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By means of the discrete truncated Wigner approximation, we study dynamical phase transitions arising
in the steady state of transverse-field Ising models after a quantum quench. Starting from a fully polarized
ferromagnetic initial condition, these transitions separate a phase with nonvanishing magnetization along
the ordering direction from a disordered symmetric phase upon increasing the transverse field. We consider
two paradigmatic cases, a one-dimensional long-range model with power-law interactions ∝ 1/rα decaying
algebraically as a function of distance r and a two-dimensional system with short-range nearest-neighbor
interactions. In the former case, we identify dynamical phase transitions for α � 2 and we extract the critical
exponents from a data collapse of the steady-state magnetization for up to 1200 lattice sites. We find identical
exponents for α � 0.5, suggesting that the dynamical transitions in this regime fall into the same universality
class as the nonergodic mean-field limit. The two-dimensional Ising model is believed to be thermalizing, which
we also confirm using exact diagonalization for small system sizes. Thus, the dynamical transition is expected
to correspond to the thermal phase transition, which is consistent with our data upon comparing to equilibrium
quantum Monte Carlo simulations. We further test the accuracy of the discrete truncated Wigner approximation
by comparing against numerically exact methods such as exact diagonalization, tensor network, as well as
artificial neural network states and we find good quantitative agreement on the accessible time scales. Finally,
our work provides an additional contribution to the understanding of the range and the limitations of qualitative
and quantitative applicability of the discrete truncated Wigner approximation.
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I. INTRODUCTION

Recent impressive developments underline the rich phase
structures that can be generated by forcing isolated quantum
matter out of equilibrium. Some examples of these phenom-
ena are the emergence of exotic phases, loss of adiabaticity
across critical points in the context of the Kibble-Zurek mech-
anism, and nonequilibrium phase transitions. These are some
of the multiple aspects currently at the center of an intense
theoretical and experimental activity, as summarized in the
reviews [1–7].

A paradigmatic protocol to drive a many-body system out
of equilibrium, routinely used in experiments and intensively
studied theoretically, is a quantum quench. After initializing
the system in a state that can be thought of as a ground
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state of a given initial Hamiltonian, it is allowed to evolve
after an abrupt change of a Hamiltonian parameter. The long-
time steady states after such quantum quenches can feature
symmetry-broken phases and singular behavior at the tran-
sition toward the disordered phase. These dynamical phase
transitions (DPTs) [8–10] may be understood as transitions in
the microcanonical ensemble in case the many-body system
thermalizes, driven by shifting the system’s energy across
the symmetry-restoration threshold. In nonergodic systems,
however, long-time steady states can be realized which cannot
be described in terms of the conventional thermodynamic
ensembles. As a particular consequence, such systems allow
the generation of phases and phase transitions with properties
that cannot be realized in any equilibrium context [11].

In this paper, we focus on DPTs realized in spin-1/2 Ising
models in transverse fields. We consider the case of long-
range interacting models, which have recently attracted a lot
of attention [8,10,12–20] and constitute a paradigmatic class
of nonergodic systems capable of generating nonequilibrium
steady states as reported both theoretically [8–10,21] and
experimentally [22–24]. It was shown [8,10] that starting from
an initial fully polarized state along the ordering direction,
the asymptotic state of these systems can undergo a transition
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from an ordered phase at small fields to a disordered one
when the field exceeds a critical value. While inherently of
nonequilibrium character, the resulting phases can be char-
acterized by means of the conventional Landau paradigm
via local order parameters. Still, the understanding of the
nature of the transition between the ordered and disordered
phases has remained limited. In particular, it is unclear to
which extent these DPTs follow the general paradigm of
continuous equilibrium transitions such as whether they can
be categorized in terms of universality classes and therefore
whether the concepts of universality and scaling extend to
this nonequilibrium dynamical regime. We remark that here
we completely neglect the analysis of singular behaviors in
the (infinite-size) time dynamics, which is another aspect of
DPTs [5] with some connection with the symmetry-breaking
behavior [10].

In this paper, we show that the DPTs after quantum
quenches in transverse-field Ising chains with power-law
decaying interactions (∼r−α) can feature scale invariance.
We find evidence that the critical exponents of the DPT are
universal over a large range of interaction exponents α. Via
finite-size scaling of the time-averaged longitudinal magne-
tization, we identify the critical value of the field hc of the
DPT and, in particular, determine the scaling exponents of the
transition. By studying the decay in time of the longitudinal
magnetization, we are able to put bounds to the values of α

above which the ordered phase disappears. We can confirm the
existence of two phases as long as α � 2. The time-averaged
magnetization decreases with the averaging time and never
reaches a plateau for values of α larger or equal than 2. This
suggests that only the trivial phase survives in this regime of
α, consistent with previous works [10].

For α = 0, the dynamics can be solved via an effective
mean-field description, which becomes exact in the thermo-
dynamic limit (see, for example, Ref. [25]). For α � 0, we
compute the quantum real-time evolution by means of the
discrete truncated Wigner approximation (DTWA) [26]. It
has already been reported that DTWA compares well with
other methods for long-range models [14,27] and, as we are
going to show, also works very well for our problem, giving
a very good comparison with the results of a recent numerical
study using tensor network methods [10]. The DTWA has the
advantage that it allows us to access large sizes with moderate
computational resources polynomially scaling in system size.
Consequently, we can also perform finite-size scaling in long-
range systems where it is crucial to reach large system sizes
to tell the difference from the infinite-range (α = 0) case.

When analyzing scale invariance at the DPT, we find that
the DTWA gives rise to scaling exponents identical to the
mean-field ones at α = 0. For finite α, at the mean-field level,
the exponents are of course independent on the range of
the interaction. This is different for the DTWA, it compares
well with exact methods, as emphasized above, and it is able
to capture correlations. Therefore, in principle, it can give
reliable scaling exponents. We computed the dependence on
α of the scaling exponents of the magnetization, and observed
a significant deviation from the mean-field values at α ∼ 1. As
discussed in the relevant sections, in this regime of α DTWA

is not able to achieve accurate precision for a reliable scaling.
It clearly indicates, however, when the deviations from mean
field occur.

