ciασ′ are the localized and conduction spins at

site i, where σ is a spin-1/2 Pauli matrix. The 2ch KL forms ordered states in the wide
parameter region. At half filling, which corresponds to the case with two conduction electrons
per site, antiferromagnetic order is found [10]. The channel symmetry breaking is also reported
if suppression of staggered ordering is assumed [11]. At quarter filling, an instability toward
the antiferro-channel order is pointed out [1, 12]. The antiferro-channel order actually realizes
in infinite dimensions [13]. On the other hand, the paramagnetic state of the 2ch KL has been
identified as an incoherent metal [9]. In this paper, we show that the paramagnetic state at
quarter filling becomes the Mott insulator [14] in strong coupling region. The Mott insulating
state is well described by the Hubbard I approximation [15] as will be demonstrated in the
following.
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Figure 1. J dependence of the (a) electrical conductivity at quarter filling, and (b) density of
states at T = 0.02 with several values of J .

We analyze the 2ch KL by using the dynamical mean-field theory (DMFT) [16] combined
with the continuous-time quantum Monte Carlo method (CT-QMC) [17, 18]. We take the semi-
circular density of states given by ρ0(ω) = N−1

∑
k δ(ω−εk) = (2/πD)

√
1 − (ω/D)2 where N is

the number of sites, and D is a half of the band width with D = 1 as a unit of energy. For analytic
continuation from imaginary axis onto real one, we have employed the Pade approximation [19].
In this paper, we concentrate mainly on the paramagnetic state at quarter filling, and do not
allow for the staggered ordering. The suppression of the staggered order is expected in realistic
situations because of e.g. substantial nearest neighbor hopping or geometrical frustration. Note
that the present discussion is valid only at finite temperatures, since the paramagnetic state
cannot be the ground state because of the residual entropy.

2. Metal-Insulator Crossover
In this section, we discuss the metal-insulator crossover in the 2ch KL at quarter filling. Figure
1(a) shows the J dependence of the electrical conductivity calculated from the current-current
correlation function [16]. At T = 0.10, the conductivity smoothly decreases with increasing J .
On the other hand, the result at T = 0.02 shows the characteristic behavior near J∗ ∼ 2.3. The
conductivity steeply decreases around this point, and the system tends to become an insulator
when J > J∗. Although we could not go to further low temperatures because of the increasing
computing time, the change in conductivity seems to become steeper at J∗.

The change in the electronic states is clearly seen in the density of states as shown in Fig.
1(b). In the cases with J = 1.0, 2.0(< J∗), the value at ω = 0 is finite and the system is metallic.
However, the density of states with J = 3.0(> J∗) forms the gap structure near the Fermi level.
Thus, the the electronic state changes from metal to insulator near the crossover point J ∼ J∗.
On the other hand, it is also characteristic that the sharp peak develops at the Fermi level
when J . J∗. These behaviors are very similar to that of the Mott transition in the half-filled
Hubbard model [14].

The origin of the insulating state can be understood in terms of the strong coupling limit.
Figure 2(a) shows the schematic illustration of the quarter-filled 2ch KL in J → ∞. In this limit,
the electron at each site does not have spin degrees of freedom owing to the formation of the
Kondo singlet with the localized spin, and has only the channel degrees of freedom. If we regard
the channel α = 1 as the spin ‘up’ state and α = 2 as ‘down’ state, the system is mapped onto
the half-filled Hubbard model which shows the Mott physics. Such situation is schematically
drawn in Fig. 2(b). In the 2ch KL, the repulsive interaction between conduction electrons is
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Figure 2. Schematic illustrations
of (a) quarter-filled 2ch KL in the
strong coupling limit and (b) half-
filled Hubbard model.

Figure 3. Single-particle spectrum for the
quarter-filled 2ch KL with J = 3.0 and T = 0.02
obtained by the (a) DMFT and (b) Hubbard I
Approximation.

caused by the Kondo exchange J instead of the Coulomb interaction. Although the present
mapping is valid only in J → ∞, the system at low temperatures can show the properties in
this limit in wide parameter region, since the effective exchange interaction is scaled to strong
coupling by the Kondo effect.

We note that the Mott insulator realizes also in the half-filled 2ch KL in the strong coupling
region. This is understood in a manner similar to the quarter-filled case by considering the limit
J → ∞. The difference is that the electrons in the strong coupling limit have only the spin
degrees of freedom instead of channel.

3. Single-Particle Spectrum and Hubbard I Approximation
Let us consider the single-particle spectrum in the Mott insulating state. The spectrum is
derived from the Green function as

A(k, ω) = −Im G(k, ω + iδ)/π, (2)

where δ is a positive infinitesimal. In the present condition, the spectrum does not depend on
the spin and channel. Since the self energy is local in the DMFT, the wave-vector dependence of
the spectrum enters only through εk. We introduce the parameter κ defined by εk = −D cos κ,
and draw the spectrum as if the system were in one dimension.

Figure 3(a) shows the single-particle spectrum of the 2ch KL with J = 3.0 and T = 0.02
obtained by the DMFT. We can see the formation of the gap at the Fermi level, which is
consistent with Fig. 1(b). The bands below and above the Fermi level are due to the emergence
of lower and upper Hubbard bands. On the other hand, we observe another band in the high-
energy region near ω ∼ 4, which does not appear in the Hubbard model.

Now we show that the spectrum in the Mott insulating states are well explained by the
Hubbard I approximation [15]. Let us consider the model in atomic limit:

Hatom = −µ
∑
ασ

c†ασcασ + J
∑
α

S · scα (3)

Here only the local operators appear. We define the Green function in the atomic limit by

Gatom(τ) = −⟨Tτcασ(τ)c†ασ⟩. (4)

In the Hubbard I approximation, the Green function in the original Hamiltonian (1) is
approximated as

G(k, iεn)−1 = Gatom(iεn)−1 − εk, (5)
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where εn = (2n+1)πT is the fermionic Matsubara frequency. Thus we obtain the single-particle
properties in the 2ch KL. We note that the Hubbard I approximation is reasonable only in
the strong coupling regime. At T = 0, the quarter-filled situation is realized by the condition
µ = −3J/4. When we plot the spectrum, the infinitesimal constant δ is replaced by 0.05D.

The single-particle spectrum obtained by the Hubbard I approximation is shown in Fig. 3(b).
The bands below and above the Fermi level originate from removal and addition processes of
local electrons, respectively. Since there are two final states in the electron-addition process
in the atomic limit of the quarter filled 2ch KL, we observe two bands above the Fermi level.
Compared with Fig. 3(a), the Hubbard I approximation well reproduces the spectrum obtained
by the DMFT not only qualitatively but quantitatively. However, we should mention that the
Hubbard I approximation fails in metallic states away from integer filling, since the correct Fermi
volume is not reproduced. This approximation can describe only the Mott insulator at integer
filling.

4. Summary
We have analyzed the paramagnetic phase of the 2ch KL at quarter filling by using the
DMFT+CT-QMC method. The system shows the metal-insulator crossover by tuning strength
of the Kondo coupling. The resultant insulating state is regarded as the Mott insulator, which
is understood in the strong coupling limit. The electronic structure of the Mott insulating state
is well described by the Hubbard I approximation.
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