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Homogeneous Floquet time crystal protected by gauge invariance
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We show that homogeneous lattice gauge theories can realize nonequilibrium quantum phases with long-range
spatiotemporal order protected by gauge invariance instead of disorder. We study a kicked Z2-Higgs gauge theory
and find that it breaks the discrete temporal symmetry by a period doubling. In a limit solvable by Jordan-Wigner
analysis we extensively study the time-crystal properties for large systems and further find that the spatiotemporal
order is robust under the addition of a solvability-breaking perturbation preserving the Z2 gauge symmetry. The
protecting mechanism for the nonequilibrium order relies on the Hilbert space structure of lattice gauge theories,
so that our results can be directly extended to other models with discrete gauge symmetries.
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Introduction. Isolated quantum matter can feature phases
with long-range order in highly excited states that cannot be
captured by thermodynamic ensembles [1,2]. This crucially
relies on ergodicity breaking and a failure of the Eigenstate
Thermalization Hypothesis [3]. One robust mechanism for
achieving such nonergodic behavior is to impose strong dis-
order giving rise to the many-body localized (MBL) phase
[2,4–8], which can host long-range ordered phases such as the
MBL-spin glass [1,9] or Floquet time crystals [10–16]. Re-
cently, it has been realized that lattice gauge theories (LGTs)
entail another robust mechanism for nonergodic dynamics in
short-ranged systems protected by gauge invariance instead
of disorder [6–8] due to the specific structure of their Hilbert
spaces, which are built up of disconnected superselection
sectors [7]. However, it has remained an open question to what
extent they can also accommodate nonequilibrium phases
with long-range order and therefore to what extent they can
contribute to the open quest of realizing robust nonequilib-
rium ordered phases of homogeneous quantum many-body
systems.

In this work we introduce a phase of quantum matter
unique to LGTs that exhibits both spatial and temporal order
thereby constituting a genuine nonequilibrium phenomenon.
In particular, we show that homogeneous LGTs can feature
robust time-crystalline phases in short-range systems pro-
tected by gauge invariance as opposed to previously studied
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cases that were relying on the presence of strong disorder.
In order to realize such a “gauge time crystal,” we introduce
a periodically kicked Z2 LGT which, as we find, displays a
subharmonic response to the external drive associated with
a period doubling (see Fig. 1). We identify two necessary
properties essential to realize a Floquet time crystal within
the considered scheme: (i) in a given superselection sector the
LGT has to realize bond instead of field disorder in contrast to
previously studied models of disorder-free localization [6–8];
(ii) the gauge symmetry has to be discrete and different from
many previously studied nonergodic U(1) LGTs [6,7]. We
solve the considered kicked Z2 LGT exactly by a mapping
onto a free fermionic theory using a Jordan-Wigner (J-W)
transformation, which allows us to explore the phase diagram
for large system sizes. We observe that the Floquet states
appear in pairs with a quasienergy difference of π , so that
our system shares many of the features of the π -spin glass
in a periodically kicked Ising chain with quenched disorder
[10]. Importantly, we find that this gauge time crystal repre-
sents a robust phase which does not require fine-tuning and
persists over a wide range of parameters. In particular, we
also study the influence of perturbations breaking the exact
solvability and preserving the Z2 gauge symmetry, where
we find numerical evidence for stability by means of exact
diagonalization. We discuss how to extend our analysis to a
ZN -symmetric LGT along the lines of [17]. The mechanism
behind this time-crystalline phase relies on gauge invariance
and can therefore be directly extended to other LGTs with
discrete gauge symmetries. Importantly, our observation of
a robust time-crystalline phase in a homogeneous short-
ranged system goes beyond recent approaches which lead
to prethermal spatiotemporal order [18–22], or require long-
range interactions in driven unitary [23,24] and dissipative
dynamics [25–32].
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FIG. 1. (a) Schematic illustration of the Z2 Higgs-LGT, with
matter fields on the lattice sites l , represented by Pauli operators
ξ̂α

j , and gauge degrees of freedom by τ̂ α
j, j+1 on the links. The local

gauge symmetry imposes a locally conserved quantity given by
the eigenvalues qi of the operator Ĝi = −τ̂ x

