PHYSICAL REVIEW A 100, 022125 (2019)

Measuring complex-partition-function zeros of Ising models in quantum simulators

Abijith Krishnan,! Markus Schmitt®,%3* Roderich Moessner,> and Markus Heyl2
' Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Max-Planck-Institut fiir Physik Komplexer Systeme, Nothnitzer Strafe 38, 01187 Dresden, Germany
3Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA

® (Received 20 March 2019; published 26 August 2019)

Studying the zeros of partition functions in the space of complex control parameters allows one to understand
formally how critical behavior of a many-body system can arise in the thermodynamic limit despite various
no-go theorems for finite systems. In this work we propose protocols that can be realized in quantum simulators
to measure the location of complex-partition-function zeros of classical Ising models. The protocols are solely
based on the implementation of simple two-qubit gates, local spin rotations, and projective measurements along
two orthogonal quantization axes. Besides presenting numerical simulations of the measurement outcomes for
an exemplary classical model, we discuss the effect of projection noise and the feasibility of the implementation

on state of the art platforms for quantum simulation.
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I. INTRODUCTION

The theory of phase transitions is central for our under-
standing of many-body systems. However, formally explain-
ing the singular behavior of thermodynamic potentials at
phase transitions has been a challenging problem for a long
time because the partition functions are generically analytic
for systems of finite size [1]. One resolution of this problem is
an artificial extension of system parameters to the complex
plane. In this framework, the nonanalytic properties of the
thermodynamic potentials are governed solely by the com-
plex zeros of the partition function, termed Fisher zeros for
complex temperatures [1] and Lee-Yang zeros for complex
fields [2]. While this extension has been primarily considered
a mathematical tool, the interest in studying complex partition
functions has recently been revived in different contexts,
such as complex networks [3,4], real-time evolution of quan-
tum many-body systems [5,6], protein folding [7], complex
renormalization group flows [8,9], Bose-Einstein condensa-
tion [10,11], dynamical phase transitions in stochastic systems
[12,13], and general studies of many-body systems in complex
coupling space [14-16]. Remarkably, following the theoret-
ical proposal in [17], Lee-Yang zeros for one-dimensional
Ising chains have been measured for the first time in a nuclear
magnetic resonance experiment [18].

In this work we show how the complex-partition-function
zeros for a large class of classical Ising models on various
graphs and in different dimensions can be measured in quan-
tum simulators such as trapped ions, superconducting qubits,
or Rydberg atoms. Our proposed experiment allows for a
wide flexibility not only in the underlying geometry of the
lattice but also in the different system parameters that can
be extended to the complex plane. On the experimental side,
the protocol requires (i) the ability to initialize the qubits in
a product state, (ii) the implementation of individual two-
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qubit Ising couplings, and (iii) the projective measurement of
all the involved qubits in a fixed basis without the need of
reconstructing the full quantum state. In Fig. 1 we show an
elementary building block of the proposed quantum circuit.
Full local control over the individual spin degrees of freedom
is not necessary in order to realize interesting cases such as the
two-dimensional Ising model, but it allows for a wider variety
of realizable model systems. We focus on Ising models, but
the approach is equivalently applicable to Potts models. In
our proposed protocol, the number of qubits to map out the
full complex plane for a parameter scales linearly with the
simulated system size N. In the end, we discuss the feasibility
of the protocols in quantum simulation platforms such as
trapped ions, superconducting qubits, and Rydberg atoms, as
well as the influence of projection noise resulting from a finite
number of measurements.

II. PROTOCOL

We first present the experimental protocol before describ-
ing how it can be used to measure the partition function zeros
of Ising models. We initialize the set of Mp physical qubits in
a product state

MP
Wo.r) = 14} = Q) 1+, (1)
=1

which is the product of eigenstates |+); of all the Pauli
matrices of, l =1, ..., M, with eigenvalue +1. For the most
general case we will also require ancilla qubits, as we explain
in detail later. We initialize these M, ancilla qubits, in a state
[%0.4), which can be polarized along either the z or x axis. The
required number of ancilla qubits M, depends on the graph
underlying the Ising model, as we detail later in the text. Then
our total initial state is

1Yo) = [Yo.r) ® [V0,4) - 2)
After the initialization we apply a sequence of two-qubit gates

