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Quantum entanglement may have various origins ranging from solely interaction-driven quantum correlations
to single-particle effects. Here, we explore the dependence of entanglement on time-dependent single-particle
basis transformations in fermionic quantum many-body systems, thus aiming at isolating single-particle
sources of entanglement growth in quench dynamics. Using exact diagonalization methods, for paradigmatic
nonintegrable models we compare to the standard real-space cut various physically motivated bipartitions.
Moreover, we search for a minimal entanglement basis using local optimization algorithms, which at short to
intermediate postquench times yields a significant reduction of entanglement beyond a dynamical Hartree-Fock
solution. In the long-time limit, we identify an asymptotic universality of entanglement for weakly interacting
systems, as well as a crossover from dominant real-space to momentum-space entanglement in Hubbard models
undergoing an interaction quench. Finally, we discuss the relevance of our findings for the development of
tensor-network-based algorithms for quantum dynamics.
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Entanglement as one of the most fundamental traits of
quantum mechanics plays a key role in various physical
contexts, ranging from the characterization of complex many-
body states [1,2] to its use as a resource for quantum tech-
nologies [3–7]. On the other hand, strong entanglement in
correlated quantum matter poses a significant challenge that
limits both its analytical and numerical description. This
becomes particularly relevant in nonequilibrium dynamics,
where entanglement generically grows rapidly with time
[8–23]. This growth, however, may originate from mecha-
nisms of different inherent complexity: While it can already
be found in analytically solvable free theories, at the opposite
end entanglement can be purely interaction induced. Yet, it
has remained largely unexplored as to what extent a heteroge-
neous dynamical entanglement content may be distinguished
according to its various sources on general grounds.

The purpose of this Rapid Communication is to investigate
how the single-particle content of entanglement in quantum
quench dynamics can be isolated from genuine many-body
complexity, thereby revealing physically distinct sources of
quantum correlations. To this end, we study the dependence
on generally time-dependent single-particle basis rotations
(entanglement cuts) of the half-system entanglement entropy

S(t ) = −tr
[
ρAt log

(
ρAt

)]
, (1)

where ρAt = trBt ρ denotes the reduced density matrix of sub-
system At at time t obtained from the full density matrix ρ =
|ψ (t )〉〈ψ (t )| by tracing out its complement Bt [see Fig. 1(a)],
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and |ψ (t )〉 is the state of the system at time t . Going beyond
the conventionally used real- or momentum-space basis, we
investigate different choices of single-particle orbitals for
the bipartition of the system in At and Bt , including phys-
ically motivated states such as dispersing Wannier orbitals
or time-dependent Hartree-Fock solutions. Furthermore, we
search for an optimal (i.e., yielding minimal entanglement S)
orbital basis using local optimization algorithms [see the
inset in Fig. 1(b)], in order to separate genuine many-body
entanglement content, originating from quantum correlations
involving several particles, from single-particle contributions.

As we exemplify for several nonintegrable fermionic quan-
tum many-body systems, for quite long transient times the
entanglement entropy indeed exhibits a significant basis de-
pendence [see Fig. 1(b)]. Based on our concrete case studies
in the framework of exact diagonalization, in this context
we identify several general principles for both transient and
asymptotically long times, including (i) an asymptotic univer-
sality (in the sense of basis independence) of entanglement in
band insulators with weak to modest interactions, and (ii) a
crossover between real-space and momentum-space entangle-
ment in Hubbard models undergoing an interaction quench.
Our results contribute towards the physical understanding of
entanglement in complex quantum matter, and might be of
key relevance for the development of numerical algorithms
for quantum dynamics based on tensor-network approaches
[24–37], whose efficiency crucially depends on entanglement
scaling.

Entanglement dynamics from Krylov time propagation. For
our quantitative study, we consider a system of np interact-
ing fermions on a lattice with sites j = 1, . . . , L, which are
annihilated by the vector of field operators c = (c1, . . . , cL ).
To quench the system out of equilibrium, the Hamiltonian is
suddenly changed from Hi to H f at time t = 0, assuming that
the many-body state |ψ (t = 0)〉 was prepared as the ground
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FIG. 1. (a) Illustration of a time-dependent entanglement cut
At/Bt corresponding to a basis of dispersing Wannier orbitals, in
comparison to a standard real-space cut A/B. (b) Time dependence
of the entanglement entropy S of the interacting model defined in
Eqs. (4) and (5) far from equilibrium. Different curves correspond
to different entanglement cuts (see plot legend). Inset: Basis opti-
mization of entanglement beyond the dynamical Hartree-Fock cut.
Parameters are L = 24, np = 12, U = J = 1.0, W = 0, mi = 1.8,
m f = 0.2.