The favorable scaling of the DTWA with the number of
sites allows us to also tackle the study of the DPT in higher
dimensions, a problem not touched so far in literature. As long
as the spins are interacting via long-range exchange couplings,
we do not expect significant dependence on the dimensional-
ity. This is why we decided to study a two-dimensional system
with nearest-neighbor (NN) coupling. Also, in this case, we
expect a DPT. Here, however, the critical behavior should
clearly deviate from the mean-field case. In this case, we can
only compare to exact diagonalization at small system sizes to
test the quality of the DTWA approach. As we will show in the
second part of the paper, we are able to detect the existence
of the DPT through an analysis of the magnetization and of
the Binder cumulant. We perform a comparison with finite-
temperature quantum Monte Carlo results and we see that
this DPT corresponds to the thermal transition. We show that
this result is physically sound because the model is quantum
chaotic. We find additional support for this conclusion by
using exact diagonalization and showing that the level-spacing
statistics is Wigner-Dyson.

In addition, we believe that our work may also contribute
to a better understanding of the range and the limitations of
qualitative and quantitative applicability of the DTWA. The
DTWA has proved to work better in the context of long-
range interactions [27]. The reason is that DTWA catches
the long-distance quantum correlations only partially and
then works better when the model is near infinite range.
The situation is similar to the one of the mean-field approx-
imation, with the improvement that here quantum correla-
tions are taken into account at least partially, giving rise to
scaling exponents beyond the mean-field result. In the two-
dimensional case, quantum correlations become more relevant
for the dynamics and we find that the DTWA provides only
a qualitative (but remarkably meaningful) description for the
dynamics.

The paper is organized as follows. In Sec. II, we introduce
the model and also define the order parameter for the phase
transition. In Sec. III, we discuss the DTWA theory in detail
and we show how to apply it to our model. In Sec. III B,
we compare the DTWA approach for this model with known
results both in the infinite-range interaction case—where
exact diagonalization is also possible for large sizes—and
long-range interaction where the time-dependent variation
principle (TDVP) method is used. For the range of parameters
we are interested in, we find that the comparison is very good.
In Sec. IV A, we perform the finite-size scaling analysis for
the one-dimensional long-range case. We first consider the
case α = 0 where we compare with the exact diagonalization
results and find that the comparison is very good. Then we
move to analyze the case α �= 0 and see that the transi-
tion exists only when α � 2. The results for the short-range
two-dimensional models are discussed in Sec. IV B. Finally,
Sec. V is devoted to the conclusions and further perspectives.
The Appendices contain additional details of the numerical
analysis.
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II. THE MODEL

As anticipated in the Introduction, we will study a system
of N interacting spins governed by the Hamiltonian

Ĥ = −
∑
i �= j

Ji j σ̂
x
i σ̂ x

j − h
∑

i

σ̂ z
i , (1)

where σ̂ x,z
j are the Pauli matrices of the spin located in the jth

site, h is an external transverse field, and Ji j is the exchange
coupling between the spins. We will consider two cases
(assuming to express the energies in units of the exchange
coupling):

(1) A long-range interacting spin exchange,

Ji j = Kα

rα
i j

, (2)

in one dimension. We assume periodic boundary conditions
and define the distance between two sites as ri j = min[|i −
j|, N − |i − j|]. The Kac factor [28] Kα is defined as K−1

α ≡
1

N−1

∑N
i �= j r−α

i j and ensures that the Hamiltonian is extensive.
(2) A short-range interacting spin on a d-dimensional

cubic lattice where the exchange coupling

Ji j = 1

d
δi,NN( j) (3)

is different from zero (δl,m is the Kronecker delta) only if i and
j are NNs. We will assume periodic boundary conditions and
consider the cases of d = 1 and d = 2 (a square lattice of size
L, N = L2).

The system is initialized in the state fully polarized along
x:

|ψ0〉 =
⊗

i

|→〉i . (4)

We then perform a quantum quench with the dynamics gov-
erned by the Hamiltonian of Eq. (1). We are interested in the
evolution of the total x (longitudinal) magnetization which is
given by

mx(t ) = 1

N

N∑
i=1

〈ψ (t )| σ̂ x
i |ψ (t )〉, (5)

and the order parameter for the DPT is the long-time average
of this magnetization:

mx = lim
T →∞

1

T

∫ T

0
dt mx(t ). (6)

(We will always use the finite-T version of this quantity,
mx(T ). We will not specify the dependence on T in those cases
where we have attained convergence.) In the short-range two-
dimensional case, we will also analyze the Binder cumulant
in the long-time limit, defined as

UL = 1 − m(4)
x

3
(
m(2)

x
)2 , (7)

where we defined m(l )
x (t ) = 1

N l 〈ψ (t )| [
∑N

i=1 σ̂ x
i ]

l |ψ (t )〉.
The Binder cumulant is a measure for non-Gaussian fluc-

tuations of the order parameter. At equilibrium in the ther-
modynamic limit, it acquires two different universal values in

two phases: The Gaussian value 0 in the disordered phase and
the value 2/3 in the ordered phase. At the transition point, the
Binder cumulant is scale invariant and it is a very convenient
numerical probe for the existence of an equilibrium transition
[29]. We will also show that in this nonequilibrium context
for the 2D short-range case, it behaves in the same way and
allows us to probe the existence of a transition.

III. DISCRETE TRUNCATED WIGNER APPROXIMATION

Before getting into the discussion of the results, it is useful
to recap the basic ideas behind the DTWA and to discuss the
accuracy of this method for this problem. In the following,
we first review methodological details of the DTWA and
afterward we use exact diagonalization and matrix product
state descriptions by means of a time-dependent variation
principle (MPS-TDVP) data for a quantitative comparison.