Ue = e ®oion v = (1, m,K), 3)
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FIG. 1. Basic building block of the quantum circuit that allows
us to measure complex-partition-function zeros of a two-dimensional
classical Ising model. The scheme involves unitary single-qubit and
two-qubit gates. Ancilla bits [4), and [1), are required to explore
the complex parameter plane and the dashed lines indicate further
applications of the same sequence to the physical qubits, involving
additional ancillas.

with o a Pauli matrix (¢ =x,z), [ and m denoting the
two qubits involved, and K the dimensionless coupling. In
addition, we also use local spin rotations

U =e ™, uw=(h. “4)

After this sequence of unitary operations, the resulting state is

of the form
) = QU QUL o). 5)
" v

Finally, a projective measurement along the o* axis is per-
formed for the initial condition

L= (Yoly)I*. (6)

This measurement does not require full state tomography but
can be estimated by the relative frequency at which the state
|+) appears in the projective measurement, as was done in
recent experiments [19,20]. As we show below, for a suitable
choice of gates, the return probability L is related to partition
functions Z of complex Ising models:

L |Z). (7

Thus, zeros of Z are equivalently zeros of £ and a mea-
surement of £ provides the required information about Lee-
Yang or Fisher zeros of the implemented spin system. When
interested in not only the zeros but also the full partition
function Z, full state tomography is required to reconstruct
the amplitude G(t) = (Yo|y) instead of the probability L£(z).

III. PARTITION FUNCTION AND RETURN PROBABILITY

We consider the partition function of general classical Ising
models including a magnetic field, which takes the form

Z = ZCXP <— ZKijsiSj — ZH,‘S,‘)
5 i,j i
=> [1—[ exp(—Kijsisj)exp(—Hisi)}. ®)
K i,j

Here the sum runs over all possible configurations of N
spins, § € ZQ’ , and K;; and H; denote dimensionless cou-

plings or magnetic fields, respectively. Given that the operator
exp(—z Kijoio} — Y ;Hio?) with K;;, H; € C can be im-
plemented we dlrectly obtain

1z|?
+| exp ZI(UO'(T ZH,, |+) = ©)

because |+) = 2N/’ >+ |5), where [5) is the o° basis. Note that
for this identity, we used the fact that the operator is diagonal
in the o basis. Hence, the approach is restricted to classi-
cal partition functions. Along the imaginary coupling axis,
however, the partition function zeros are related to dynamical
quantum phase transitions for a quench from infinite to zero
field of a quantum Ising model [5,6,21].

As indicated in the second line of Eq. (8), the contributions
of the interaction and field terms factorize such that these
individual constituents can be considered separately. We ad-
ditionally separate explicitly the unitary evolution given by
the imaginary parts of the couplings and the nonunitary part
given by the real parts of the couplings. Therefore, we expand
our previous expression as

+|]—[

with Ki; = Kf§ + K[}, H; = Hf +iH}, and K" H]" €
R. In thls expressmn the unltary parts dlrectly correspond to
the application of unitary gates UZ Sk and U( Hy: As we
demonstrate next, the nonunitary part can be implemented
via the coupling to ancilla spins and additional projective
measurements.

To emulate the action of the nonunitary operator e Koo
on a state |Y) with only unitary gates, we add an ancilla
qubit to the system. This additional spin is polarized in the
x direction such that the state of the enlarged system is
|Y) ® |+),, as alluded to in Eq. (2). On this state we apply
two Ising gates with coupling strengths «;; and «/ ; between
qubits i and j and the ancilla spin, followed by a projection
of the ancilla onto its initial state. After using Eq. (3), this
procedure yields

(+|aU(1aK,,) (]aK )|W)|+> _COS(KUU +KUU/)|¢>'
(11

The outcome can be matched with the effect of applying
imaginary-time evolution e Kioio] by appropriately choosing
kij and «/; so that the action of (+|, U7 | ) (?Za,/([’/) [¥) |1+),
on basis configurations of spins i and j is equivalent to
imaginary-time evolution on those spins. Thus, after setting
cos(2kij) = e 251 and Ki/j = sgn(KiIE)/c, we obtain

