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The efficient numerical simulation of nonequilibrium real-time evolution in isolated quantum matter
constitutes a key challenge for current computational methods. This holds in particular in the regime of two
spatial dimensions, whose experimental exploration is currently pursued with strong efforts in quantum
simulators. In this work we present a versatile and efficient machine learning inspired approach based on a
recently introduced artificial neural network encoding of quantum many-body wave functions. We identify
and resolve key challenges for the simulation of time evolution, which previously imposed significant
limitations on the accurate description of large systems and long-time dynamics. As a concrete example, we
study the dynamics of the paradigmatic two-dimensional transverse-field Ising model, as recently also
realized experimentally in systems of Rydberg atoms. Calculating the nonequilibrium real-time evolution
across a broad range of parameters, we, for instance, observe collapse and revival oscillations of
ferromagnetic order and demonstrate that the reached timescales are comparable to or exceed the
capabilities of state-of-the-art tensor network methods.
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Introduction.—In the past two decades the field of
nonequilibrium quantum many-body systems has seen a
rapid development driven, in particular, by the remarkable
progress in experiments [1–14]. Today, quantum simulators
provide access to dynamics in quantum matter with an
unprecedented control, which has led to the observation of
genuinely nonequilibrium phenomena such as many-body
localization [5,15,16], discrete time crystals [11,17],
dynamical quantum phase transitions [7,18,19], or quantum
many-body scars [8]. A particular frontier pushed forward
by experiments recently is toward the nonequilibrium
dynamics in two-dimensional (2D) quantum many-body
systems [13,14,20,21]. The theoretical description of such
unitary time evolution, yet, faces severe limitations. For
instance, rapid entanglement growth or the exponential cost
of contraction imposes strong constraints on tensor network
approaches. Nevertheless, considerable progress has
been reported to capture transient dynamics [22–30].
Recently, it has been proposed that machine learning
techniques might overcome these difficulties by encoding
quantum many-body states in artificial neural networks
(ANNs) [31]. Subsequent efforts, however, raised doubts
that this approach can enable the investigation of other-
wise inaccessible regimes of nonequilibrium quantum
dynamics [32].
In this work we overcome hitherto opaque and ultimately

prohibitive numerical instabilities of the real-time ANN
approach and we thereby expand state-of-the-art cap-
abilities for the simulation of quantum many-body
dynamics. Most importantly, we introduce a novel scheme
to obtain a stable solution although only noisy estimates of

the variational manifold and its relation to the physical
system are known. Moreover, we target specific properties
of the ANN itself, for instance, by utilizing deep archi-
tectures, i.e., convolutional neural networks. They naturally
embody the fundamental physical principles of locality and
causality, which can enhance the encoding efficiency. We
apply our approach to the paradigmatic transverse-field
Ising model on a square lattice, whose nonequilibrium
dynamics has recently been shown to be accessible in
systems of Rydberg atoms [14,20,21]. With our resulting
algorithm we obtain numerically exact results up to time-
scales comparable to or exceeding the capabilities of
current tensor network algorithms, demonstrated by com-
parison to recent data from infinite projected entangled pair
states (IPEPS) [26]. Computing the dynamics for a wide
range of parameters, we observe, e.g., collapse and revival
oscillations of the ferromagnetic order when strongly
quenched by a transverse field; see Fig. 1. Importantly,
we find that at this point the expressivity of the ANN is not
the limiting factor and the achieved timescales could be
extended at mild polynomial expense.
Neural network wave functions.—Considering a system

of N spin-1=2 degrees of freedom, the quantum many-body
wave function can be represented in the basis of spin
configurations, s ¼ ðs1; s2;…; sNÞ, sj ¼ ↑;↓, as

