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Spatiotemporal dynamics of particle collisions in quantum spin chains
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We show that quantum Ising chains provide a platform to realize and probe elastic and inelastic particle
collisions in pristine form. The proposed setup allows us to monitor the whole spatiotemporal dynamics of the
collision event. The considered Ising chains admit a natural realization in various quantum simulator platforms,
and we discuss a potentially feasible implementation of our collision protocol in Rydberg atoms. We also argue
that the results and techniques we introduce can be readily extended to lattice gauge theories and to a higher
number of spatial dimensions.
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Introduction and summary. Quantum simulator platforms
have seen tremendous progress within the past two decades
in controlling and probing the real-time dynamics of quantum
matter [1–3]. A long-standing goal in the field has been the
realization of lattice gauge theories (LGTs) [4–10] with the as-
sociated confinement phenomena. The underlying long-term
perspective has been to address fundamental dynamical real-
time phenomena of high-energy physics in the presence of
confinement [11–22], in particular string breaking [23], false
vacuum decay [24], or particle collisions [25]. The newest
developments in programmable quantum simulators such as
Rydberg atoms have highlighted the potential to access new
physical regimes of quantum spin models [26–34], which
have remained elusive so far.

Motivated by this progress, we propose and validate a colli-
sion protocol in quantum spin models [35], which has four key
advantages. First, the protocol is versatile and controllable,
making a wealth of dynamical phenomena accessible, includ-
ing various patterns of particle production. Second, it allows
for monitoring spatiotemporal dynamics throughout the whole
collision event in situ, not only asymptotic states. Third, it lies
within reach of current quantum simulation platforms. Fourth,
the protocol admits an efficient theoretical description that
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can solve the resulting quantum dynamics with computation
effort only polynomial with volume. This makes it directly
applicable also to higher spatial dimensions.

Concretely, we explore the dynamics generated by quan-
tum Ising chains, where confinement of domain walls can
be induced by longitudinal fields [15]. The resulting bound
states—mesons—provide natural particle projectiles [36,37].
Our collision protocol is initiated with two mesonic wave

FIG. 1. (a) Low-energy states of the Ising chain: domain walls
(blue dots) separated by n sites are confined in pairs (“n-mesons”)
due to a linear interaction potential En ∼ hzn. (b) Schematic illus-
tration of the (3 + 1)-collision of a 3-meson with a 1-meson for
hz = J highlighting the formation of intermediate 6- and 2-mesons.
(c), (d) Spatiotemporal picture of the (3 + 1)-collision for an initial
distance d and a 1-meson wave packet with momentum k = π/2 and
velocity v = 2h2

x/3J . (c) Local energy E (x, t ). (d) Spatially resolved
meson occupations pn(x, t ) for n = 2 (left) and n = 6 (right). The
data are obtained for a chain of L = 100 sites within the effective
model (2)–(5).
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packets impacting onto each other; see Fig. 1. We show that
our setup not only allows us to realize simple elastic colli-
sions, but also inelastic ones with intricate particle production
patterns that can be spatiotemporally resolved via simple mea-
surements; see Figs. 2 and 3. Regarding quantum simulation
prospects, we discuss a potential implementation, see Fig. 4,
and its feasibility in the context of Rydberg atoms [26–34]. Fi-
nally, we discuss how our approach can be extended to general
LGTs. This covers also the case of higher spatial dimensions,
where quantum dynamics is even more challenging.

Setup. We consider the quantum Ising chain with transverse
hx and longitudinal hz fields

H = −J
L∑

i=1

σ z
i σ z

i+1 − hx

L∑

i=1

σ x
i − hz

L∑

i=1

σ z
i , (1)

where σ
x(z)
i denotes the Pauli matrix at site i in a periodic

chain of L sites. The presence of the longitudinal field splits
the otherwise degenerate Ising vacuum in the ferromagnetic
phase with the central consequence that two domain walls
now experience an interaction potential increasing linearly as
a function of their distance [15] leading to their confinement.
The low-lying excitations are bound states of two domain
walls, connected by an electric string with energy proportional
to the string length [Fig. 1(a)]. The Ising model can be mapped
to a Z2 LGT with σ z

j as the electric field and Z2 matter charges
at each domain wall [22]. Therefore, our analysis applies to
the broader context of LGTs.

