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In this work we probe the dynamics of the particle-hole symmetric many-body localized (MBL)
phase. We provide numerical evidence that it can be characterized by an algebraic propagation of
both entanglement and charge, unlike in the conventional MBL case. We explain the mechanism of
this anomalous diffusion through a formation of bound states, which coherently propagate via long-
range resonances. By projecting onto the two-particle sector of the particle-hole symmetric model,
we show that the formation and observed subdiffusive dynamics is a consequence of an interplay
between symmetry and interactions.

I. INTRODUCTION

Symmetry and dimensionality both play a substantial
role in the physics of single-particle Anderson localiza-
tion1. For instance, in one- and two-dimensional sys-
tems without the presence of any specific symmetry all
single-particle wave-functions are exponentially localized
by any infinitesimal amount of disorder1–4. On the other
hand, the presence of particular symmetries can alter the
situation and can give rise to electronic states that are
not exponentially localized. In low-dimensional systems,
critically delocalized states appear due to protection by
chiral symmetry. Additionally, in one dimension the pres-
ence of chiral symmetry leads to a singularity in the den-
sity of states at zero energy, which is known as Dyson
singularity5–14. Such a model in one dimension is re-
alized by having off-diagonal or bond disorder instead
of random chemical potentials. Here, the single-particle
eigenstates with energy close to the singularity are quasi-
localized and the ground state belongs to a random sin-
glets phase7,8,12,13,15,16. In higher dimensions, e.g., in two
dimension, the model with Dirac fermions in the presence
of random vector potential also hosts such critically de-
localized states17.

In recent years, the concept of single-particle Anderson
transition has been generalized to the many-body case,
generating the field now known as many-body localiza-
tion (MBL)18–23. The interplay between disorder and
electron-electron interactions induce a quantum phase
transition, separating a thermal (ergodic) phase from
a many-body localized one even at high energy den-
sity18,19,24–26. The MBL transition is known to be an
eigenstate quantum phase transition27, occurring at the
level of single-eigenstates. For instance, the bipartite en-
tanglement entropy calculated in an eigenstate changes
from being volume law in the ergodic phase to an area
law in the localized one.

By now several indicators are known to characterize
the MBL phase, for instance, the absence of thermaliza-
tion, Poisson level spacing distribution and exponential
decay of correlation functions are few of those. Impor-

tantly, the absence of thermalization in the MBL phase
is induced by an emergent form of integrability28–36, de-
scribed by the existence of an extensive number of quasi-
local integrals of motion. The presence of interactions
induces dephasing between the local integrals of motion,
giving rise to a slow propagation of information through
the entire system even though charge or energy transport
is prohibited by localization36–39. However, a complete
understanding of the MBL phase and its associated criti-
cal properties are still lacking due to significant finite size
and finite time effects in numerical simulations40–44.

As in Anderson localization, the presence of symme-
tries also gives rise to richer physics in the MBL transi-
tion22,45–55. Recently, it has been shown that the pres-
ence of continuous symmetries such as the SU(2) one,
alters the eigenstates properties of the MBL phase. For
instance, the bipartite entanglement entropy in highly ex-
cited eigenstates shows logarithmic scaling with the sys-
tem size instead of a conventional area law47,52,56. The
sub-thermal scaling of the entanglement is attributed
to the resonance structure of the eigenstates that orig-
inates from the symmetry of the Hamiltonian. As a re-
sult, an SU(2) symmetric model shows unconventional
spin or charge transport as compared to the usual MBL
phase47,57–59. In the spinfull Hubbard model this is man-
ifested in the subdiffusive propagation of spin excitations
in the background of localized charge degrees of freedom.
It is believed that eventually the spin excitations will act
as a bath for the localized charge and will delocalize it in
the thermodynamic limit59,60.

A different type of symmetry is the chiral or particle-
hole (PH) symmetry, which is the main topic of this
work, also known to give rise to a distinct character of
the MBL phase45,55. In the presence of PH symmetry
the non-interacting ground state is described by random
singlets15. Using real space renormalization group calcu-
lations, it has been shown that the random singlet phase
also extends to excited states, and is dubbed as quantum
critical glass45. On the contrary, in the presence of both
interactions and PH symmetry, the highly excited states
spontaneously break the original symmetry at strong dis-
order, therefore giving rise to an MBL phase. However,
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the MBL phase with PH-symmetry differs from the well
known MBL phase by the fact that the excited states are
macroscopic cat states, which are protected by the global
Z2 symmetry. The spectral pairing of eigenstates is re-
sponsible for a non-zero value of the Anderson-Edwards
order parameter, which further implies that the PH sym-
metric MBL phase is of spin-glass nature45,55.