1/ o; 76 le]"z o’le H/"(rfefiHiRaﬂ_'_) (10)

—KRoig? R
eI ) = 5 (), UE Uy W) 10 (12)

Imaginary-time evolution with a magnetic field is realized
in the same fashion, again introducing an ancilla bit that is
polarized along the x axis. In this case, we require an Ising
gate with coupling A; between the physical and the ancilla
spin, and a local Spll’l rotation of strength w; on the ancilla,
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which results in
(Hla Ui Ul 19D 1) = cos (205 + wj) [¥) . (13)

As in the preceding paragraph, we adjust the couplings A;
and p; to match the action of (+|, U(?Za’)\/)Ué'm) ) |+),
with that of the nonunitary operator by choosing cos(2A;) =

e and ;= —sgn(H ). Then we obtain

e M) = e (4|, UZE, UL, W) 1), (14)

After implementing our emulation of imaginary-time evolu-
tion, our return probability £ is

= (Vo4 (+|U, exp ZzKlIJal O'J — ZiH}a;
Jj

X ) [¥oa| 15)

where |Y4) is polarized in the +x direction and Uy =
[T, .. iza,x;,))Hj(Ug,thJf)Ué,u,f))' Thus, we find the
following expression for L:

_ew (2%, [Af -2 KD

22N

(16)

Thus, based on this scheme, one can obtain the norm of the
partition function |Z|? for arbitrary complex couplings K;; and
H;. This procedure applies to, in principle, Ising models on ar-
bitrary graphs (although the concrete feasible realizations can
depend on the experimental platform), meaning in particular
that the procedure is independent of the dimensionality of the
classical Ising model.

In this approach, we introduced one qubit per classical
spin. To map out, for example, the Fisher zeros in the complex
parameter plane of an Ising model without magnetic field
on a square lattice with cylindric boundary conditions and
lattice dimensions N x L (with open boundary of length L),
3NL — N qubits are required and 6NL — 3N unitary gates
need to be applied. The number of qubits arises from NL
“physical” qubits and 2NL — N ancillas, which are necessary
to realize the real parts of the Ising coupling. We require
6NL — 3N unitary gates because for each Ising coupling, one
gate is required for the real part and two gates are required for
the imaginary part.

IV. TWO-DIMENSIONAL ISING MODELS

We now discuss an experimental protocol for two-
dimensional Ising models, which requires fewer qubits than

J

L=

|<+|exp( KZO' (o )[exp( HZal.x)exp (_KZGiZU;)]L_l|+>

the above procedure and realizes open boundary conditions
in one direction and open or periodic boundary conditions
in the other direction. For simplicity of notation, we assume
homogeneous nearest-neighbor Ising couplings K, and K,
in the x and y directions, respectively, and we exclude the
longitudinal magnetic field, which can be implemented just
as in the preceding section; these constraints can be relaxed,
however, as our procedure can treat more general models
analogously.

In our protocol, similar to the conventional quantum-
classical mapping, we relate the return probability of a pe-
riodically kicked transverse field quantum Ising model

Pyicked = ‘ (+lexp (—K Z Uisz> [CXP (—
-1 2
X exp (—K Zofo]f")] ‘

HZU;‘)

a7

to the partition function of a two-dimensional classical Ising
Model after insertion of a complete set of states after each
period. We then arrive at.

sinh(2H)NEL-D 2

Picked = INTD

)

(18)

Z<K, B 1n[tan2h(H)] N, L)

where Z(K,, K,,, N, L) is the partition function of the classical
Ising model with lattice size N x L. In the expression above,
the quantum couplings K and H can again be complex num-
bers and the nonunitary part can be implemented as discussed
in the preceding paragraph. We implement the imaginary-
time evolution of the transverse field of the quantum model
analogously to the imaginary-time propagation e o given
in Eq. (14), i.e., the coupling to a transverse field can be
implemented as

e 1y = M (4, UES UK 1) N, (19)

with A and p as given above and U(7, A) and U a.) defined
analogously to the gates introduced 1 1n Eqs 3) and (4) with
o* Pauli operators. Here |1) denotes the eigenstate of o° with
eigenvalue +1, 0% |1) = |1). Then, after computing £ analo-
gously to Eq. (15) and, as discussed above, adding transverse
field gates and z-polarized ancilla spins, our expression for the
measured probability L is

| 2

22N (L—D)|HR[+2NLIKE]