For the purpose of obtaining full spatiotemporal resolu-
tion of collisions, we focus on the weak transverse field
limit, hx � J . We derive an effective description in terms
of the aforementioned mesons by defining hard-core bosonic
operators ψ [n]†

x = P↑
x+[n/2]−n

∏x+[n/2]
j=x+[n/2]−n+1 σ−

j P↑
x+[n/2]+1 with

P↑(↓)
j ≡ (1 ± σ z

j )/2 the projector onto ↑ (↓) at site j. By
means of a Schrieffer-Wolff (SW) transformation [38] applied
to (1) for weak hx we arrive at

Heff = H0 + Hint, (2)

where H0 for the case of our main focus, hz � J , reads

H0 =
∑

n,x

mn pn(x) − v

2

∑

x

(
ψ [1]†

x ψ
[1]
x+1 + H.c.

)
(3)

and contains both the energies of the n-mesons,

mn = 4J + 2nhz + (4 − n − 5 δn,1)h2
x

/
3J + O

(
h4

x

)
, (4)

and the velocity of the 1-mesons v = 2h2
x/3J . Here pn(x) =

ψ [n]†
x ψ [n]

x denotes the occupation of an n-meson at site x. Other
values of hz would modify the masses and velocities.

Note that the regime explored in the present work, hx �
hz � J , is different from the Ising field theory limit hz �
hx � J [36,37,39] experimentally realized in a solid-state set-
ting [40] (see [41] for a discussion comparing these two
regimes). Crucially, being far away from the integrable point
hz = 0, hx = J [39], we can observe inelastic collisions and
exotic multimeson bound states, as we shall see below.

In our limit hx � hz � J , only 1-, 2-, and 3-mesons are
quasistable particles, i.e., have energies below continuum
(band) of 1-meson pairs. For the lightest meson, the Hamil-
tonian H0 gives a dispersion relation εk = m1 − v cos k +

O(h4
x ). The heavier n-mesons with n > 1 are inert on the

timescales t � h4
x/J3 we consider, hence mn’s with n > 1

act as rest masses, whereas m1 includes the maximal kinetic
energy of the 1-meson.

Essential for the targeted particle collisions, the mesons
exhibit interactions,

Hint = −h2
x

J

∑

m,n,x

(
ψ [m+n+2]†

x ψ [m]
x ψ

[n]
x+m+2 + H.c.

)

+ h2
x

J

∑

m,n,x

(
ψ [m−1]†

x ψ
[n+1]†
x+m ψ [m]

x ψ
[n]
x+m+1 + H.c.

)

+ 3h2
x

2J

∑

m,n,x

(
ψ [m]†

x ψ [m]
x ψ

[n]†
x+m+1ψ

[n]
x+m+1 + H.c.

)
, (5)

which we displayed for hz = J . The first interaction term
describes the fusion of two nearby mesons m and n to a heavier
m + n + 2 one upon converting domain-wall excitations into
string energy, or the reverse process (essential for string break-
ing). The second term describes string exchange between two
nearby mesons. The last term is a repulsive nearest-neighbor
density-density interaction between two mesons. For gen-
eral hz �= J only slight modifications have to be incorporated
in (5), such as hz-dependent corrections to the coupling con-
stants [41].

The limit hx � J has the advantage that the mesons
become spatially localized, allowing us to access the full
spatiotemporal resolution of the collision dynamics using sim-
ple projective measurements. While in the original basis the
meson operators are dressed, this dressing is only perturbative
in hx/J . In the limit hx/J → 0 upon keeping h2

xt/J = const
the meson expectation values computed with the full Hamil-
tonian (1) and the effective one (2)–(5) become identical, see
Fig. 2(a), as we study employing exact diagonalization (ED).

We complement these projective observables with the local
energy E (x, t ) at site x ≡ i being the SW transformed Ising
Hamiltonian density −Jσ z

i (σ z
i−1 + σ z

i+1)/2 − hxσ
x
i − hzσ

z
i .