state of Hi at t < 0. Using numerically exact Krylov time-
propagation methods [38,39], for several examples of Hi and
H f representing quenches into nonintegrable systems, we then
compute the time-evolved wave function (h̄ = 1)

|ψ (t )〉 = e−iH f t |ψ (0)〉. (2)

In order to study the dynamics of the (von Neumann) en-
tanglement entropy S(t ), we decompose the system into two
subsystems, At and Bt , each containing L/2 orbitals and on
average np/2 particles. However, we do not restrict this de-
composition (entanglement cut) to the real-space lattice space,
but consider time-dependent basis orbitals c̃t = ut c, resulting
from the real-space lattice representation by an arbitrary U(L)
transformation ut [with U(L) denoting the group of L×L
unitary matrices].

To represent the time-evolved wave function in an arbitrary
orbital basis, we need to express ut in many-body Hilbert
space, where it is denoted by Ut .

Naively applying Ut to the real-space representation ψ (t )
of the state vector |ψ (t )〉 would generate an unfeasible com-
putational cost ∼N2, where N is the dimension of the many-
body Hilbert space of np particles.

However, exploiting that Ut formally may be seen as
a “time evolution” with respect to the free Hamiltonian

H̃t = ∑
j,� (i log ut ) j,�c†

j c� yields

ψ̃ (t ) = Utψ (t ) = e−iH̃t ψ (t ), (3)

which naturally allows for the efficient [O(N )] computation of
the transformed representation ψ̃ (t ), again using Krylov time
propagation with respect to the fictitious Hamiltonian H̃ .

In the following, we present exact numerical data on the
quench dynamics of systems with up to L = 24 sites and
np = 12 fermions, where N ≈ 2.7×106. Concretely, we study
two examples of nonintegrable ergodic model systems, (i)
a one-dimensional (1D) two-band band insulator that is
quenched to a topological insulator (TI) phase with weak to
modest interactions, and (ii) a metallic single-band Fermi-
Hubbard model with next-nearest-neighbor (NNN) interac-
tions. By comparison of these physically quite different sce-
narios, we will identify various features relating to the basis
dependence of entanglement in quantum quench dynamics.

(i) Weakly interacting topological insulator. We first discuss
a one-dimensional (1D) two-banded system similar to the
celebrated Su, Schrieffer, and Heeger (SSH) model [40,41].
There, the lattice index j = 1, . . . L is decomposed into a
unit-cell index i = 1, . . . , L/2 and a sublattice index α =
a, b such that j = 2i − 1 for site a in cell i and j = 2i for
site b in cell i, respectively. In reciprocal space, the two-
band Bloch Hamiltonian at lattice momentum k = 4π p/L,
p = 0, . . . , L/2 − 1 of the system is defined as

h(k) = [m(t ) + J cos(k)]σx + J sin(k)σy, (4)

where σi are the standard Pauli matrices acting on a/b sublat-
tice space, m(t ) plays the role of a Dirac mass parameter that is
quenched from mi to m f at t = 0, and J is the hopping strength
between neighboring unit cells. For |m| < |J|, the model is in
a topological insulator phase protected by the chiral symmetry
σzh(k)σz = −h(k), while at |m| = |J| a topological quantum
phase transition to a trivial band insulator phase extending
over the parameter regime |m| > |J| occurs. Here, we focus
on quenches which change the topological phase of the system
Hamiltonian, by choosing mi in the trivial and m f in the
nontrivial phase, respectively.

For the (standard) real-space entanglement cut, even the
noninteracting system is found to exhibit linear entanglement
growth at small times. However, this entanglement is readily
seen to be entirely basis dependent: The exact solution |ψ (t )〉
stays a single Slater determinant at all times, leading to zero
entanglement in a suitable basis obtained from time-evolved
Wannier functions or Bloch functions representing the initial
uncorrelated state. This provides a conceptually simple exam-
ple for how strongly the entanglement of a system far from
equilibrium may depend on the chosen representation.