Several eigenstate properties of the PH symmetric
MBL phase have been explored, but the dynamical prop-
erties have so far not been extensively investigated45,55.
In this work, we explore the dynamics of an MBL phase
in the presence of PH symmetry. We focus on the time
evolved entanglement entropy quenching from a typical
product state to probe information propagation, along
with the infinite temperature density-density correla-
tor for particle transport. We observe that in the PH
symmetric MBL phase the entanglement entropy grows
logarithmic-like at weak interactions and algebraically for
stronger, in contrast to usual MBL where it grows loga-
rithmically at all interaction strengths36–39,61. Moreover,
at asymptotically large times in a finite system the en-
tanglement entropy saturates to a non-ergodic extensive
value. The density-density correlation shows propagation
in space and time pointing towards an unconventional
non-ergodic phase, which might eventually delocalize at
very long times in the thermodynamic limit. We quali-
tatively explain our findings by introducing an effective
model for the dynamics in the two-particle sector of the
original model. We observe that even at this zero-density
limit the essential features of the finite-density dynam-
ics are revealed via bound states propagation of the two
particles due to the interaction. We point out that such
a propagation arises due to long-range resonances pro-
tected by the underlying PH symmetry.

The rest of the work is organized as follows. In Sec. II,
we introduce the interacting PH symmetric model and
we discuss its non-interacting limit. Here, we also de-
fine the observables that we consider in this work, e.g.,
entanglement entropy, and infinite temperature density-
density correlator. In Sec. III, we present the numerical
results. In particular, Sec. III A shows the spectral and
eigenstates properties of the model that also confirm the
existence of an MBL phase at strong disorder. While in
Sec. III B, we focus on the out-of-equilibrium dynamics
at strong disorder. In Sec. IV, we provide evidence that
the same type of dynamics is also present in the case
where we consider only two particles in the system.

II. MODEL AND METHODS

In order to study the dynamical properties of a strongly
disordered MBL phase with PH symmetry, we use the fol-
lowing t−V spinless fermionic model with bond disorder

and next nearest neighbor interactions,

H =

L/2−2∑
i=−L/2

Ji

(
c†i ci+1 + h.c.

)
+ V

(
ni −

1

2

)(
ni+1 −

1

2

)
,

(1)

where c†i (ci) is the fermionic creation (destruction) op-

erator at site i and ni = c†i ci is the local density oper-
ator. L is the system size and N = L/2 is the number
of fermions. The Ji’s are the random bond disorder de-
fined by Ji = eµi , where µi’s are independent random
variables uniformly distributed between [−W,W ]. This
choice ensures that Ji’s are positive. V is the strength
of the interaction. The model in Eq. 1 is equivalent,
via a Jordan-Wigner transformation to a spin-1/2 XXZ
Heisenberg chain with random bonds. Moreover, H has
a global Z2 symmetry (PH symmetry) generated by the

parity operator P =
∏
i σ

x
i (PciP

−1 = (−1)i+1c†i ).
The non-interacting case (V = 0) is known as the

Dyson model (XX model with random bonds) and is
integrable5–12,16. In this limit the single-particle den-
sity of states shows a divergence at zero energy %(E) ∼
1/(E| log3(E)|) as E → 05,11,16. The presence of this
divergence implies through the Herbert-Jones-Thouless
relation62, a logarithmic divergence for the localization
length ξloc with energy7,16. Nevertheless, the zero en-
ergy states are not extended and they can be consid-
ered quasi-localized (marginally localized), meaning that
the localization length depends only sub-extensively on
system size ξloc ∼

√
L. Instead, the eigenstates away

for the divergence, are exponentially localized ξloc ∼
O(L0)7,13,16, similar to the case with diagonal disorder.
Consequently, the non-equilibrium dynamics of the non-
interacting model show a sub-logarithmically slow en-
tanglement propagation ∼ log(log(t))13,63–65 and charge
transport13,66.

In Ref. 45 a similar model of Eq. 1 has been con-
sidered, where using a combination of renormalization
group method and exact diagonalization the existence
of a strong disorderd MBL spinglass phase has been
established. With the aim to detect such a putative
MBL phase for the considered model (Eq. 1), we com-
pute the following two conventional indicators. First,
the level spacing statistics in the middle of the spec-
trum. The level spacing statistics is defined as rn =
min(δn, δn+1)/max(δn, δn+1), where δn = En − En−1

with En’s are the ordered eigenenergies of H. Second,
we compute the disordered averaged bipartite entangle-
ment entropy S(A) = −TrρL/2 log(ρL/2), where ρL/2 is
the reduced density matrix of half of the system in an
eigenstate chosen from the middle of the spectrum. The
eigenvalue and eigenstate properties are calculated using
standard shift-invert diagonalization techniques67.