jψi ¼
X
s

ψðsÞjsi: ð1Þ

Because of the exponentially large Hilbert space, wave
function based numerical methods aiming at large systems
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need a strategy to avoid storing the individual amplitudes
ψðsÞ in memory. In this work we construct a general-
purpose variational wave function ψηðsÞ, parametrized by
η ¼ ðη1;…; ηMÞ, which constitutes an efficient representa-
tion of jψi ifM is much smaller than the Hilbert space size.
Being able to provide a good approximation of the
amplitudes on the fly [ψðsÞ ≈ ψηðsÞ], the variational wave
function serves as a generative model, from which we can
sample using conventional Monte Carlo techniques.
Concretely, the expectation value of any observable Ô
can be obtained as

hψηjÔjψηi ¼
X
s

jψηðsÞj2OηðsÞ; ð2Þ

with OηðsÞ ¼
P

s0hsjÔjs0iψηðs0Þ=ψηðsÞ. Since hsjÔjs0i is
sparse for few-body observables, the expectation value can
be computed efficiently by Monte Carlo sampling the
probability pηðsÞ ¼ jψηðsÞj2; importantly, there is no sign
problem associated with this procedure.
Clearly, it might appear difficult to construct a general-

purpose generative machine. However, simple but powerful
versions have already been constructed recently for tailored
problems [33,34]. Aiming for a more versatile approach
we now follow the proposal to employ artificial neural
networks [31]. ANNs have the crucial advantage that
they are universal function approximators [35–37]. As a
consequence, any quantum many-body wave function can,

in principle, be represented by ANNs provided the network
is sufficiently large. Consequently, the network size acts as
a control parameter for our simulations that can be used to
check convergence of the results. Moreover, the celebrated
gradient backpropagation algorithm [38–40] enables the
efficient numerical treatment of this class of variational
wave functions.
As one of the key improvements we propose two

modifications of the ANN structure compared to previous
works. First, we explore deep architectures by means of
convolutional neural networks, which naturally respect the
fundamental principles of locality and causality. While
we provide a detailed description of the convolutional
neural networks (CNN) wave function in the Supplemental
Material [41], let us point out that CNNs include the
restricted Boltzmann machines (RBMs), which have been
used in previous works for quantum dynamics
[31,32,42,43], as the special case of a fully connected
single-layer CNN with a fixed activation function. By
contrast, CNNs are typically constructed as deep networks
with sparse connectivity and arbitrary activation functions.
For ground-state searches, CNN architectures have already
been explored previously [44] with a polynomially
enhanced efficiency in encoding entanglement as compared
to the RBM [45]. The hidden unit density α, which specifies
the size of a RBM [31], corresponds to the number of
channels in terms of a CNN architecture, where the filter
diameter dF, that defines the connectivity, equals the linear
extent of the system. Accordingly, we will denote the size
of a CNN with L layers by a tuple α ¼ ðα1;…; αL; dFÞ,
with αk the number of channels in the kth layer [41].
Second, we find that it is crucial for the description of the

unitary dynamics to use analytic activation functions for
the complex-valued ANNs. In contrast to ground-state
searches, which are resilient to the encountering of poles
and branch cuts of typical activation functions due to the
projective nature of imaginary time evolution, real-time
evolution relies on the differentiability of the wave function
at any point of the variational manifold in the full complex
plane. In our simulations we use as activation functions a
sixth order polynomial in the first layer, which allows us to
directly incorporate the Z2 symmetry, and odd fifth order
polynomials in the following layers to avoid the vanishing
gradient problem [41,46].
Training and the noisy TDVP.—Training, i.e., optimiz-

ing ψηðsÞ to represent the dynamical quantum many-body
wave function, is performed by demanding for each time
step τ that the change of parameters _η minimizes the
distance between the time-evolved state e−iτHjψηðtÞi and
jψηðtÞþτ_ηi as measured by the Fubini-Study metric D [31].
The corresponding optimization objective is

r2ðtÞ ¼ DðjψηðtÞþτ_ηi; e−iτHjψηðtÞiÞ2
DðjψηðtÞ; e−iτHjψηðtÞiÞ2

; ð3Þ

(a) (b)

(c)

(d)