A. DTWA method

The DTWA is a semiclassical approximation, which has
been used in many contexts concerning long-range interacting
spin systems and has given noteworthy results, in terms of
comparison with exact results and scalability to large system
sizes. Precise details on the background can be found in
Refs. [14,27]; here we outline our concrete implementation.
All the analysis is based on the construction of the discrete
Wigner representation [26] which is a generalization to dis-
crete Hilbert space of the usual Wigner representation (details
can be found in Ref. [30]). Summarizing, Wootters has shown
that, given a discrete Hilbert space, the quantum dynamics can
be represented through a discrete basis of operators. In the
case of a single 1/2 spin, a possible basis choice is

Âβ = 1 + sβ · σ̂,

2
(8)

where sβ can take the values (1 1 1), (−1 1 −1),
(1 −1 −1), and (−1 −1 1) and σ̂ = (σ̂ x σ̂ y σ̂ z ).

With this basis choice, the expectation of any operator Ô
acting on the Hilbert space of the single spin can be written as

〈O〉t =
∑

β

wβ Oβ (t ), (9)

where wβ ≡ 1
2 Tr [Âβ ρ̂] is the Wigner function, Ow

β (t ) =
1
2 Tr [ÂβÔ(t )] are the Weyl symbols, and Ô(t ) ≡ eiĤtÔe−iĤt .
This representation can also be extended to our case of N spins
considering as basis operators

Âβ = Âβ1 ⊗ Âβ2 ⊗ Âβ3 ⊗ · · · ⊗ ÂβN , (10)

and writing as before the expectation of any operator Ô acting
on the Hilbert space of the N spins as

〈O〉t =
∑

β

wβ Oβ(t ). (11)

Up to now, everything is exact. The DTWA amounts to
approximate the time-evolved basis operators as factorized
objects,

Âβ(t ) = e−iĤt ÂβeiĤt � Âβ1 (t ) ⊗ Âβ2 (t ) ⊗ · · · ⊗ ÂβN (t ), (12)
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where

Âβ j (t ) =
1 + sx

j, β j
(t )σ̂ x

j + sy
j, β j

(t )σ̂ y
j + sz

j, β j
(t )σ̂ z

j

2
. (13)

The sν
β j

(t ) are initialized with the value for the corresponding
β j given in Eq. (8) and obey a simple classical Hamiltonian
dynamics given by

ṡμ
j, β j

(t ) = {
sμ

j, β j
(t ),H

} = 2
∑
νρ

εμνρsρ
j, β j

(t )
∂H

∂sν
j, β j

. (14)

Here the symbol {· · · , · · · } is the Poisson bracket, εμνρ is
the Levi-Civita fully antisymmetric tensor, the variables sμ

j, β j

obey the angular-momentum Poisson brackets {sμ
j, β j

, sν
l, βl

} =
δ j lεμνρsρ

j, β j
, and the classical effective Hamiltonian is defined

as

H
({

sμ
j, β j

}) = −
N∑

i �= j

Ji js
x
i, βi

sx
j, β j

− h
∑

i

sz
i, βi

. (15)

For instance, the total longitudinal magnetization Eq. (5) can
be evaluated in the DTWA scheme as

mx(t ) =
∑

β

wβ

1

N

N∑
i=1

sx
i, βi

(t ). (16)

In this form, it still unpractical from the numerical point
of view because the index β runs over 4N values, so the
sum would be unfeasible for large system sizes. The solution
comes from the relation

∑
β wβ = 1, so, in the cases when

wβ � 0, it behaves as a probability distribution and it can
be sampled through Monte Carlo sampling. With the initial-
ization we choose, we are in one of these lucky cases (see
Ref. [27] for more details) and we can write Eq. (16) as the
average over nr random initializations where each s j, β j is
initialized with probability 1/2 in the condition (1 1 1) and
probability 1/2 in the condition (1 −1 −1).

We remark that this operation is a sample over an operator
basis. Indeed, the initial density matrix can be written as
ρ̂(0) = ⊗

j ρ̂ j (0) with ρ̂ j (0) = 1
2 (Â(1 1 1) + Â(1 −1 −1)) and

the two operators Â(1 1 1) and Â(1 −1 −1) are sampled with
equal 1/2 probability. Many possible choices of operator
bases are possible, moving to each of these different repre-
sentations by means of a unitary transformation. We provide
an example of that in Appendix A.

Remarkably, the error bars do not scale with the system
size, so this method is feasible also in the case of large
systems. Moreover, results converge with a small number of
randomness realizations (nr); we show an example of this
convergence in Appendix A. Unless otherwise specified here,
we use nr = 504.

Finally, different sampling schemes, related to different
choices of the operator in Eq. (8), can be employed. In
Appendix A, we briefly discuss these possible choices. All the
results presented in the paper are essentially independent of
the sampling method. Unless we specify otherwise, through-
out the paper we use the sampling scheme specified in Eq. (8).

In the following, we are going to compare the DTWA
method with the results of other numerical methods to also
show its value in our case.

B. Comparison with other methods

The comparison was done only in the case of one-
dimensional power-law interaction. In this case, in addition
to the possibility to have results from exact diagonalization,
it is possible to compare our data with tensor-network (the
MPS-TDVP) results [10,31] for larger sizes.

First, we consider the case α = 0 of infinite-range interac-
tions. In this limit, the model reduces to the Lipkin-Meshkov-
Glick model whose exact diagonalization (ED) dynamics
can be easily studied. With all the site-exchange operators
conserved, there is a superextensive number of constants of
motion and the dynamics becomes integrable. Thanks to the
conservation of the modulus of the total spin, the quantum
dynamics is restricted to a Hilbert subspace whose dimension
scales linearly with the system size, making the solution
of large system sizes feasible. Specifically, the Hamiltonian
commutes with the total-spin operator Ŝ2 [Ŝ = 1

2

∑
j σ̂ j with

σ̂ j ≡ (σ̂ x
j σ̂

y
j σ̂ z

j )
T

] and we can restrict to the Ŝ2-subspace
with eigenvalue S(S + 1) with S = N/2, which has a dimen-
sion N + 1. (For a detailed explanation, see, for instance,
Ref. [32]). We show some instances of comparison in Fig. 1.
Let’s first consider the case N = 100. We see that the curves
of mx(t ) deviate quite soon from each other, both for h < 1
and h > 1, but the time average (the one we are interested in)
is actually the same (it is marked in the plots by a dashed
horizontal line). Dynamics up to a time t ∼ 30 is quanti-
tatively correct. For larger times, the quantum revivals are
not captured properly. This feature, however, shifts to larger
times upon increasing system size. Thus, for large systems
this discrepancy becomes less and less relevant, making a
description via the DTWA more accurate.