After validating the existence of a non-ergodic phase
in this model, we probe the dynamics of such phase via
the propagation of the bipartite entanglement following
a quantum quench and the density-density correlator at
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infinite temperature, defined as,

C(i, t) =
1

D
Tr

(
n̂i(t)−

1

2

)(
n̂0 −

1

2

)
Θ(t), (2)

where Tr represents the infinite temperature average and
D68 is the dimension of the many-body Hilbert space. We
renormalize the correlator C(i, t) via its Fourier transform
C(q, t) = Fq[C(i, t)]

Π(i, t) = Fi
[

C(q, t)

C(q, t = 0+)

]
. (3)

The density-correlator Π(i, t) can be interpreted as a
probability distribution Π(i, t) ≥ 0,

∑
i Π(i, t) = 1 and

Π(i, t = 0+) = δi0.
To monitor the dynamics of the system we focus on

the second moment of the correlator in Eq. 3,

∆x(t) =

 L/2∑
i=−L/2

i2Π(i, t)− (

L/2∑
i=−L/2

iΠ(i, t))2

1/2

. (4)

To access larger system sizes, here we use Chebyshev
polynomials techniques for the time evolution and eval-
uate Tr stochastically using random states44,69.

In a conventional localized phase, ∆x(t) probes the lo-
calization properties of the system38,44, saturating at a
finite L−independent value in the limit of asymptomati-
cally long times. Indeed, its saturation value ∆x(t→∞)
could be used to define a localization length in analogy
with the non-interacting model. In an MBL phase with-
out special symmetries a saturation of ∆x(t) is expected
at long-times, however, recently it has been shown that
due to some residual dynamics the time scale to reach
such a saturation could be much longer compared to the
non-interacting limit40.

III. NUMERICAL RESULTS

A. Spectral and eigenstates properties

In this section, we inspect spectral and eigenstates
properties in the middle of the spectrum of H in Eq. 1
with the aim to establish the existence of an MBL phase
at strong disorder. Moreover, we restrict the Hamilto-
nian to its positive Z2 sector45.
Level spacing statistics: In an MBL phase due to an

emergent form of integrability, energy levels tend to cross
each other and the probability distribution for the level
spacing is expected to be Poissonian. As a consequence,
the level spacing statistics, r takes the value 2 log 2 −
125,70. Instead, in an ergodic phase of H energy levels
avoid each other and r takes the same value of a random
matrix as known for the Gaussian Orthogonal Ensemble
(GOE) r ≈ 0.5325,70.

Figure 1 (a) shows the level spacing statistics, r, as
a function of disorder W and fix interactions strength
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FIG. 1. (a): Level spacing parameter r as a function of disor-
der strength W for different system sizes L and V = 2. The
dashed lines are the Poissonian value r = 2 log 2 − 1 and the
GOE one r ≈ 0.53. (b)-(c): Probability distribution P(s) for
the renomalized level spacing s = En+1−En/〈En+1−En〉 for
two values of disorder strength W = 2.25, 2.75, respectively.
The inset in (b) shows a magnification of P(s) for small values
of s.

V = 2. With increasing disorder strength the r changes
from GOE ' 0.53 to Poisson statistics ' 2 log 2 − 1 ≈
0.386. Approximately the transition happens at disor-
der strength Wc . 2. However, strong finite size effects
are manifested by a shifting of Wc with L through er-
godicity. This aforementioned shift has been seen also
for the model with diagonal random disorder42,43,55,71–73,
however, it seems to be more pronounced here. Due
to unavailability of larger system sizes and shifting of
the crossing point of the r we do not attempt to do a
finite-size collapse of the data. However, to better un-
derstand the stability of the localized phase, we inspect
the probability distribution P(s) of the energy level spac-
ing s = En+1−En/〈En+1−En〉74. Figures 1 (b)-(c) show
P(s) for several system sizes L = {10−20} at strong dis-
order W = 2.25, 2.75 respectively, which clearly support
the expected Poissonian statistics (see inset in Fig. 1 (b)).

Bipartite entanglement entropy: The entangle-
ment entropy S is a useful tool to probe ergodicity and
its break-down. In an MBL phase, eigenstates are only
locally entangled, implying an area law scaling for the
entanglement entropy S ∼ O(L0). In contrast, in a ther-
mal phase eigenstates are highly entangled and S scales
linearly with L (volume law).

Figure 2 (a) shows the disorder averaged eigenstate
half-system entanglement S as a function of disorder
strength W . At weak disorder W . 2.0 in the er-
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FIG. 2. (a): Averaged half-chain entanglement entropy S as
a function of disorder strength W , several L and V = 2. The
dashed lines are the entanglement entropy of a random state
SPage = ((L − 1) log 2 − 1)/2). (b): S/SPage as function of
L and several W close to the putative MBL transition. (c):

Variance δS2 of the entanglement entropy as function of W .
(d): Probability distribution ρ(x) of the entanglement entropy
x = S for several L at W = 2.25. The dashed line is a guide
for eye to support the exponential form ρ(x � 1) ∼ ae−bx

(a ≈ 3.1, b ≈ 1.2).