FIG. 1. (a) Schematic illustration of the artificial neural network
(ANN) encoding of many-body wave functions in 2D quantum
spin systems. A given spin configuration s, blue and red referring
to the spin ↑ and ↓ state, respectively, functions as the input to an
ANN whose output at the end is the corresponding wave function
amplitude ψs. (b) Collapse and revival of the ferromagnetic order
in a quantum Ising model of 8 × 8 spins on a square lattice after
quenching the transverse field from h ¼ 0 to h ¼ 2.63hc.
(c) Dynamics of the transverse magnetization hσxi ðtÞi. The
quantum Fisher information density fQðtÞ in (d) reveals that
genuine multipartite entanglement is generated by the unitary
evolution.
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where the constant denominator is introduced as a natural
scale for r2ðtÞ. Minimization with respect to _η yields a first
order differential equation for the variational parameters
ηkðtÞ ∈ C,

Sk;k0 _ηk0 ¼ Fk; ð4Þ

where Sk;k0 ¼ hhO�
kOk0iic and Fk ¼ −ihhO�

kElociic, with
k; k0 ¼ 1;…;M and hhABiic ¼ hhABii − hhAiihhBii a
connected correlation function. Here, we introduced
the variational derivatives OkðsÞ ¼ f½∂ lnψηðsÞ�=∂ηkg and
the local energy ElocðsÞ ¼

P
s0hsjHjs0if½ψηðs0Þ�=½ψηðsÞ�g.

The brackets hh·ii denote expectation values with respect to
the normalized probability distribution obtained from
jψηðsÞj2. Note that Eq. (4) is the well-known time-
dependent variational principle (TDVP) equation, which
for holomorphic ψηðsÞ equivalently follows from an action
principle [31,47–49]. The Fubini-Study distance (3) addi-
tionally provides us with a practical figure of merit and in
the following we will regard the integrated residual,
R2ðtÞ ¼ R

t
0 dt

0r2ðt0Þ, as a measure of the accuracy of our
simulations. For completeness, we include a derivation of
Eq. (4) and the explicit form of the residual (3) in Ref. [41].
While solving the exact TDVP equation will yield the

optimal parameter update given the variational ansatz, it is
important to realize that in practice we will have incomplete
knowledge of the equation itself, because both Sk;k0 and Fk
can only be estimated by Monte Carlo sampling. In
previous works a pseudoinverse was used to regularize
the inversion of the typically ill-conditioned S matrix to
avoid contributions from small eigenvalues that can lead to
a numerical instability [31,32,42]. In this work, instead, we
follow a different approach by precisely identifying and
disregarding the noisy components of Eq. (4). This new
regularization scheme is crucial to be able to reach the
network sizes and timescales presented in the following.
For our analysis we consider the TDVP equation (4) in

the eigenbasis of S,

σ2k _̃ηk ¼ hhQ�
kElociic ≡ ρk; ð5Þ

where Sk;k0 ¼ Vk;lσ
2
l ðV†Þl;k0 , Qk ¼ ðV†Þk;k0Ok, and

_̃ηk ¼ ðV†Þk;k0 _ηk0 . Our key observation is the fact that the
signal-to-noise ratio of σk, SNRðσkÞ, is independent of k,
while SNRðρkÞ shows a clear k dependence [41]. This
numerical observation is consistent with the behavior of
signal-to-noise ratios derived analytically by assuming that
the joint distribution of Qk and Eloc is Gaussian. In this
case, SNRðσkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NMC=2

p
is completely determined by

the number of Monte Carlo samples NMC, whereas

SNRðρkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NMC

1þ σ2k
ρ2k
VarðHÞ

vuut ð6Þ

depends on k, and additionally the physical energy variance
VarðHÞ. We find that Eq. (6) agrees also quantitatively well
with the empirically estimated SNR [41].
For our regularization scheme we compute SNRðρkÞ and