i−1,i ξ̂
z
i τ̂

x
i,i+1, which are

included for a simple example, where ↑↓ represents the eigenvalues
of ξ z

j and ± of τ x
j, j+1, respectively. (b) Stroboscopic dynamics of the

magnetization mx (t ) of the gauge degrees of freedom in the kicked
Z2 LGTs displaying period-doubling oscillations. (c) The decay
time t∗ of the period-doubling oscillations increases exponentially
with system size L marking the presence of a time-crystal behavior.
We have taken a Z2-symmetry-breaking initial state with f = 0.8
[see discussion after Eq. (7)]. Numerical parameters: φ = 1.02π ,
h/J = 0.2, m/J = 0.5, JT = 1.0, Nreal = 48, and K/J = 0.1 in (b).

The model. We consider a Z2 Higgs-LGT in one spatial
dimension. The theory describes the dynamics of Higgs fields,
defined by Pauli-matrix operators ξ̂α

j at vertex j on the lattice,
coupled to Z2 gauge fields, defined by Z2 parallel transporters
τ̂ x

j, j+1 at the bond ( j, j + 1) as illustrated in Fig. 1(a). The
system Hamiltonian reads [33,34]

Ĥ0 = m

2

L∑

j=1

ξ̂ z
j + J

L−1∑

j=2

τ̂ x
j−1, j τ̂

x
j, j+1 + h

L−1∑

j=1

ξ̂ x
j τ̂

z
j, j+1ξ̂

x
j+1.

(1)

The Higgs-field operators can also be interpreted as hard-core
bosons b̂ j with ξ̂ x

j = b̂†
j + b̂ j . The first two terms denote mass

and gauge interactions, while the third describes the coupling
between the Higgs and gauge fields. We drive the Z2 Higgs-
LGT out of equilibrium by periodically kicking the strength
of the Higgs-gauge coupling, leading to the following time-
dependent Hamiltonian

Ĥ (t ) = Ĥ0 + φ

2

+∞∑

n=−∞
δ(t − nT )

L−1∑

j=1

ξ̂ x
j τ̂

z
j, j+1ξ̂

x
j+1. (2)

This system exhibits a local symmetry: Ĥ (t ) commutes with
the operators Ĝ j = −τ̂ x

j−1, j τ̂
x
j, j+1ξ̂

z
j (which can be understood

as the complex exponentials of the local Gauss’ operators).
Thus, the Hilbert space of size 22L−1 is partitioned in N = 2L

superselection sectors, where all the states |�{qα}〉 in a given
sector are identified by the same set of local static charges
q j = ±1 via Ĝ j |�{qα}〉 = q j |�{qα}〉.

In the following we consider initial product states of the
form |�〉 = |ϕ〉H ⊗ |ψ〉g where |ϕ〉H is a product state which
satisfies H 〈ϕ|ξ̂ z

j |ϕ〉H = 0 for all j = 1, . . . , N and |ψ〉g is the
initial condition for the gauge degrees of freedom, which we
will specify later in the text. Such initial conditions, which
represent superpositions over many superselection sectors,
can yield robust nonergodic behavior for LGTs and disorder-
free localization [6–8,35]. Concretely, for our Z2 LGT the
dynamics in a given superselection sector specified by the
charges {qα} is determined by an effective Hamiltonian [36]

Ĥ{qα}(t ) =
L−1∑

j=2

J j τ̂
x
j−1, j τ̂

x
j, j+1 + h(t )

L−1∑

j=1

τ̂ z
j, j+1, (3)

with h(t ) = h + (φ/2)
∑+∞

n=−∞ δ(t − nT ), J j = [1 −
q jm/(2J )], and the τ̂α

j, j+1 operators redefined with respect
to Eqs. (1) and (2) (see [36] for details). This integration
is related to the duality between Ising models and Ising
LGTs [37,38]. As a result the Hamiltonian becomes a
kicked transverse-field Ising chain with binary bond disorder
due to q j = ±1, which can be solved exactly via a J-W
transformation for large systems. We emphasize that, due
to the presence of degeneracies in the unperturbed Floquet
spectrum, it is a priori less clear whether bond disorder,
with respect to one with a continuous distribution, is able
to induce MBL in order to get a time crystal. We will also
study the influence of a perturbation of the form ĤK =
4K

∑L−1
j=2 ξ̂ x

j−1τ̂
z
j−1, j τ̂

z
j, j+1ξ̂

x
j+1 breaking the J-W solvability.