godic phase one clearly observes the expected volume
law, in agreement with the GOE value of the level spac-
ing parameter r. Moreover, S approaches the value
SPage = ((L − 1) log 2 − 1)/2 of a random state in the
Hilbert space75, which is the expected behavior for S for
thermal states at infinite temperature76. For larger dis-
order, within the available system sizes, we also observe a
weak flow of entanglement with system size, although it
is far from a volume law. In Fig. 2 (b) we summarize this
weak flow by plotting S/SPage as a function of system
sizes for different values of disorder. For weak disorder
W ≈ 1.5 − 1.85, but close to the transition, we report
an upturn of S/SPage with increasing system sizes. At
this disorder value the system shows an area law scal-
ing as it goes down linearly with L. For larger L & 12
the system is out of the ‘correlation volume’ and eventu-
ally returns to volume law scaling as one would expect.
The correlation volume increases quite rapidly with in-
creasing disorder as can be see in Fig. 2 (b). For stronger
disorder W ≈ 2.0, S/SPage decreases and no minimum is
reached within the available system sizes. What happens
with increasing system sizes and whether at larger disor-
der values one observes volume law scaling of entangle-
ment (curves show the upturn) cannot be ruled out from

the existing data. This phenomena is reminiscent of the
situation in the Anderson model on the random regular
graph (RRG)77–83. In RRG it has also been shown that
the correlation volume is exponentially large in disorder
strength, therefore finite-size numerics underestimate the
true critical point of the transition77,80,81. Figure 2 (c)
shows the sample variance of the bipartite entanglement
entropy δS284 as a function of disorder strength for sev-
eral system sizes. The variance is growing with L close
to the estimated finite-size transition as also observed in
diagonal disorder model55,61,71.

Like for the level spacing parameter r to better un-
derstand the nature of the MBL phase, we study the
probability distribution ρ(S) of the bipartite entangle-
ment entropy S, as shown in Fig. 2 (d). As one can no-
tice the shape of ρ(S) is highly non-thermal. Moreover,
the distribution function shows a clear peak structure
at S ≈ log(2). The origin of the peak can be under-
stood by recalling that the PH symmetric MBL phase
is of spin-glass nature. It implies that the eigenstates
are macroscopic cat states |Ψc〉 = (|En〉 ± P |En〉)/

√
2,

where P |En〉 denotes the symmetry reversed state of
|En〉. These type of states contribute to the entangle-
ment entropy as S ≈ log(2) as seen with a pronounced
peak in the entanglement distribution. Importantly, ρ(S)
develops exponential tails (ρ(S) ∼ e−bS), what might
imply an area law scaling for S (∼ O(L0)) in the ther-
modynamic limit. Nevertheless, logarithmic corrections
cannot be ruled out, e.g. S ∼ logL.

From these observables here we conclude that indeed
there exists an ergodic-MBL transition in finite size for
this PH symmetric interacting model. In the following
sections we discuss the dynamical properties of this MBL
phase.

B. Out-of-equilibrium dynamics

Having established the existence of a non-ergodic
phase, we now turn to probe its dynamical properties.
By studying the dynamics of the system, we will be
able to make definite statement about the nature of the
MBL phase for finite time scales. For instance, we find
that the dynamics is vastly different from the conven-
tional MBL phase36,38,40,44,61,85,86 even though the sys-
tem shows Poissonian level statistics.
Entanglement growth: First, we probe the prop-

agation of entanglement by quenching random product

states of the form
∏
s c
†
is
|0〉. In the usual exponentially

localized MBL phase, in which the quasi-local integrals
of motion develop exponential tails, the entanglement
grows logarithmically in time (S(t) ∼ log(t)) due to an
interaction-induced dephasing mechanism36–39.

Let us start by investigating the entanglement propa-
gation in the presence of weak interactions. For access-
ing larger system sizes at arbitrary large time scales, we
use a recently proposed method, which is able to quan-
tify the induced dephasing mechanism at strong disorder
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FIG. 3. (a): The averaged bipartite entanglement entropy
S(t) at strong disorder W = 2.5 and weak interactions V =
0.01. The dots curves (exact) are obtained preforming the
time evolution with the full Hamiltonian H in Eq. 1, while
the dashed ones (approx.) with the effective Hamiltonian in
Eq. 6. The blue straight dashed line is just for guide of eyes
∼ log(t). The inset shows the relative fluctuations ∆S(t) =

|S(t)− SApprox.(t)|/S(t) for L ∈ {12, 16}. (b): S/ logβ(t) for
several L ∈ {16, 20, 24} and several β ∈ [1, 2].

and weak interactions36. This perturbative method has
been already used to study information propagation in
one- and two-dimensional MBL systems36, in an alge-
braic MBL phase87, and to inspect transport properties
of MBL systems weakly coupled to a thermal bath88. The
method relies on the perturbative nature of the integrals
of motion. As a consequence, in the limit of weak inter-
actions the integrals of motion of H in Eq. 1 can be taken
the ones of the non-interacting case.