We also show results for N = 10. Here we can see that in
the ED case, a phenomenon appears which is not captured
by DTWA, the Rabi oscillations. Indeed, in this system an
extensive number of eigenstates breaks the Z2 symmetry in
the thermodynamic limit. For any finite size, the true eigen-
states are the even and odd superposition of these symmetry-
breaking states and are separated by an exponentially small
gap. Preparing the system in a symmetry-breaking state [as
the one in Eq. (4)] therefore gives rise to Rabi oscillations of
the magnetization with a frequency equal to the gap. Because
this gap is exponentially small in the system size, we cannot
see these oscillations in Fig. 1(a), where the size is N = 100
and the gap is negligibly small (∼e−100 ln(1/0.32)). But we can
see them in Fig. 1(c) and they are not caught by DTWA.

The existence of the Rabi oscillations is intimately related
to the existence of a Z2 symmetry and the presence of
resonant symmetry-breaking states put in interaction by the
term with the h field. Explicitly breaking the symmetry breaks
the resonance and there are no more oscillations. We do this
in Fig. 1(c) where we also show a curve of mx(t ) obtained,
adding to the Hamiltonian a small symmetry-breaking term
δh

∑
j σ̂

x
j . We see that there are no Rabi oscillations and the

comparison with DTWA in terms of average is very good.
So, in some sense, in DTWA one implicitly adds to the
Hamiltonian a small symmetry-breaking term. This is just
what we operatively do when we want to see a quantum
phase transition. We add a small symmetry-breaking term, we
go to the thermodynamic limit, and then we send the small
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DTWA

(c)

FIG. 1. Comparison of DTWA method with ED for different
parameters. In panel (a) we take N = 100 and h = 0.32, in panel
(b) we take N = 100 and h = 1.5, in panel (c) we use N = 10 and
h = 0.32. In panels (a) and (b) we can see that the ED and DTWA
curves loose agreement after a while but their time averages coincide
(dashed horizontal line). DTWA cannot catch the Rabi oscillations;
they are eliminated by adding a small symmetry-breaking field in the
ED case [see (c))]. In (a), we use the sampling scheme specified by
Eq. (A1) while in the other panels we use the sampling scheme given
by Eq. (8).

0 3 6 9 12 15
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m
x
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)

h = 0.7

h = 1.5
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.0
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m
x
(t

)

h = 0.7

h = 1.5

DTWA

TDVP

FIG. 2. The instantaneous magnetization mx (t ) versus t : Com-
parison of the results obtained with DTWA and TDVP [10] methods
for different values of α and h. In panel (a) we consider α = 1.5 and
in panel (b) we consider α = 3.0. As expected from Ref. [27], we see
a much better agreement at smaller α. Other parameters: N = 100.

symmetry-breaking term to zero. Because we are interested
here in the existence of a dynamical quantum phase transition
with Z2 symmetry breaking, this is exactly what we should do.
DTWA does this implicitly for us, and in the thermodynamic
limit the presence of a small symmetry-breaking term makes
no difference both for DTWA and ED.

For α �= 0, we can compare our DTWA results for the
transverse magnetization mx(t ) with the corresponding ones
obtained through the TDVP method [10,31] (see Fig. 2) for the
case of N = 100 sites. The timescales we consider are much
shorter than the times exponential in N needed for seeing the
Rabi oscillations. Let us start focusing on the case α = 1.5
[Fig. 2(a)]. We see that in this case the agreement is quite
good both inside the symmetry-breaking phase (h = 0.7) and
outside it (h = 1.5). On the opposite, for α = 3 [Fig. 2(b)], the
agreement is very good only when h = 1.5. When h = 0.7,
the DTWA result decays much more slowly than TDVP. The
two methods are in agreement for small values of α, as we
expected from the existing literature on DTWA. To show the
very good agreement when α is small, we plot in Fig. 3
the time-averaged longitudinal magnetization mx versus h for
α = 0.1 and α = 1.5 obtained through the two methods. In
both cases, we see a very good agreement between the two
methods. So, in the small-α regime we are interested in, the
DTWA compares very well with the known results obtained
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FIG. 3. The long-time average of the magnetization mx versus
h: Comparison of the results obtained with TDVP [10] and DTWA
methods for (a) α = 0.1 and (b) α = 1.5. The insets indicate the
difference between two methods where �mx = |mDTWA

x − mTDVP
x |.

through TDVP. This gives us an opportunity, because while
TDVP can be used for at most N = 200 (see Ref. [10]),
DTWA can be pushed up to much larger sizes, thus offering
the possibility for an accurate finite-size scaling.

We conclude this section by comparing DTWA results
for the two-dimensional short-range case with the dynamics
obtained by means of artificial neural networks (ANNs) [33].
We show an example of comparison in Fig. 4 with data taken
from Ref. [33] at large transverse fields in the regime where
the Ising symmetry is restored in the long-time limit. As
one can see, the DTWA compares remarkably well with the
numerically exact ANN data. The idea of ANN approach
is to encode the quantum many-body wave function in an
ANN [34]. Importantly, ANNs are universal function approx-
imators, which guarantees that the encoding always becomes
asymptotically exact in the limit of sufficiently large ANNs.
For the curve in Fig. 4, it has been shown that the data has
been converged with the size of the neural network; the result
is indeed numerically exact.