After the integration it adds a transverse interaction term for
the gauge fields,

ĤK
{qα}(t ) = Ĥ{qα}(t ) + 4K

L−1∑

j=2

τ̂ z
j−1, j τ̂

z
j, j+1. (4)

We solve the dynamics of the LGT in a set of Nreal randomly
chosen superselection sectors and finally perform an average
when computing observables. In the shown data we include
error bars resulting from the finiteness of Nreal. But let us
emphasize again that the overall problem is homogeneous
both in the initial condition and in the Hamiltonian.

Initial conditions and observables. In order to reveal both
the temporal and spatial order we use two complementary
setups.

On the one hand, we take initial conditions which explicitly
break the Z2 symmetry of the model yielding a nonzero
magnetization mx for the gauge degrees of freedom which we
then monitor in the subsequent evolution:

mx(t ) = 1

L − 1

L−1∑

j=1

〈
τ̂ x

j, j+1

〉
t , (5)

where we have defined 〈· · · 〉t ≡ g 〈ψ (t )| · · · |ψ (t )〉g and the
overline marks the average over the Nreal pseudodisorder
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realizations [39]. In this way we obtain direct access to the
time-crystalline period-doubling dynamics. In Fig. 1(b) we
show results for mx(t ) in the fully interacting case K 
= 0
obtained through exact diagonalization. We see the existence
of period-doubling oscillations which are persistent for an
infinite time in the thermodynamic limit. We show this fun-
damental property of persistence [11] in Fig. 1(c), where we
see that the decay time t∗ of the period-doubling oscillations
exponentially scales to infinity with the system size. We
determine t∗ as the time after which (−1)t/T mx(t ) changes
sign [17,40] averaged over disorder.

On the other hand, we can choose initial conditions which
are Z2 symmetric with a vanishing magnetization mx(t ),
which allows us to address the spatial long-range ordering
in the system. For that purpose we study the correlation
parameter

Sxx
t = 1

(L − 1)(L − 2)

L−1∑

i, j=1,(i 
= j)

〈
τ̂ x

j, j+1τ̂
x
i, i+1

〉
t , (6)

with 〈· · · 〉t defined as above. Whenever Sxx
t > 0 while at the

same time mx(t ) = 0, the system exhibits long-range spatial
order.

Exactly solvable case. Let us first focus on the case with
K = 0, where the model can be mapped onto a system of
noninteracting fermions by means of a J-W transformation.
In each superselection sector {qα} we initialize the dynamics
with the same initial state |ψ〉g chosen as the ground state of

the Hamiltonian Ĥ0 = ∑L−1
j=2 τ̂ x

j−1, j τ̂
x
j, j+1 + h0

∑L−1
j=1 τ̂ z

j, j+1.
This state has a nonvanishing correlation parameter if h0 < 1
and is symmetric under Z2 which allows us to address the
long-range spatial ordering in the system; for a study of
the temporal order we perform a spectral analysis, as we
are going to detail below. In the J-W framework it is well
known how to numerically study the dynamics and how to
evaluate the correlation parameter as a Pfaffian (see [41–45]).
Here it is enough to say that the dynamics is induced by
an effective 2(L − 1) × 2(L − 1) time-periodic single-particle
Hamiltonian. This is important to mention because we can
compute the 2(L − 1) single-particle Floquet states and the
2(L − 1) single-particle quasienergies εα (see, for instance,
[46]). These quantities will play an important role in what
follows.