Collision protocol. We generate propagating n-mesons in
the form of Gaussian wave packets by the operator

ψ [n](x0, k0)† = 1√
N

∞∑

x=−∞
e−x2/(4τ 2

x )eik0x
n−1∏

j=0

σ−
x0+x+ j (6)

acting on the ferromagnetic background, with τx denoting the
width and N the normalization factor. The characteristics of
the collision process, however, do not depend on the details
for wave packets sufficiently localized in momentum space
(to avoid spreading). Concretely, we choose τx = √

L/4π

implying τk ∼ 1/
√

L for the width in momentum space. For
the collision we decompose the system into two halves, each
containing one of the two colliding particles, and we constrain
the summation over x to one-half to avoid overlap of the two
initial mesons. In the limit hx � J , only the 1-meson can
propagate on timescales t � J3/h4

x , see Eq. (3), so that we
focus on collisions involving at least one 1-meson, while also
collisions with propagating higher-mesons can be realized
when addressing longer timescales [41]. We maximize the
kinetic energy by considering 1-mesons at maximum group
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velocity, choosing k0 = ±π/2. Static higher-n mesons can be
prepared by flipping n spins in a ferromagnetic background.

As we discuss below, inelastic collisions of various char-
acters can be realized in the considered model. The creation
of new mesons from the kinetic energy can be deduced from
mesonic spectra. The simpler case of elastic collisions is pre-
sented in [41].

Inelastic collision. For studying inelastic collisions, we
focus on a strong-coupling limit hz = J � hx implying a
large string tension, which facilitates identification of resonant
channels. For this parameter regime, a state consisting of a 3-
and a 1-meson is resonant with both a 6-meson and a state
involving two 2-mesons from an analysis of the rest masses
in the effective model (2) upon temporarily neglecting the
perturbative (hx/J )2 corrections.

Figure 1(b) displays a collision scheme for a 1-meson
incident on the 3-meson. When the target and the projectile
are separated by two ↑-spins, a second-order in hx/J spin-flip
process, i.e., the fusion interaction term in (5), maps them
to a resonant (based on the estimate of the classical rest
masses without hx/J corrections) 6-meson configuration. The
6-meson can then transform resonantly via a similar process
of flipping the two central spins to a state with two 2-mesons
or back to a configuration with a 1-meson on the left of a
3-meson (see [41] for other channels).

The spatiotemporal dynamics of E (x, t ) in Fig. 1(c) allows
one to identify the shift of the 3-meson during the collision,
see Fig. 1(b), which might be viewed as a quantum spin chain
analog of Newton’s cradle (studied only in bosonic [42,43]
and fermionic systems [44,45]). Figure 1(d) shows the space-
time particle production of the 6- and 2-mesons during the
collision process. After the collision, the 6-meson and a pair
of 2-mesons can propagate mediated by the motion of a
1-meson, while gradually decaying back to (3 + 1)-meson
states [41].

In Fig. 2 we analyze the individual n-mesons across
the collision based on their global occupations Pn(t ) =∑

x pn(x, t ). Figure 2(a) displays Pn(t ) relative to the initial
condition Pn(t = 0) to highlight the changes due to the col-
lision with an additional normalization to the height pmax

1 =
maxx p1(x, t = 0) of the incident 1-meson wave packet. With
this we eliminate a dependence on the details of the incident
wave packet. A wave packet broader in real space will hit
the 3-meson only with a reduced maximal amplitude thereby
also lowering the particle production at a given time instance.
Figure 2(a) compares both data from full ED for Eq. (1) as
well as from Eq. (2) for hx/J = 10−2. Collapse of the two
datasets confirms the accuracy of Eq. (2), which we will use
extensively in the remainder of the paper.

Figure 2(a) shows that the collision is accompanied by a
significant production of 2- and 6-mesons [see also Fig. 1(b)].
After the collision, some of the intermediate 2- and 6-mesons
convert back to 1- and 3-mesons. Importantly, also an inelastic
channel remains as we display in more detail in Fig. 2(b) for
2- and 6-meson occupations on a logarithmic scale. These
particles are not just created via some intermediate state
but remain also after the collision as the inelastic contribu-
tions with a weak decay over time. Note that the time axis
in Fig. 2(b) is rescaled by the initial distance d implying
a long lifetime in the bare microscopic units. The decay

FIG. 2. Particle production in the (3 + 1)-collision for hz =
J , hx = 10−2J . (a) Normalized particle production, [Pn(t ) −
Pn(0)]/p1,max, comparing ED of the full Ising model to the effective
theory for L = 20; p1,max is the maximum on-site probability of the
1-meson wave packet, v = 2h2

x/3J is its group velocity, and d = L/2
is the initial distance between the centers of 3- and 1-mesons. (b) Dy-
namics of the 2- and 6-meson occupations for L = 100 calculated
for the effective model. (c) Maximum production of the intermediate
states vs detuning �, Eq. (7), normalized by the kinetic energy E1,kin

of the 1-meson. (d) Spectrum in the vicinity of the exotic 6+-meson.

of such high-energy particles aligns with general expecta-
tions of string breaking where heavy mesons with a large
string tension decay at the expense of creating new lighter
particles [22,23].