IV. RESULTS

In this section, we will illustrate our results for the DPT
obtained through the DTWA. We first analyze the one-
dimensional long-range case [see Eq. (2)]. Later we will an-
alyze the two-dimensional case with short-range interaction,

0.0 0.2 0.4 0.6 0.8 1.0

t

−1.0

−0.5

0.0

0.5

1.0

m
x
(t

)

DTWA

ANN

FIG. 4. Comparison of mx (t ) obtained by DTWA with the same
quantity obtained with ANN [33] for a two-dimensional short-range
case. Numerical parameters: h = 8 and nr = 10 000.

Eq. (3). In this second case, we also use the Binder cumulant
to get more reliable indications of the DPT. In both cases, we
address the steady-state properties and consider the behavior
of the time-averaged magnetization Eq. (6). We consider
averages over a time T such that the magnetization has already
converged and we specify it in any of the considered cases,
explicitly studying the convergence in T for α � 2.

A. Long-range model in one dimension

Let us first analyze the one-dimensional long-range case
and study the finite-size scaling of mx as a function of the
transverse field h. We start with the case α = 0, where we can
compare DTWA with the exact solution. In Fig. 5, we plot the
curves of mx versus h for different system sizes N , obtained
through DTWA (a) and exact diagonalization (b) [35]. There
is a good agreement, comparing quantitatively very well, as
we show in the inset where we plot �mx = |mDTWA

x − mExact
x |

versus h for two different values of N . As the system size is
increased, both have one common crossing point hc, making
the existence of a phase transition clearly visible. Close to the
crossing point, the curves obey a scaling form of the type

mx, N (h) = N−β f [(h − hc)Nδ]. (17)

The possible value β ∼ 0 implies logarithmic corrections of
the form mx, N (h) ∼ (1/ ln N ) f ((h − hc)Nδ )

We obtain the scaling collapse shown in Fig. 6 (see Ap-
pendix C for details of the scaling procedure). In accordance
with the exact solution, the DTWA reproduces the logarith-
mic corrections (see Fig. 6). Furthermore, we get a scaling
exponent δ = 0.47 ± 0.04 in good agreement with the exact
exponent δ = 0.5 and a critical field hc = 1 corresponding
to the exact result. The data collapse, shown in Fig. 6(b), is
excellent. For comparison, the same scaling is shown for the
exact diagonalization in Fig. 6(c).

In the following of this section, we are going to apply the
methods illustrated here to the case with α �= 0.

We first focus on the values of α � 1. We show some
examples of mx versus h for different sizes N and different
α in Fig. 7 (also in this case the data shown are obtained
for T = 200 where the observables have already attained
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FIG. 5. The long-time average of the magnetization mx versus
the transverse field h for α = 0 computed using the DTWA (a) and
exact diagonalization (b). There is a good quantitative agreement of
the two data sets (see the inset showing �mx = |mDTWA

x − mExact
x |

versus h for two values of N). In both panels, we perform the time
average over T = 200.

their stationary value). Before doing the finite-size scaling,
let us discuss more qualitatively what happens. For α = 0.1
[Figs. 7(a) and 7(c)] and α = 0.5 [Figs. 7(b) and 7(d)], we
observe a behavior very similar to the case α = 0 shown in
Fig. 5. In both cases, the curves show a crossing at hc ∼ 1, the
mean-field value. The tiny deviations from the mean-field are
not relevant, only due to the fitting procedure. Indeed we can
perform a finite-size scaling with the same method used for
α = 0 and with the same scaling function as in Eq. (17). In the
same Fig. 7 (lower panel), we show the collapsed curves. For
α � 0.5, the critical behavior is mean-field-like. In particular,
for α = 0.1 we find δ = 0.49 ± 0.024 and for α = 0.5 we find
δ = 0.46 ± 0.032.

A different behavior is observed at larger α (shorter-range
interactions). We show the data for α = 1 in Fig. 8. The
crossing point is clearly visible albeit the quality of the data
collapse is not as good as in the previous cases. Several points
are worth being discussed. First, the crossing field is still
very close to one. The exponent δ = 0.76 ± 0.042, however,
deviates significantly from the mean-field value. Although the
DTWA does not allow us to ascertain how sizable the devia-
tion is from the exact scaling analysis, one can be confident
in stating that for these parameters α there is still a transition
point but the critical behavior deviates from the mean field.
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FIG. 6. (α = 0.) In (a), the data of Fig. 5(b) are magnified around
the crossing region to see the details of the crossing region. The
imperfect crossing sets an error on the determination of critical field
of the order of 10−2. (b), (c) Figures 5(a) and 5(b) rescaled according
to Eq. (17) with the choice of the optimal parameters. The scaling
exponents essentially coincide in the two cases.

Another feature that is worth noticing is that there is a
range of transverse fields (in the disordered region above the
critical field) where the magnetization becomes negative. Our
analysis cannot exclude that this “reentrant” behavior might
still be a feature of the DTWA approximation, not present in
more accurate analysis. It is, however, to be noted that this
overshooting of the magnetization might be reminiscent of the
chaotic behavior observed in the mean-field dynamics of this
model [36].
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FIG. 7. The long-time average of the magnetization mx versus the transverse field h for different values of the range of the interaction:
α = 0.1 [(a)] and α = 0.5 [(b)]. The scaling collapse is shown in (c) and (d) for α = 0.1, 0.5, respectively. As in the previous figures, T = 200.

We conclude the analysis of the one-dimensional model
by discussing the case of shorter-range interactions, α � 2.
In this regime, DTWA has no more quantitative agreement
with the TDVP methods, so the results have only qualitative
value. In this regime, we observe that the time-averaged
magnetization mx(T ) decreases with the averaging time T and
never reaches a plateau. This behavior can be observed for
large enough h.