Rewriting the Hamiltonian in terms of the creation

(annihilation) operator η†k (ηk) for the single-particle
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FIG. 4. (a)-(b): Entanglement growth S(t) quenching a typi-
cal product state for two values of W = 2.25, 2.75 and V = 2.
The dashed line are a possible fits, in order to show the alge-
braic growth propagation S(t) ∼ tγ .

−10 0 10
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FIG. 5. Π(i, t) in the localized phase for L = 24 and V =
2.0. As observed, the density correlator predominantly shows
exponential tails, however, with increasing time the tail is
lifted, which facilitate the charge propagation.

eigenstate ψk(x) with eigenvalue εk, we obtain

H =
∑
k

εkη
†
kηk + V

∑
l,n,p,q

Bl,n,p,qη
†
l ηnη

†
pηq, (5)

where Bl,n,p,q =
∑
i ψl(i)ψn(i)ψp(i+ 1)ψq(i+ 1)36. Dis-

carding the terms that do not commute with the non-

interacting integrals of motion τk = η†kηk ([H(V =
0), τk] = 0), we obtain the following effective Hamilto-
nian

Heff =
∑
k

εkτk + V
∑
l,n

Sl,nτlτn, (6)

where Sl,n = Bl,l,n,n −Bl,n,l,n.
We benchmark these approximations by comparing the

propagation of S(t) generated with the exact dynamics
of H in Eq. 1 and with Heff in Eq. 6. Figure 3 shows the
averaged bipartite entanglement entropy S(t) at strong
disorder W = 2.5 and weak interactions V = 0.01 com-
puted with the full Hamiltonian H (dots, exact) and Heff

(dashed line, approx.) for L ≤ 16. The curves generated
with H and Heff are almost indistinguishable. Moreover,
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to better quantify the difference, we compute the rela-

tive error ∆S(t) = |S(t)− SApprox.(t)|/S(t) as function
of time for system sizes reachable with exact diagonal-
ization (see the inset of Fig. 3). ∆S(t) provides nu-
merical evidence that the method is reliable in the con-
sidered regime, since it is bounded with time, does not
present strong finite-size effects with L and the deviation
is smaller than 6%.

Thus after having validated the robustness of the
method for strong disorder and weak interactions, we
now compute S(t) performing the dynamics with Heff in
Eq. 6. At time scales governed by the interaction strength
t? ∼ 1/V ≈ 100 a slow (presumably logarithmic) prop-
agation takes place, as shown in Fig. 3 (a) for system
sizes up to L ≤ 24. We detect a small positive curva-
ture in log-scale for the growth of S(t), implying that the

propagation might be described by S(t) ∼ logβ(t) with
β > 1. With the aim to better understand the behavior
of S(t), we analyze the function S(t)/ logβ(t) by tuning

the parameter β. Figure 3 (b) shows S(t)/ logβ(t) as
function of time with β ∈ [1, 2] and several L. For β = 1,

S(t)/ logβ(t) increases with time, while for β = 2 de-

creases. As consequence S(t) ∼ logβ(t) with 1 < β < 2.

We found the best fit for β ≈ 1.4, for which S(t)/ logβ(t)
develops a plateau with respect to t.

The slow propagation at strong disorder and weak in-
teractions S(t) ∼ logβ(t) with β ≈ 1.4 is consistent
with the renormalization group calculation proposed in

Ref. 64, S(t) ∼ log2/φ(t) with φ = (1 +
√

5)/2 being the
golden ratio. It is important to underline that this re-
sult could not be found by inspecting small sizes L ≤ 16,
due to the strong finite effects even at short times, i.e.,
the dynamics for L = 12 and L = 16 overlap only at
small transient times (see Fig. 3 (a)). Moreover, the ap-
plied method could be seen as an indirect proof, of the
fact that at weak interactions the entanglement growth is
caused by the interaction-induced dephasing mechanism
(Eq. 6), at least for the inspected time scales t ≈ 106.

Next, we study information propagation for stronger
interaction strengths V , upon keeping the disorder W
strong, in order to remain in the MBL phase of H. In
this regime the pertubative argument (Eq. 6) might break

down and the off-diagonal terms η†l ηnη
†
pηq would play

an important role in the information propagation. Due
to non-applicability of the aforementioned method, we
compute S(t) using exact diagonalization for L ≤ 16 and
Chebyshev integration techniques for L = 20.