Until now we used hz = J to achieve a resonance based
on an estimate of the bare rest masses leading to the natural
question of what happens upon detuning the system out of this
resonance. In Fig. 2(c) we show the dependence of the particle
production of the 6-meson as a function of the detuning of the
energy barrier

� = m6 − m1 − m3 = 4(hz − J ) − 1

3

h2
x

J
. (7)

One can identify a Lorentzian-type resonance peak expected
from conventional collision processes.

To understand why the inelastic channel is not more effec-
tive in creating a larger production of, e.g., the 6-mesons, it is
instructive to study the full many-body spectrum. Figure 2(d)
shows the energy levels of Heff, Eq. (2), diagonalized in the
zero-momentum sector. We see that interactions induce sig-
nificant modifications with the 6-meson evolving into three
exotic meson states 6+; see the green lines in Fig. 2(d).
The 6+ states are “multiquark” bound states [37] of various
n-mesons [41], which one might interpret as an analog of
exotic mesons such as the tetraquarks in QCD [46]. Here,
we use the notation 6+ = 6 + 1 ⊗ 3 + 2 ⊗ 2 to denote a state
composed of a 6-meson, a product state of a 1- and a 3-
meson, as well as a product state of two 2-mesons. The
respective amplitudes are given in [41]. Importantly, the 6+
exotic mesons are pushed out of the continuum made up
of (1 + 3)-mesons, which contains the projectiles before the
collision event. Therefore, the transition to the 6- and (2 + 2)-
meson states becomes slightly off-resonant, which provides an
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FIG. 3. Inelastic collision between the exotic 7+-meson state and
a 1-meson. (a) Spatiotemporal profile of the local energy E (x, t ).
(b) Change of the meson occupation �Pn(t ) = Pcoll

n (t ) − P7+
n (t ) −

P1
n (t ) due to the collision; here P7+

and P1 correspond to single
7+- and 1-meson, respectively, while Pcoll corresponds to 7+ and
1 collision. (c) Zoom into the many-body spectrum close to the
exotic 7+-meson in the zero-momentum sector (green). The latter is
separated from the three 1-meson continuum (blue) by a small energy
gap ∼0.1h2

x , which the injection of 1-meson kinetic energy allows to
overcome.

explanation of why their respective production only reaches a
value of Pn/pmax

1 ≈ 0.1; see Fig. 2(a).
Inelastic collision with exotic meson. We now aim to

take one further step towards collisions with more com-
plex objects. From the spectrum, Fig. 3(c), we identify
another exotic meson bound state 7+ = 7 + 1 ⊗ 1 ⊗ 1 of a
7-meson with three 1-mesons [41], which is located below
the continuum consisting of three 1-mesons. Crucially, the
gap is small compared to the kinetic energy of an incident
1-meson, leaving us with the expectation that a collision
between the exotic 7+-meson state and a 1-meson could ex-
cite the 7+ into the continuum 1-meson band. Figure 3(a)
shows the spatiotemporal dynamics of the local energy E (x, t )
for a setup with a 1-meson projectile impacting onto a 7+
state. Compared to the previous inelastic collision, Fig. 1,
this appears more violent, changing significantly the real-
space structure. The impact of the 1-meson creates a complex
transient state involving the production of many mesons
of different types up to a contribution of the 10-meson
[Fig. 3(b)]. After the collision, a significant weight of the
initial exotic meson is indeed transformed into 1-mesons.

Towards quantum simulation of meson collisions. A key
advantage of our proposed setup is that it enables a natural
experimental implementation in quantum simulator platforms,
which would require (i) the capability to realize the dynamics
of the quantum Ising chain with sufficiently long coherence
times; (ii) the preparation of the initial wave packets; and (iii)
local readout capabilities for measuring E (x, t ) and pn(x, t ).
In this context, systems of Rydberg atoms appear especially
suitable. Since they naturally implement the targeted quantum
Ising chain [26–31], the central question is how the achievable
coherence times compare with the collision timescale t∗ =
d/u. The latter can be tuned via both the relative velocity u of
the mesons and their initial distance d . For a (1 + 1)-collision,
Figs. 4(a) and 4(b), this gives u = 2v, with v = 2h2

x/3J the ve-
locity of a single 1-meson leading to Jt∗ = (3d/4)(J/hx )2 ≈
47 for d = 7 and hx/J = 1/3, which matches the timescales
accessed recently in Ref. [34]. Systems of Rydberg atoms
provide also the local control to initialize directly the static
n-mesons by flipping n spins [26,28]. For the generation of
propagating particles, one can just impose simple spin flips,