We show these results in Fig. 9. We consider two proto-
typical cases, α = 2 [Fig. 9(a)] and α = 3 [Fig. 9(b)] and we
show the time-averaged magnetization mx(T ) versus T for
different values of h. For sufficiently large h, we see that the
average magnetization decreases with T and does not seem
to reach a plateau. The corresponding slope of this decrease
becomes smaller for smaller values of h and for h = 0.2, 0.3,
the decrease is almost invisible (see the insets which are
included for illustration). At small values of the field, it would
be necessary to go to larger times T to see this trend.

Remarkably, the DTWA gives the same results we have
just described for the case of a one-dimensional model
with short range interactions, as we discuss in detail in
Appendix B. In that case, the model is known to show
no long-range order in the excited states [37], and mx is
doomed to vanish whichever is the value of h, as can be
shown explicitly in the thermodynamic limit using the Jordan-
Wigner transformation [38,39]. Our DTWA numerics sug-
gests that the situation is also the same for the long-range
model with α � 2, but, for sure, this is not a proof and the
question is still debated [10,40]. From the numerics, obvi-

ously, we cannot exclude that a transition point still exists
at hc � 1.

While in one dimension the short-range case is trivial
(there is no DPT), the picture changes drastically by moving to
higher dimensions. In the next section, we consider the case of
a two-dimensional short-range interacting system as defined
in Eq. (3).

B. Two-dimensional short-range model

This case is of particular importance for several reasons.
We expect that the transition will deviate from the mean-field
behavior. This then leads to the question whether the DTWA
is capable of detecting the transition and its non-mean-field
type character. If this is the case, a very important question
to understand is if the system thermalizes and the dynamical
transition corresponds to a thermal-equilibrium transition.
The discussion below will try to address some of these points
by analyzing both the magnetization and the Binder cumulant.

In Fig. 10, we show the behavior of the time-averaged
magnetization as a function of 1/L for different values of
the transverse field. Here we take T = 6 · 105 due to the long
convergence times (this is essentially the limiting factor that
forbids us to consider larger lattice sizes). DTWA indicates
the existence of a transition for h∗ � 0.7. In the ordered phase,
the magnetization increases with the system size and tends to
converge only for the largest samples. This type of finite-size
effects were also observed in the one-dimensional case where
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FIG. 8. Scaling plots of the long-time average of the magnetiza-
tion mx versus the transverse field h at α = 1.0 for different values of
N . The crossing point is obviously close to h = 1 (a) but the collapse
is not as good as before (b). Not withstanding this limitation in the
accuracy of the scaling analysis, the exponents are clearly different
from the mean-field values. As in the previous figures, here also
T = 200.

the convergence with size was similarly attained only for
N ∼ 100 − 200.

We now move to discuss the issue if this transition is the
same as the thermal-equilibrium one. First, we notice that the
model is quantum chaotic and thermalizing. We can show the
presence of quantum chaos by considering the level spacing
distribution and checking that it is near to the Wigner-Dyson
one [41]. For that purpose, we compute the average level
spacing ratio r (see Ref. [42] for a definition and discussion).
Using exact diagonalization in the fully symmetric Hilbert
subspace of a 5 × 4 model, we find a value of r very near to
the Wigner-Dyson value rWD = 0.5295 for all the considered
values of h (see Fig. 11). We therefore expect that the quantum
dynamics shows a transition closely corresponding to the
thermal one.

We can confirm this expectation by moving to the Binder
cumulant analysis. Using this probe, we show that the value
of the critical field found with mx is not far from the value
obtained with quantum Monte Carlo simulations at thermal
equilibrium. (We perform the quantum Monte Carlo sim-
ulations using the ALPS/looper Library [43–47].) In this
framework, we take a temperature T (h) such that the thermal
energy coincides with the value of the energy in the DTWA
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FIG. 9. The long-time average of the magnetization mx versus
averaging time T , (a) and α = 2 (b) α = 3. The curves show that
the time-averaged magnetization decreases with T . This behavior
becomes less visible on decreasing h, almost disappearing for small
h. In the insets, a zoom of the curves at h = 0.3 (a) and h = 0.2
(b) confirm the same trend. The values h = 0.3 and h = 0.2 thus
give an upper bound to the possible critical field, as extracted by our
analysis. Numerical parameters: N = 100, nr = 304.
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FIG. 10. Results of the DTWA for the long-time average of the
magnetization mx versus 1/L in a short-range 2D system for different
values of h. For h � 0.7, the magnetization seems to go to zero in
the thermodynamic limit. Numerical parameters: nr = 1600, T =
6 · 105.

014303-9



REYHANEH KHASSEH et al. PHYSICAL REVIEW B 102, 014303 (2020)

 0.5

 0.505

 0.51

 0.515

 0.52

 0.525

 0.53

 0.535

 0.54

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

r

h

Wigner-Dyson value

FIG. 11. Level spacing ratio r versus h in the fully symmetric
subspace of the two-dimensional model with size 5 × 4.

dynamics, and study the properties of the thermal-equilibrium
Binder cumulant. It is defined as

UL(T (h)) ≡ 1 −
〈[∑N

i=1 σ̂ x
i

]4〉
T (h)

3
〈[ ∑N

i=1 σ̂ x
i

]2〉2
T (h)

, (18)

where 〈· · · 〉T (h) is the thermal-equilibrium average at the
temperature T (h) defined above. We plot UL(T (h)) versus h
for different values of L in Fig. 12. We see that the curves
for different system sizes cross each other at h∗

Th � 0.82. This
finding suggests that there is a transition from an ordered to a
disordered phase at this value of h (see the general discussion
of Ref. [29]). The value of h∗

Th is not far from the one we have
found studying the magnetization with DTWA, suggesting
that this model thermalizes and DTWA can catch up to some
extent this aspect of the dynamics.