We now address the natural question as to how an integra-
bility breaking interaction term affects this phenomenology.
To this end, we add to the free model (4) the interaction
Hamiltonian

HI =
∑

i

[Uni,ani,b + W (ni,ani+1,b + ni,bni+1,a)], (5)

with ni,α = c†
i,αci,α (α = a, b), where already a nonzero U or

W individually is sufficient to make the model nonintegrable,
and both terms preserve the protecting chiral symmetry.
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FIG. 2. Asymptotic universality of the entanglement entropy S
of the equilibrating quenched interacting topological insulator model
defined in Eqs. (4) and (5): Different curves corresponding to dif-
ferent entanglement cuts (see plot legend) saturate to similar values
at long times. Parameters: L = 24, np = 12, W = J = 1.0, U = 0,
mi = 1.8, m f = 0.2.

We first discuss the case on U = J , W = 0 for transient
times [see Fig. 1(b)]. For the Bloch and Wannier entanglement
cut, in which the noninteracting solution would exhibit zero
entanglement, S is lower than in the real-space cut, for short to
intermediate times. Interestingly, evolving the Wannier basis
with respect to a dynamical Hartree-Fock Hamiltonian, thus
accounting for interactions at the mean-field level leads to
a substantial reduction of S for quite long times. Searching
for an optimal entanglement cut by treating the translation-
invariant Hermitian matrix H̃t as a variational ansatz generat-
ing the basis transformation Ut [see Eq. (3)] [39], we are able
to further reduce S significantly below the dynamical Hartree-
Fock basis [see the inset of Fig. 1(b)] by using local optimiza-
tion algorithms such as Gradient Descent and ADAM [42].
We now switch on W > 0 which is generally found to speed
up the process of thermalization in 1D topological insulator
models [43], thus allowing us to look at the long-time (close
to equilibration) behavior of our model. For weak to modest
interactions, we observe a quite remarkable universal aspect
of entanglement in the long-time limit, namely, that S be-
comes largely independent of the choice of basis (see Fig. 2).
This behavior exemplifies a quite generic mechanism that
can be understood with the following physical picture [39].
When a system is quenched far from equilibrium by changing
its gapped single-particle Hamiltonian, weak interactions are
expected to lead to thermalization at an effective temperature
βe of the system with respect to the close to noninteracting
postquench Hamiltonian. However, the thermal entropy of
a free Hamiltonian [such as Eq. (4)] generically is inde-
pendent (up to nonextensive boundary effects) on the basis
of a bipartition with an average of np/2 particles in each
subsystem. Thus, the basis dependence of the entanglement
entropy in this scenario is a transient effect, even though it
might last to long times. This basis independence in weakly
interacting thermalizing insulators also affects the margin to
be gained by entanglement minimization: By optimizing the
aforementioned basis-change Hamiltonian H̃t , starting from
the set of Wannier orbitals in the long-time limit, here it is not
possible to significantly reduce the entanglement entropy.

FIG. 3. Long-time average of S for the spinless Hubbard model
(6) with L = 24, ν = 1/3 as a function of the postquench next-
nearest-neighbor interaction strength V . Inset: Scaling of S with the
number of orbitals �A in A.

(ii) Spinless NNN Fermi-Hubbard model. As a second
nonintegrable model system, we consider a spinless single-
band Fermi-Hubbard model with a NNN interaction at filling
ν = np/L, defined by the Hamiltonian

H =
∑

j

[−J (c†
j c j+1 + H.c.) + V (t )(n j − ν)(n j+2 − ν)],

(6)

where J (fixed to 1 in the simulations) denotes the hopping
strength, n j = c†

j c j , and V (t ) � 0 represents the repulsive
NNN interaction strength which is suddenly changed from 0
to a finite value over the quench at t = 0. We focus on ν = 1/3
in the following, where the model (6) at zero temperature is
known to stay in a metallic Luttinger liquid phase up to large
V > 0 [44], and has been found to exhibit strongly ergodic
behavior [45]. When comparing the long-time entanglement
entropy of this model in real space and momentum space,
we find an interesting basis dependence that persists even
in the long-time limit: For weak to modest V , the long-
time entanglement in momentum space is lower than in real
space, whereas at strong correlations (V � 3J), the real-space
cut leads to lower entanglement entropy (see Fig. 3). This
behavior may be interpreted as a dynamical manifestation
of the generic competition between an interaction term that
is diagonal in real space and a free band structure that is
diagonal in momentum space in Hubbard models [39]. At
short times, by contrast, entanglement for all V grows steeper
in the momentum cut, owing to the nonlocal nature of the
interaction in reciprocal space. In both cuts, entanglement
clearly exhibits extensive (volume law) scaling for long times,
as expected for an equilibrating ergodic system (see the inset
of Fig. 3).