discard all components of ρk, which fall below a fixed
threshold. Thereby, we ignore contributions to the TDVP
equation of which we have insufficient knowledge due to
finite NMC. Remarkably, the SNR in the Gaussian approxi-
mation is directly related to the resulting TDVP residual
(3): Disregarding the component k increases the residual
by Δk ¼ f½jρkj2�=½σ2kVarðĤÞ�g ¼ SNRðρkÞ2=NMC. Hence,
increasing NMC at a fixed cutoff will systematically reduce
the bias introduced by the regularization; the most impor-
tant contributions will, however, be accounted for already
with small NMC, as this result indicates that they have the
largest SNR. Further details of this approach and support-
ing numerical data are included in the Supplemental
Material [41].
Further technical aspects.—To propagate the ANNwave

function in time we use a second order consistent adaptive
integrator. In our implementation we exploit the fact that
Sk;k0 is the metric tensor of the variational manifold [50],
which induces a meaningful measure for the quantification
of the integration accuracy [41].
In some cases, when using small network sizes, we

found that the details of the resulting dynamics can depend
on the initialization of the network. Similar observations
have recently been reported in a more general context of
training neural networks and it has been proposed to
address this issue by ensemble averaging over a number
of independently initialized and trained networks [51]. We
adapted this idea and found that the ensemble average
shows good agreement with results from larger networks
and the IPEPS reference data [41].
The Monte Carlo sampling from the CNN wave

function amplitudes can become computationally very
intense, calling for an efficient parallel implementation.
Sampling is straightforwardly parallelizable over many
processors of a distributed memory machine using a
message passing scheme. The network evaluation allows
for a shared memory parallelization using the individual
cores of a processor or attached accelerators like graphics
processing units (GPUs). Thereby, this machine learning
approach allows us to make full use of the computational
resources of cutting-edge supercomputers for the simu-
lation of quantum many-body dynamics. Further details
are contained in the Supplemental Material [41].
Transverse-field Ising model.—As a paradigmatic

example of a quantum many-body system we consider
the transverse-field Ising model on a 2D square lattice,
defined by the Hamiltonian

H ¼ −J
X
hi;ji

σziσ
z
j − h

X
j

σxj : ð7Þ
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Here, the σx=zi denote the Pauli x and z matrices and hi; ji
is the set of all neighboring sites in the lattice. The
model exhibits a quantum phase transition at the critical
transverse field hc=J ¼ 3.04438ð2Þ [52] separating a ferro-
magnetic phase at h < hc from a paramagnetic phase. This
model has recently developed a particular practical
relevance, as it is now naturally realized in Rydberg atom
quantum simulators [14,20,21]. Different aspects of
its dynamics in 2D have been addressed previously in
Refs. [25,26,29,33,53,54].
In the following we demonstrate that the far from

equilibrium dynamics induced by quantum quenches can
be efficiently simulated using neural network wave func-
tions, independent of the considered parameter regimes. We
choose typical initial conditions of quantum simulators,
namely uncorrelated product states jψ0i. After preparation
the dynamics generated by the Hamiltonian H yields the
formal solution jψðtÞi ¼ e−iHtjψ0i.
Collapse and revival oscillations.—We start with

a quench from a ferromagnetically polarized state
jψ0i ¼ j↑i ¼ Q

l j↑il into the paramagnetic phase at
h ¼ 2.63hc. The resulting dynamics is shown in
Figs. 1(b)–1(d). The order parameter hσzl i exhibits collapse
and revival dynamics with decaying amplitude, which is a
consequence of relaxation due to interactions. This is
accompanied by the oscillatory buildup of a transverse
magnetization. Notably, significant entanglement is also
generated; see Fig. 1(d), where we show the quantum
Fisher information density fQðtÞ ¼ ð1=NÞPi;j hσziσzjic.
After two oscillations of the order parameter, fQðtÞ > 8,
implying that genuine multipartite entanglement has been
developed of at least 9 spins [55,56]. We checked the
accuracy upon increasing the network size and found that a
single-layer fully connected CNN with α ¼ 5 is sufficient
for convergence [41].