In Figs. 4 (a)-(b) the growth of the averaged entan-
glement S(t) is shown for system sizes L = 8 − 20 in a
double logarithmic plot for values of W = 2.25, 2.75 and
V = 2. It is clearly seen that in the spin-glass MBL
phase (W = 2.25, 2.75) the growth of entanglement is
faster than in an exponential MBL phase and it is consis-
tent with an algebraic behavior (S(t) ∼ tγ). It is impor-
tant to point out that although the entanglement propa-
gation is rather fast, even then the system does not reach
a thermal value in the limit of asymptotic large times for

0

2

4

∆
x
(t

)

(a)

W = 2.25

0

2

4 (b)

W = 2.75

0 5 10
log10(t)

−1.0

−0.5

0.0

lo
g 1

0
R

(t
)

(c)

L = 12

L = 16

L = 20

L = 24

0 5 10
log10(t)

−1.0

−0.5

0.0

(d)

FIG. 6. (a)-(b): ∆x(t) in the localized phase for different L,
V = 2.0 and two values of W = 2.25, 2.75, respectively. (c)-
(d) Return probability R(t) = Π(i = 0, t) for the same values
of L, V and W .

finite system. In the insets of Figs. 4 (a)-(b), we show the
long-time saturation value S∞ = limT→∞ 1/T

∫∞
0
S(t)dt

of S(t). S∞ follows a volume law (S∞ ∼ L) though the
value itself is non-thermal at infinite temperature, i.e.,
S∞/ (L/2 log 2) < 137.
Density-density correlator: Next, we study the

charge relaxation in the system through the density-
density correlator Π(i, t) defined in Eq. 2.

Figures 5 (a)-(b) show Π(i, t) for system size L = 24,
and for two disorder values in the localized phase W =
2.25, 2.75 and V = 2. The probability distribution func-
tion Π(i, t) is shown at different times to emphasize that
even at the longest observation time it is not stationary.
Π(i, t) develops tails, which moves upwards with increas-
ing time. While the core of the distribution seems to be
more stable. To capture the movement of the tail, we
further calculate the second moment of Π(i, t) (Eq. 3) to
highlight the growth of correlations over time.

Figures 6 (a)-(b) show the growth of the second mo-
ment with time defined in Eq. 4. We observe differ-
ent regimes of growth for ∆x(t) as well as for the re-
turn probability R(t) = Π(i = 0, t) (see Figs. 6(c)-(d)).
The propagation of correlations measured via the sat-
uration value of ∆x(t → ∞) at very long time is in-
creasing with L. This feature holds for both disorder
strengths in the localized phase. Moreover, ∆x(t) grows
with a peculiar function, and thus not a clear algebraic
either a logarithmic. This is possible due to the exis-
tence and competition of several time scales in the prob-
lem. For instance, in the non-interacting model, as men-
tioned before, typical non-interacting wavefunctions at
E → 0 decay as ∼ exp(−

√
|x|/ξ0) rather than expo-

nentially. These states generate dynamical correlations
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that at low-energies give rise to extremely slow propa-
gation (t−1 ∼ exp(−

√
|x|/ξ0)) of correlations even in

the non-interacting model13,66. In the presence of in-
teractions these states are mixing all over the spectrum
but most likely are not completely destroyed by interac-
tions; therefore, they give rise to some residual dynamics.
Another possible time scale is the interaction strength,
which is responsible for dephasing.

Similarly, this behavior is also reproduced in the return
probability R(t) = Π(i = 0, t). As seen in Figs. 6(c)-
(d), for small t the return probability seems to saturate.
However, at longer times it again seems to decay with
increasing system sizes.

Although these time scales are hard to identify in the
absence of an analytical technique, we provide a heuristic
argument of such propagation in the low-density limit
via perturbation theory, which are described in the next
section.

IV. TWO-INTERACTING PARTICLES WITH
OFF-DIAGONAL DISORDER

In this section we aim to shed light on the observed
subdiffusive dynamics. We demonstrate that the same
type of dynamics occurs also for the case of only two
particles which is always localized for any amount of dis-
order (W > 0)89.

Thus, let us start by inspecting the dynamics of the
Hamiltonian H in the case in which the system hosts
only two particles. In particular, we study the center of
motion σ2

+(t) and of the difference σ2
−(t) of mass for two

particles initialized next to each other |ψ〉 = c†0c
†
1|0〉 in

the middle of the chain,

σ2
+(t) =

∑
i,j

(i+ j)2

4
〈ninj〉(t), (7)

σ2
−(t) =

∑
i,j

(i− j)2〈ninj〉(t). (8)

Figures 7 (a)-(b) show the dynamics of σ2
+(t) and

σ2
−(t), respectively. The center of mass motion σ2

+(t) af-
ter the ballistic propagation at short times (σ2

+(t) ∼ t2)
shows a sub-diffusive growth. Importantly, at asymp-
totically large times σ2

+(t) saturates to a value, which

scales linearly with L (σ2
+(∞) ∼ L), as shown in the

inset of Fig. 7 (a). As a consequence, we expect that
the propagation will be unbounded as L → ∞. As
we will show later, this propagation is a direct conse-
quence of the PH symmetry of the non-interacting Hamil-
tonian. Indeed, breaking the symmetry by adding a
small random potential Hε = ε

∑
i µini with {µi} ran-

dom fields between [−1, 1], σ2
+(t) saturates quickly to an

L-independent value, implying that the system is con-
ventionally localized.