Concluding discussion. We conclude by putting our present
results into a broader perspective from several angles. Gen-
erally speaking, nonintegrable ergodic systems are known to
exhibit a generic dynamical behavior for the entanglement
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entropy S in coherent quench dynamics starting from a weakly
entangled (equilibrium) state: S initially grows linearly in
time, reflecting a ballistic spreading of quantum information
at a certain velocity [8–23]. At large times, close to ther-
malization, S approaches an extensive value (volume law),
i.e., S = αVA, where VA denotes the volume of subsystem A,
since the entropy as an equilibrium thermodynamic potential
is always extensive. While all of our present findings fit into
this rough generic framework, here we identified and micro-
scopically exemplified several general principles relating to
the basis dependence and heterogeneous physical nature of
dynamical entanglement growth.

First, for insulators with weak to modestly strong inter-
actions that are quenched out of equilibrium by a change
in their band structure, the transient entanglement exhibits a
very strong basis dependence and may be reduced signifi-
cantly beyond a dynamical mean-field solution by means of
single-particle basis rotations. By contrast, the volume-law
coefficient α of the long-time average of S becomes basis
independent. This is because the system is thermalizing with
respect to a nearly free Hamiltonian, and the thermal entropy
for a free fermionic system typically is largely independent of
the choice of bipartition, as long as each subsystem contains
half of the degrees of freedom and accommodates on average
half of the particles.

Second, in Hubbard models that are undergoing an
interaction quench leaving the noninteracting Hamiltonian
unchanged, a significant basis dependence of entanglement
persists in the long-time limit, where the considered ergodic
systems exhibit basis-dependent extensive entanglement scal-
ing: Up to intermediate postquench interaction strengths en-
tanglement is found to be weaker in reciprocal space while
at stronger correlations the real-space cut has lower in S. This
behavior dynamically reflects the competition between kinetic
energy and interactions characteristic for Hubbard models.

These findings on distinguishing single-particle contribu-
tions to S from inherently more complex quantum correlations
are not only of fundamental interest, but might also serve as
important guidelines for the pursuit of devising more efficient
numerical algorithms for quantum dynamics. Within the realm
of thermal equilibrium, the observation that low-temperature
states typically exhibit significantly lower (area-law [46,47])
entanglement than generic states has been crucial for sys-
tematically taming the exponential complexity of correlated

systems, e.g., with the advent of tensor-network methods
[24–37], where the basis dependence of entanglement has
been successfully exploited in the context of spin-boson mod-
els [48] and quantum chemistry settings [49–51]. However,
far from equilibrium, generically the dynamical proliferation
of entanglement eventually builds up an exponential wall even
for the most powerful known computational methods. In this
context, our results provide systematic insights addressing the
question as to what extent both transient entanglement growth
and long-time entanglement may be made computationally
manageable, e.g., by extending tensor-network methods to a
flexible representation of the physical degrees of freedom that
allows for time-dependent basis choices.

In this Rapid Communication, we have been concerned
with the influence of single-particle basis rotations on en-
tanglement dynamics. At a conceptual level, our search for
an optimal basis in which S is lowest may be interpreted
as an entanglement-based dynamical mean-field approach
aimed at minimizing the single-particle contributions to S.
Thinking further along these lines, it is readily conceivable
to consider more elaborate approximate solutions based on
genuine many-body methods as a starting point for the choice
of a correlated basis, which may eliminate even some higher-
order quantum correlations from the system. Quantitatively
exploring this approach and constructing hybrid numerical
methods, where a physically motivated approximate solution
serves as the starting point to be augmented by an unbiased
tensor-network simulation, represents an interesting subject of
future work.

Note added in proof. Recently, we became aware of two
related papers [52,53]. The authors of Ref. [52] have ap-
plied the idea of a dynamical single-particle basis rotations
on matrix product states (MPS), optimizing at each step a
sequence of unitary two-site gates acting on the MPS. In
Ref. [53], the authors have chosen the frequency basis as a
computationally advantageous single-particle basis for a MPS
transport calculation.
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