Quench from a paramagnetic initial condition.—Next,
we consider quenches starting from a paramagnetic
initial state jψ0i ¼ j →i. In this case we can compare
our results to data obtained recently with an IPEPS
algorithm [26].
In Fig. 2 we show results for quenches to weak and

strong fields as well as to the quantum critical point, which
has previously been identified to constitute a particularly
challenging regime for the neural network approach
[31,32]. For large fields hx ¼ 2hc, we can observe
relaxation of the transverse magnetization hσxðtÞi to a
steady state value with remaining temporal fluctuations due
to the finite system size. In this regime quantum correla-
tions only develop dominantly for nearest-neighboring
spins. For the critical transverse field h ¼ hc the magneti-
zation decays to a much smaller value and significant
quantum correlations spread in a light-cone fashion also to
larger distances indicating a strongly correlated state. At
weak transverse fields the dynamics appears more local
than in the case of strong fields with quantum correlations
emerging almost exclusively between nearest neighbors on
the shown timescales.
Importantly, we find excellent agreement with the

dynamics computed using IPEPS for all cases up to the
maximally reached times in IPEPS, which are included in
Fig. 2 as dashed lines for comparison. While IPEPS
directly operates in the thermodynamic limit, the utilized
machine learning approach enables us to reach significantly
larger times for system sizes up to N ¼ 10 × 10. The direct
comparison shows that the system size we reach is
sufficient to exclude finite-size effects in local observables
up to the timescales reached with IPEPS.
To independently assess the accuracy, we perform our

simulations with varying network sizes and architectures.
While fully connected single-layer CNNs are sufficient to

(a) (b) (c)

FIG. 2. Time evolution after quenching a transverse-field Ising model of size N ¼ 10 × 10 from the paramagnetically polarized initial
state jψ0i ¼ j →i (a) into the paramagnetic phase at h ¼ 2hc, (b) to the critical point, and (c) into the ferromagnetic phase at h ¼ hc=10.
For direct comparison the top row includes data obtained with IPEPS from Ref. [26]. The agreement is very good in all cases for the
networks with the smallest error R2ðtÞ (bottom row). The second row shows space-time plots of correlation functions hσzi;jσzi;jþdi along
the lattice axis from the simulations with minimal error.
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reach convergence on timescales similar to or exceeding
IPEPS for quenches into the paramagnetic phase or to the
critical point, going to a deep CNNwith sparse connectivity
yields a substantial improvement over the single-layer
network for h ¼ hc=10, indicated also by a significant
reduction of the TDVP error R2ðtÞ. In that case, the
dynamics remains more local, which can be exploited by
using CNNs, as we discuss in the Supplemental Material
[41]. We expect that this feature of deep CNNs can become
relevant more generally when addressing larger system
sizes, where correlations will remain constrained to smaller
fractions of the system extent for longer times.
Discussion.—We have shown that variational time

evolution of artificial neural network states constitutes a
controlled and accurate approach to simulate dynamics in
2D quantum matter, which is competitive with current
state-of-the-art tensor network algorithms. An alternative
tensor network approach besides IPEPS is based on matrix
product states and the approximation of 2D systems
using cylindrical geometries [25,29]. For our purpose,
however, we chose IPEPS as a reference, because it
reflects the full C4 symmetry of the square lattice and
we avoid ambiguities caused by boundary effects in the
reference data.
The availability of a versatile numerical method for time

evolution paves the way to study the nonequilibrium
quantum many-body dynamics in 2D and for new bench-
marks of quantum simulators against classical simulations.
The timescales and system sizes presented in this work can
be extended at mild polynomial costs; importantly, we
demonstrated that the network expressivity is currently not
the limiting factor. These findings raise fundamental
questions about our understanding of the complexity of
quantum states. Moreover, the approach can, for example,
be extended to systems with longer-ranged interactions and
without translational invariance, which are challenging to
address with tensor network methods.
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