FIG. 4. Particle collisions at experimentally relevant stronger
transverse fields with all mesons created by spin flips instead of
wave packets as studied in the preceding sections. Upper panel:
(1+1)-meson collision for hx/J = 1/3. Lower panel: (3+1)-meson
collision for hx/J = 0.15. (a), (c) Spatiotemporal evolution of local
energy E (x, t ). (b), (d) Time dependence of the particle production:
(b) dressed 1-meson projector P̃1(t ) = P1(t ) + P2(t ) − P1(0) −
P2(0) and 4-meson projector P4(t ); (d) Pn(t ) − Pn(0) for n =
1, 2, 3, 6. Both collisions are studied using the full Ising Hamil-
tonian; the initial separation between the centers of the mesons is
d = 7, hz = J , L = 14.

which creates 1-mesons experiencing a simple quantum walk,
Fig. 4(a). Further, the measurement outcomes in systems of
Rydberg atoms are spin configurations [26–31], from whose
statistics one can directly obtain the individual meson occu-
pations as depicted in Fig. 4(b). This collision leads to the
production of 4-mesons at the expense of a reduction of 1-
mesons. Note that here we measure the 1-meson occupation
in a slightly different way as compared to the case of weaker
transverse fields studied above. The measurement of the n-
mesons by the projectors Pn(t ) is only exact in the asymptotic
limit hx/J → 0 with corrections at nonzero transverse fields.
For the case considered in Fig. 4(b) we find from a pertur-
bative analysis taking into account hx/J corrections that the
1-mesons are dressed by 2-mesons. As a consequence, we can
get a better estimate P̃1(t ) = P1(t ) + P2(t ) of the actual 1-
meson occupation by adding up the two bare 1- and 2-meson
contributions.

In Figs. 4(c) and 4(d) we explore a (3 + 1)-meson collision
analogous to the one studied in Figs. 1 and 2. Since the
collision involves more types of mesons, namely 1-, 2-, 3-, and
6-meson, it becomes more important to use a smaller value
of hx/J = 0.15 in order to be able to neglect the dressing
contributions to the mesons. Due to smaller hx, the charac-
teristic collision time increases to Jt ∼ 300, which is larger
by a factor of ∼6 as compared to the timescales reached in
the recent experiments [27,34]. This appears challenging, but
it might be achievable in the foreseeable future.

Opportunities for the use of the method. The utilized
method for the simulation of particle collisions is based on
a perturbatively controlled mapping of the dynamics into
a small effective subspace of the full Hilbert space. Im-
portantly, the resulting algorithm requires only numerical
resources polynomial in the system’s volume, making it
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very efficient. The method is controlled when operated in
the large mass limit of the charges (hx � J in our model)
and independently from the string tension (set by hz). For
LGTs, similar limits can also be taken upon considering
large masses for the matter fields. Consequently, the nu-
merical resources still scale only polynomially with the
volume, which makes our approach promising for the chal-
lenge to access particle collisions in two or more space
dimensions [47].

Also from an experimental point of view, the straightfor-
ward extension of our work to LGTs in higher dimensions
might provide a useful tool to probe their physics via particle
collisions, such as exotic meson states at higher energies.
Concretely, knowledge on low-energy excitations of a specific
LGT can be used to create the projectiles. Measuring the
spatiotemporal collision dynamics of the local energy can, for
instance, provide a direct and unbiased insight on the structure
of the produced particles, such as their size and velocity.
In further steps, more refined measurements on individual
theoretically proposed candidate particles can be performed
analogous to our n-meson operators. While there are still
experimental challenges to realize such complex dynamics in
higher-dimensional LGTs, quantum simulators may quickly

show their strengths in accessing regimes that are beyond
theory methods.

Note added. During the completion of this project, we be-
came aware of a related work [48]. Also, after the first version
of the present manuscript appeared, other related works were
submitted to the arXiv [24,49,50].
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