We find further confirmation of these findings by analyzing
with different numerical methods the time-averaged Binder
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FIG. 12. Binder cumulant at thermal equilibrium obtained via
quantum Monte Carlo versus h. The considered temperature T (h)
depends on h in such a way that the energy always coincides with the
value of the dynamics. Notice the crossing of the curves for different
system sizes at h∗

Th � 0.82. The error bars indicate a worst-case
estimate of the error introduced by estimating the temperature at
fixed energy T (h) from numerical data (not a Monte Carlo error).
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FIG. 13. The Binder cumulant UL [Eq. (7)] versus h in a short-
range 2D system for different values of h. Numerical parameters:
T = 104.

cumulant UL, defined in Eq. (7). We study the dynamics with
DTWA and exact diagonalization and we consider the behav-
ior of UL versus h for different system sizes. We show data
for DTWA in Fig. 13 and the ones for exact diagonalization in
Fig. 15. Let us first focus on the DTWA curves in Fig. 13.
The crossing between curves at system sizes L and L + 2
depends on L. For the largest sizes we can numerically attain
(L = 22), the crossing occurs at h∗ ∼ 0.65. For fields beyond
the crossing point, the Binder cumulant rapidly decreases with
L. This is physically sound: The total magnetization is the
sum of the local magnetizations which behave as uncorrelated
random variables at large h because the correlation length is
very short. The sum of uncorrelated random variables tends
to a Gaussian as the number of random variables increases
and for a Gaussian the Binder cumulant vanishes. For small
values of h, on the opposite, UL increases with L. Therefore, a
crossing point between curves for different L appears.

The Binder cumulant has been evaluated averaging over
a time (T = 104) shorter than the time needed to attain an
asymptotic value in the DTWA scheme. The point is that,
before this asymptotic value, the Binder cumulant attains a
metastable plateau in the DTWA scheme: We show some
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FIG. 14. The Binder cumulant UL [Eq. (7)] versus T in a short
range 2D system for different values of h and L. Notice the
metastable plateau. Numerical parameters: T = 104.
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FIG. 15. Exact diagonalization result of the Binder cumulant UL

[Eq. (7)] versus h in a short-range 2D system for different values of
L. Numerical parameters: T = 1000.

examples in Fig. 14. This plateau gives rise to the crossing
behavior we can see in Fig. 13 while the asymptotic value does
not. The metastable plateau therefore shows a behavior more
similar to the ones given by quantum Monte Carlo (Fig. 12)
and by exact diagonalization (Fig. 15). This suggests that, in
this context, DTWA gives physically more sound results for
a finite time, although the difference between the metastable
plateau and the asymptotic value is very small. We remark
that this plateau is an effect of the approximation and does
not correspond to any prethermalization behavior in the actual
physics.

We also study the behavior of the Binder cumulant by
means of exact diagonalization. In Fig. 15, we show the exact-
diagonalization Binder cumulant versus h for small system
sizes. The trend is the same as that observed in Fig. 13. The
crossing occurs around h∗ ∼ 0.6, which is in good agreement
with the value found using DTWA. We stress again that for
increasing system size the Binder cumulant tends to 2/3 in
the ordered phase and to zero in the disordered one, exactly as
it occurs in the thermal-equilibrium case.

In conclusion, for the two-dimensional short-range case,
there is a dynamical transition closely corresponding to the
thermal one due to the fact that the system appears to be
quantum chaotic and thermalizing. Remarkably, DTWA can
see the existence of this transition.

V. CONCLUSIONS

In conclusion, we have used DTWA to study the dynamical
quantum phase transition in Ising spin models. Our aim was
exploring the existence of a transition between an ordered and
a disordered phase in the steady state and the properties of
this transition focusing on a local order parameter, the time-
averaged longitudinal magnetization.

We have first focused on the long-range one-dimensional
case where interactions decay with the power α of the dis-
tance. Here we have compared DTWA with numerically exact
results (exact diagonalization for α = 0 and TDVP) and we
have found good agreement. Thanks to the good scalability
of DTWA, we have done a finite-size scaling of the time-

averaged longitudinal magnetization and we have studied
the critical exponents of the transition between ordered and
disordered phase. For α small (α = 0.1, 0.5), we have found
the same critical exponents as the mean-field case (α = 0).
For α = 1, we have found critical exponents significantly
different from the mean-field case and we have found that
the magnetization changes sign in the critical region. We
do not know if this is a physical result or an effect of the
DTWA approximation which should not work very well in
the critical region due to the long-range correlations of the
physical system. For α � 2, we have found no scaling at all
with the system size and we have put a lower bound to the
value of h for which the longitudinal magnetization vanishes
at long times. We argue that this is most probably the case
also for smaller h but we cannot see it due to the extremely
long convergence times in the DTWA scheme (this is the
same situation occurring if we apply DTWA to a short-range
one-dimensional Ising model).

We further considered the two-dimensional short-range
model, not considered in this context so far, again applying
the DTWA approximation. Our data confirm that the DTWA is
able to capture the existence of a transition and the value of the
critical field compares well with the one of a corresponding
thermal transition. We argued that this is physically sound
showing that the model is quantum chaotic by means of exact
diagonalization. To attempt a scaling analysis and thus to
confirm that the associated critical exponents are the thermal
ones, it would be necessary to consider even larger system
sizes, which might be an interesting prospect for the future.

Our work can also be considered as a contribution toward
the clarification of the range and the limitations of qualitative
and quantitative applicability of the DTWA.
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APPENDIX A: DTWA SAMPLING

As discussed in Sec. III, in the DTWA approach, one has
to solve classical equations of motions for different random
initial configuration. Physical quantities are obtained upon
averaging over this initial distribution. In this Appendix, we
report on some details of the sampling procedure we used to
obtain the results reported in the body of the paper.