We find that the correlation order parameter reaches an
asymptotic value Sxx

asy after a transient [see the discussion
below Eq. (7)]. We plot the long-time value of Sxx

t as a
function of kicking strength φ for different values of L in
the main panel of Fig. 2. We observe three regimes whose
separating phase boundaries we indicate by the colored zones.
In regimes (i) and (iii) Sxx

asy converges to a nonzero value
as L → ∞, while in regime (ii) Sxx

asy vanishes as the L is
increased (see also the inset of Fig. 2). Both regions (i)
and (iii) mark the existence of an eigenstate phase [1,2],
where eigenstates exhibit long-range spatial order (as in [9],
for instance). This eigenstate order is protected by disorder
and MBL since in a clean short-range one-dimensional spin
interacting thermalizing system with Z2 symmetry such or-
der is impossible (this result is easily shown for clean Z2

one-dimensional spin chains [47], where long-range order is
possible only in the ground state).

FIG. 2. Spatial long-range order in the exactly solvable limit
K = 0: Asymptotic long-time value Sxx

asy versus φ for different values
of system size L. Inset: System-size dependence of Sxx

asy from top
to bottom for φ/π = 1, 1.06, 1.2, 1.4. Numerical parameters as in
Fig. 1, except K = 0 and Nreal � 104.

Although the behavior of Sxx
asy is qualitatively similar in

both (i) and (iii), these two regions mark different phases
since (i) in addition also supports temporal order. An example
of this property for φ = 1.02π can be seen in Fig. 1(c)
(curve with K = 0): The system is initialized in a state
explicitly breaking the Z2 symmetry and the decay time t∗
exponentially increases with the system size. This fact can be
understood by an analysis of the Floquet spectrum [10]. The
presence of a temporal time-crystal ordering corresponds to
spectral pairing, where each Floquet state has a partner with
quasienergy shifted by π . This situation is realized if there
is a single-particle quasienergy exactly at π with a marked
gap separating it from the rest of the spectrum. In this way it
does not hybridize with the bulk, and each many-body Floquet
state has a π -shifted partner obtained by adding the quasi-
particle with quasienergy π . We evaluate this gap as δπ =

1
Nreal

∑Nreal
q=1[ε (q)

2L−2 − ε
(q)
2L−3] [48] and plot it in Fig. 3. We see that

it is nonvanishing in all of regime (i). Moreover, as we show in
[36], in this regime ε2L−2 averaged over the disorder is exactly
equal to π . In [36] we show also that the single-particle bulk
Floquet states are always Anderson localized. This is very
important, because without localization it is possible to have

FIG. 3. Disorder-averaged single-particle Floquet spectral gap
δπ as a function of φ for different L using the same parameters as
in Fig. 2. Inset: System-size dependence of δπ .
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a gap in the Floquet spectrum at π and still observe no time
crystal (see, for instance, [46]): In the absence of localization,
local operators expand in time obeying the Lieb-Robinson
bound and no time-periodic behavior whatsoever is possible
[49]. Of course, the transition to localization and the one to
glassy order of the excited eigenstates are independent [9],
and this is the reason why the transition from regime (i) and
(ii) occurs at a value of φ different from the one where δπ

vanishes. In Fig. 2 we have initialized with a specific value
of h0, but we have checked that the presented phenomenology
does not depend on this choice.

General case. At this point we break J-W solvability by
considering the term of Eq. (4), with K 
= 0. We consider a
value of φ for which we see this phenomenon at K = 0; then
we take K 
= 0 and we study the properties of the asymptotic
correlation parameter. An interval of K where this quantity
does not scale with the size would mark the persistence
of the time crystal. We now perform a conventional exact-
diagonalization simulation of the system, up to size L = 13.
To evaluate the asymptotic correlation parameter, we can
resort to the Floquet diagonal-ensemble average and we get

Sxx
asy =

L−1∑

i, j=1,(i 
= j)