100 101 102 103 104 105 106 107
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102
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2 +

(t
)
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V= 2

100 101 102 103 104 105 106 107

t
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20

30

40

50

σ
2 −

(t
)

(b)

L= 81

121

161

201

ε= 0. 5

V= 0

80 120160200
L

30

60

90

σ
2 +

(∞
)

FIG. 7. (a): Algebraic growth of the center of mass σ2
+(t)

(Eq. 7) of two interacting particles for W = 2.25 and V = 2.

The inset shows the saturation value σ2
+(∞) for asymptomatic

large times as a function of L, σ2
+(∞) ∼ L. (b): Difference of

mass σ2
−(t) (Eq. 8) of two interacting particles. In both panels

the blue dashed lines (L = 201) depict the case in which a
symmetry-breaking term has been added: Hε = ε

∑
i µini

with ε = 0.5 and {µi} random fields in [−1, 1]. In both panels
is also shown the non-interacting case V = 0 for L = 201.

The spread of the difference of mass σ2
−(t) is funda-

mentally different. The two particles tend to remain
close to each other, thus propagating coherently with a
sub-diffusive relaxation of the center of mass. Moreover,
Figs. 7 (a)-(b) show both the σ2

+(t) and the σ2
−(t) for

the non-interacting case (dashed-lines, V = 0). Compar-
ing the interacting case with the non-interacting one, it
is possible to notice that the effect of the interaction is
to enhance only the propagation of the center of mass.
At the same time the interaction bounds the motion of
the two particles letting them propagate close to each
other90,91. We emphasize that their bound state propa-
gation is what we believe is the reason for having charge
propagation in the MBL phase at finite particle density.

We now present an analytical argument supporting
the sub-diffusive dynamics in the system, even though
the system is localized. Initially, it is important to re-
call some basic properties of the non-interacting model
H(V = 0) and its single-particle eigenenergies {εk} and
eigenfunctions {ψk(x)}. Due to the PH symmetry the
single-particle eigenenergies come always in pairs εk and
ε−k = −εk. Furthermore, their respective eigenfunctions
are related by ψ−k(x) = (−1)xψk(x). As a consequence
ψk(x) and ψ−k(x) are localized on the same center xc
(|ψk(x)|2 = |ψ−k(x)|2 ∼ e−2|x−xc|/ξloc). As we already
mentioned the single-particle density of states is singular
around zero and the eigenstates around the divergence
are quasi-localized. For quasi-localized we mean that the
wave-function is typically well localized at some center on
the chain, nevertheless it has large fluctuations (∼ O(1))

at a typical distance ∼
√
L from the localization cen-

ter13,16.
Moreover, we will make a small modification on the in-

teraction term in H in Eq. 1 considering the two-body in-
teractions V

∑
i nini+1 to better explain the mechanism
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FIG. 8. Pictorial depiction of the coherent propagation two-particle states. Solid-lines represent the long-range hopping
which link two-particle bound states at large distance. The dashed-lines are the exponentially suppressed hopping processes

B̃k,k̃ ∼ e−|xc(k)−xc(k̃)|/ξloc .
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)

(b)
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L
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(B̃

k
,k̃
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0. 5

FIG. 9. (a): Center of mass σ2
+,p(t). (b): Difference of

mass σ2
+,p(t). The inset shows the typical hopping distance

σ(B̃k,k̃) (Eq. 10) given by the coupling B̃k,k̃ in the effective
Hamiltonian in Eq. 9. In presence of PH symmetry (ε = 0)

σ(B̃k,k̃) ∼
√
L. Instead, by adding the symmetry-breaking

term Hε with ε = 0.5, σ(B̃k,k̃) ∼ O(L0). Both panels
have been obtained restricting the dynamics onto the non-
interacting eigenstates sub-space with total energy equal zero
(η†kη

†
−k|0〉).

of the dynamics.

Due to PH symmetry the non-interacting model has a
degenerate eigen-spectrum. At half-filling this sector is

composed by
(
L/2
N/2

)
states and it is exponentially large in

L. In particular, in the case of two particles, we will have
L/2 states with total energy equal to zero (εk + ε−k = 0)

of the form η†kη
†
−k|0〉. The states η†kη

†
−k|0〉 are composed

of two particles that are localized on the same center
(|ψk(x)| = |ψ−k(x)|). Thus, at strong disorder W the ini-

tial state |ψ〉 = c†0c
†
1|0〉 will have a large overlap with some

states, which belong to the zero-energy sub-space. More-
over, at strong disorder and at finite interaction strength