First, it is important to understand how the results depend
on the number of random initial realizations nr . In Fig. 16,
we consider the dependence of the average magnetization as
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FIG. 16. The long-time average of the magnetization mx versus
number of realizations nr for three different values of the transverse
field. The convergence changes depending on the distance from
the critical point. However, in all the shown cases, averaging over
100–200 configurations already guarantees that the obtained result is
reliable. In the case shown here, α = 0.1. We tested that this behavior
is quite generic.

a function of the number of initializations nr . We show the
case of α = 0.1; the behavior is, however, quite generic. Away
from the critical field hc, the order parameter mx converges
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FIG. 17. The time average of the magnetization mx versus the
averaging time T : Comparison of the results obtained with exact
diagonalization and different sampling schemes of DTWA (the sam-
pling schemes S4 and S8 are defined and discussed in Ref. [48]).
We consider α = 0.0, N = 100 (upper panel), and α = 1.0, N = 20
(lower panel). Other parameters: h = 0.32, nr = 2000.

very rapidly to its asymptotic value and no significant changes
happen by increasing nr . Since we are interested in determin-
ing transition points, the behavior mx as a function of nr is
more notable in the critical region. Close to the transition
point, the convergence with the number of realizations is
slower. In any case, after a few hundreds of initial configu-
rations the results seem stable. We choose nr = 504 for most
of the calculations, if not stated otherwise.

In addition to the number of initial configurations over
which performing the sampling, another aspect to consider is
the choice of the sampling scheme. Indeed, using phase point
operator Âα , one can map each basis state of Hilbert space to
a point in phase space. There are different possible choices of
this phase operator and the one shown in Eq. (8) is not the
only one. Any other possible choice for phase operator can be
derived by some unitary transformation, Â′

β = Û ÂβÛ †.

0 2000 4000 6000 8000 10000

T

0.0

0.2

0.4

0.6

0.8

1.0(a)

(b)

m̄
x

h = 0.1

h = 0.2

h = 0.3

h = 0.4

0 5000 10000
9.97e-01

9.97e-01

9.97e-01

0 100 200 300 400 500

N

0.3

0.6

0.9

m̄
x

T = 1000, h = 0.2

T = 5000

T = 10000

FIG. 18. Top panel: The time-average of the magnetization
mx (T ) versus averaging time T in the Ising chain with short-range
interaction. For larger h, the average magnetization decreases with
T toward 0 without ever reaching a plateau: This suggests that

mx (T )
T →∞→ 0 as in the actual physics. For h = 0.1, this decay behav-

ior can only be seen very slightly (inset), but this is an artifact of the
DTWA and not a physical effect. Numerical parameters: N = 100,
nr = 304. Bottom panel: Plot of the magnetization versus the system
size N . The correlations are very short range for this model and this
is reflected in the insensitivity on N of the average.
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FIG. 19. (a) Minimum distance between curves in Fig. 5(a) as a function of β. (b) Cost function as function of δ. Here α = 0.0.

In Ref. [48], the following phase operator was considered
(more details about this construction can be found there):

Â′
β = 1 + s′

β · σ̂,

2
(A1)

where s′
β can take the values (1 −1 1), (−1 −1 −1),

(1 1 −1), and (−1 1 1) and σ̂ = (σ̂ x σ̂ y σ̂ z ) which is ob-
tained by flipping the sign of the second component of sβ .

Figure 17 shows the comparison, as a function of the
averaging time T for two different values of α. In the
same figure, DTWA is further compared to exact diago-
nalization. In the fully connected case (α = 0), the differ-
ent samplings lead to essentially the same result and agree
with the exact-diagonalization data. Smaller distances are
observed in the bottom panel for the case α = 1. It should
be noted that deviations appear only at the the third decimal
digit. These differences may be important only very close
to the transition point and may also contribute to the un-
certainties in the scaling plots that we observe for α ∼ 1.
However, the analysis of the present work does not depend
on the sampling scheme.

APPENDIX B: SHORT-RANGE MODEL
IN ONE DIMENSION

In the case of spin chain with short-range interaction,
there is no ordered nonequilibrium steady state [37–39] (it
corresponds to the long-range one-dimensional model studied
in the limit of very large α). It is useful to check this result
with DTWA as an additional test of its quality. Following the
same approach used to argue the absence of a critical point
for α � 2, we analyze how the magnetization scales with T
for different values of the transverse field. The result of this
analysis is presented in Fig. 18. Down to h = 0.1, the steady-
state magnetization (at large T ) tends to zero (top panel). The
inset in the top panel shows that to see the suppression of
the magnetization at large T , one should go to very large

values. In the top panel, we considered a chain of length
N = 100. Because of the short-range correlations in this case,
the behavior is essentially independent of N as displayed by
the bottom panel of Fig. 18.

APPENDIX C: DETERMINATION OF THE
CRITICAL EXPONENTS

To determine the best approximations to hc and to the
exponent β, we find the values of h and β such that the
distance function between the average magnetization curves
at different N ,

dβ (h) =
∑

N, N ′<N

|Nβmx, N (h) − N ′βmx, N ′ (h)|, (C1)

is minimum. In this way, we find hc = 1.008 ± 0.01, a value
very near to the exact one hc = 1. Moreover, we find β = 0, as
we can see in Fig. 19, but we scale the average magnetization
with ln N in order to take into account the logarithmic correc-
tions. For finding the optimal δ, we minimize with respect to
δ the cost function

Dδ =
∑

N ′, N<N ′
∫

dx[mx, N (hc+ N−δx) − mx, N ′ (hc+ N ′−δx)]2

∑
N ′, N<N ′

∫
dx

[
m2

x, N (hc+ N−δx)+ m2
x, N ′ (hc+ N ′−δx)

] .

(C2)
The errorbars in δ are evaluated in the following way. If we
have to perform our minimization procedure on a set of K
data curves, we consider all the K distinct subsets of K − 1
curves. In each of these subsets, we perform the minimization
procedure and then we get K different values of δ. The
standard deviation of these K values of δ provides the errorbar.
In Fig. 19, we consider in detail an example of application of
our method. In Fig. 19(a), we show the minimum distance
versus β, while in Fig. 19(b) we show the cost function versus
δ for different α and hc found using the logarithmic scaling
[see below, Eq. (17)]. To perform the integration, we apply
a cubic spline interpolation. The dependence of Dδ on δ is
shown in Fig. 19(b); we find the minimum in δ = 0.47, as we
have elucidated in the main text.
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