N∑

β=1

|Rβ |2g〈φβ |τ̂ x
j, j+1τ̂

x
i, i+1 |φβ〉g

(L − 1)(L − 2)
, (7)

where |φβ〉g are the many-body Floquet states, N is the
dimension of the Hilbert space, and Rβ ≡ g〈ψ (0) |φβ〉g
denotes the overlap with the initial state. We remark that we
can use Eq. (7) even if the many-body Floquet quasienergies
μβ appear in degenerate pairs, due to the Z2 symmetry. The
point is that the operators τ̂ x

j, j+1τ̂
x
i, i+1 commute with the same

Z2 symmetry and hence have no matrix elements between
states with different parity (see the detailed demonstration
along the lines of [50] in [36]). We plot the dependence
of Sxx

asy versus K for different L in Fig. 4. We take two
different initial conditions: in the upper panel we take the
state with all the spins pointing down along the x axis
(|ψ〉g = |sx

1,2 = −1 . . . sx
j, j+1 = −1 . . . sx

L−1,L = −1〉
g
); in

FIG. 4. Stability of the time crystal: Sxx
asy as a function of K for

various L and two different initial states with f = 1 (upper panel) and
f = 0.8 (lower panel). Numerical parameters as in Fig. 1.

the lower panel we take the uniform superposition of
all the eigenstates of τ̂ x

j, j+1 ∀ j obeying the condition∑L−1
j=1 sx

j, j+1 � −(L − 1) f with f = 0.8. We see that for
K � 0.2 there is no decrease with L, marking the persistence
of the time-crystal behavior. This persistence can be seen
also in Fig. 1(c) where the t∗ introduced above exponentially
increases with L.

Time crystallinity in Abelian lattice gauge theories. We
now investigate more generally if time crystallinity can appear
in disorder-free Abelian LGTs in (1 + 1) dimension. We
consider the generic Hamiltonian coupling Higgs fields to
Abelian gauge fields [51]:

Ĥ = m
L∑

j=1

(−1) j n̂ j +
L−1∑

j=1

(ϕ̂†
j Û j, j+1ϕ̂ j+1 + H.c.)

+ g2

2

L−1∑

j=1

Ê2
j, j+1 + Ĥ (t ), (8)

where n̂ j = ϕ̂
†
j ϕ̂ j is the Higgs occupation on site j and

Ê j, j+1, Û j, j+1 are, respectively, the electric field and the paral-
lel transporter, and Ĥ (t ) is defined analogously to the Z2 case
above. The electric-field interaction energy is local in these
theories, differently from the Z2 term involving at least two
neighboring sites. For a ZN LGT (i.e., a theory where now
Û j, j+1 and Ê j, j+1 are not Pauli matrices but the more general
clock operators), we can use a similar approach as the one
used in the Z2 LGT. We consider an initial state where matter
is in an equal-weight superposition of all possible eigenvalues
of the Higgs number operator, and the gauge fields are in a
generic state. The evolution of such states can be mapped
exactly into the one of ZN clock models under the effect of
quasirandom local fields: since the latter class of models has
been shown to display time-crystal behavior for small values
of N and random disorder [17], it is natural to expect that the
mechanism discussed above holds true also for N > 2. This
mechanism does not work for continuous U(1) LGTs (see [36]
for details), which, however, does not exclude other ones for
the generation of time crystals in such theories.

Concluding discussion. In this work we have demonstrated
that homogeneous LGTs can realize time-crystal phases,
where the protecting nonergodicity is enforced by the local
constraints imposed by gauge invariance. In more general
terms, our results show that homogeneous LGTs can realize
eigenstate order, which naturally leads to the question to
what extent also other eigenstate phases can occur in ho-
mogeneous LGTs, e.g., analogs of the MBL-spin glass [1,9]
or topological order at elevated energy densities [52]. Our
results are of immediate relevance to experiments realizing
lattice gauge theory dynamics [53–55] in both trapped ions
[56] and cold atom systems [57,58]. In particular, scalable
proposals have been formulated [59,60], and several experi-
ments have already demonstrated the building blocks [61–64]
for discrete lattice gauge theories of relevance to gauge time
crystals.

Further, our results can be directly extended to ZN LGTs
which opens up the possibility, in principle, of generating
period N-tupling time crystals. While our approach cannot
be immediately applied to LGTs with continuous groups,
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it would be intriguing to see whether discrete non-Abelian
symmetries can also support the formation of defect-free time
crystals.
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