V , the states η†kη
†
−k|0〉 are also close to the energy of the

initial state 〈ψ|H|ψ〉 ∼ V .
As first approximation we can restrict the dynamics to

the two-particles sector composed by the non-interacting

eigenstates η†kη
†
−k|0〉 with total energy E = 0, obtaining

the following effective Hamiltonian

Heff = 2V
∑
k,k̃

B̃k,k̃η
†
kηk̃η

†
−kη−k̃, (9)

where B̃k,k̃ =
∑
i ψk(i)ψk̃(i)ψk(i + 1)ψk̃(i + 1). Heff de-

scribes a hopping problem between the localized states

η†kη
†
−k|0〉’s. Most of the coupling terms B̃k,k̃’s will cou-

ple the modes k and k̃ only weakly, since B̃k,k̃ involves

the overlap of exponentially localized orbitals B̃k,k̃ ∼
e−|xc(k)−xc(k̃)|/ξloc , they will not produce any substan-
tial dynamics. Nevertheless, the quasi-localized states
close to the singularity of the single-particle density of
state will allow long-range hopping of order ∼ ξloc(εk ≈
0) ∼

√
L, producing thus a slow dynamics of the bound

particles.
Figure 8 shows a representation of the two particles

dynamics trough the system. The solid-lines depict the
long-range hoppings to a typical distance ∼ O(

√
L),

while the dashed-lines are the exponentially suppressed

hoppings B̃k,k̃ ∼ e−|xc(k)−xc(k̃)|/ξloc .
To understand better the long-range hopping due to

the existence of the quasi-localized modes, we analyze
the coupling elements B̃k,k̃ for εk ≈ 0. By detecting

the center of localization xc(k̃) for each single-particle
eigenstates, we define

σ(B̃k,k̃) =

(∑
k̃ |xc(k)− xc(k̃)|2|B̃k,k̃|∑

k̃ |B̃k,k̃|

)1/2

, (10)

which quantifies the distance of the hopping between
the two-particle states (k,−k) ↔ (k̃,−k̃). The inset of
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Fig. 9 (b) shows σ(B̃k,k̃) as a function of L, supporting

the scaling σ(B̃k,k̃) ∼ ξloc(εk ≈ 0) ∼
√
L, which also gives

the right upper-bound for the scaling of σ+(∞) ∼
√
L.

Moreover, as expected, once the symmetry-breaking term
Hε is added the effective Hamiltonian becomes short-
range and σ(B̃k,k̃) ∼ O(L0), also shown in the inset of

Fig. 9 (b).
In order to support our assumption we rely on exact

numerics, restricting the dynamics of the two particles to
the non-interacting eigenstates with total energy equal to
zero. Figure 9 shows the center σ2

+,p(t) and the difference

σ2
−,p(t) of mass after projecting to the non-interacting

sub-space with E = 0. σ2
+,p(t) shows the same sub-

diffusive dynamics as in the case without the projector,
giving thus evidence that this propagation is due to the
interplay between interactions and the non-interacting
sub-space with E = 0.

Moreover, σ2
−,p(t) saturates to an L-independent value

as a consequence of projecting on the non-interacting
eigenstates in which the two-particles are localized on
the same center (see also Fig. 7 (b)).

V. CONCLUSION

In summary, we investigated the dynamics, i.e., entan-
glement and charge propagation, in a particle-hole sym-
metric MBL phase. In particular, we studied the t−V
model with random bonds (off-diagonal disorder). The
non-interacting limit of this model is known to have a
divergence in the single-particle density of states at zero
energy. As a consequence, the single-particle modes are
quasi-localized at energies close to zero, while at other
energies states are exponentially localized.

We provide numerical evidence of the stability of the
localized phase at strong disorder once interactions are
switched on, by studying several observables that estab-
lish the MBL phase. For instance, at sufficiently strong
disorder, the level-statistics of energies is Poissonian, the
probability distribution of the bipartite entanglement en-
tropy is highly non-thermal and presents the typical ex-
ponentially decaying tails of a localized phase. Neverthe-
less, it is important to point out that for this particular
model we found strong finite-size effects in these observ-
ables and in particular, we cannot rule out the possibility
of logarithmic corrections in system size for the scaling of

the entanglement entropy as found in SU(2) symmetric
models.

Next, we characterized the information propagation
through the system by studying the time evolution of the
entanglement entropy after a quantum quench. At weak
interactions, we employed a recently proposed method
to study information propagation in the MBL phase for
large time scales. We found that the entanglement en-
tropy grows logarithmically in time, as suggested from a
strong disorder renormalization group calculation. Nev-
ertheless, at stronger interactions but still in the MBL
phase, the growth is consistent with an algebraic propa-
gation of information with a non-thermal saturation for
asymptotically long times.

Finally, we studied the charge propagation through
the system by employing the density-density correlator
at infinite temperature. We detect a slow propagation
of charge for the considered time scales, even though
the system can be thought as ‘conventionally’ local-
ized. We presented an analytical argument corroborated
with exact numerics, based on two-particles propagation,
explaining the main phenomenology of this anomalous
transport.

In conclusion, our results suggest that entanglement
and charge propagation is different in PH symmetric sys-
tem from a conventional MBL phase (without any sym-
metry). For the later case no charge propagation is ex-
pected and the entanglement grows only logarithmically
in time.
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