In Fig. 1 we display an example of the basic building
block of the corresponding quantum circuit that implements
the required kicking. The quantum circuit involves the Ising

(20)

(

coupling between two qubits and the evolution of single qubits
in the transverse field. For the nonunitary part of the evolution,
two ancilla bits are required.
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FIG. 2. Complex-partition-function zeros of a 3 x 3 Ising model on a cylinder as revealed by the return probability given in Eq. (20).
(a) Fisher zeros in the complex K plane (note the rescaling of the axes). The white line indicates the unit circle, on which all Fisher zeros reside
in the thermodynamic limit. (b) Lee-Yang zeros in the complex magnetic field plane.

Overall, to address a classical Ising model on a square
lattice with cylindric boundary conditions of size N x L, 2NL
qubits are required as opposed to 3NL — N qubits that would
be required using the scheme of the previous paragraph.
Although the number of qubits is still proportional to the
number of classical spins, the smaller prefactor is relevant
considering the number of qubits available in present-day
quantum simulators. Note that the number of ancilla qubits
could be further reduced on platforms that allow for the
measurement and reinitialization of individual qubits during
the execution of a circuit. The total number of required gates
is 6NL — 3N, just as in the scheme presented before.

V. COMPLEX-PARTITION-FUNCTION ZEROS

To identify zeros of the partition function in the complex
parameter plane experimentally, one maps out the parameter
space with measurements of the return probability £ as de-
scribed above. We now present hypothetical results obtained
from numerical simulations of the experimental protocols
based on an exact numerical simulation. For these examples
we choose a two-dimensional Ising model on a square lattice
of 3 x 3 spins with open boundary conditions in one direction
and periodic boundaries in the other direction for convenience.
We consider identical couplings of all pairs of nearest neigh-
bors. For this setting, the realization appears within reach
using the kicking protocol (20) with state of the art quantum
simulators. First, we consider Fisher zeros, i.e., roots of the
partition function in the complex K plane. The numerical
result for the partition function Z as given in Eq. (20) is shown
in Fig. 2(a). In the complex coupling plane, the result shows
distinct points of a vanishing partition function corresponding
to Fisher zeros of Z. Upon increasing the system size, the
number of Fisher zeros also increases. In the thermodynamic
limit, they coalesce to form manifolds in the complex plane
[1]. In the case shown here, this manifold is the unit circle
[1,22,23], indicated as the white dashed line in Fig. 2(a). In
Fig. 2(b) we show the partition function Z in the complex
magnetic field plane to identify Lee-Yang zeros. Again, the

return probability shows distinct points at which Z becomes
zero. The Lee-Yang zeros lie on the imaginary axis; thus, there
is no phase transition as a function of the magnetic field for
Re(H) > 0.

As one can see, the complex zeros for the small system
considered in Fig. 2(a) already follow closely the result in
the thermodynamic limit. In Fig. 3 we show the distribution
of Fisher zeros in the complex temperature plane of an Ising
model with cylindrical boundary conditions for system sizes
3x3,5x%x5,and 7 x 7. The number of zeros increases with
increasing system size, and they are distributed more and
more densely along the unit circle indicated by the white
dashed line. In the thermodynamic limit the Fisher zeros
will coalesce to this unit circle that cuts the real parameter
axis, thereby indicating the critical temperature of the phase
transition between ferromagnet and paramagnet. The density
of partition function zeros near the critical temperature deter-
mines critical exponents of the transition [1]. Therefore, the
study of partition function zeros for finite systems can give
information about the thermal phase transition.

VI. PROJECTION NOISE

In the experimental realization of the proposed protocols,
the return probability £ will be obtained from a finite number
of measurements as the relative frequency of the outcome
that all spins are polarized along the +x direction. This finite
number of measurements introduces projection noise onto the
result for £. In order to assess whether partition function zeros
can still be identified, we simulate numerically the effect of
projection noise by drawing a finite number of samples from
the resulting wave function.

In Fig. 4 a representative result is shown for the measured
partition function, obtained with N = 5000 samples at each
point in the complex coupling plane. Despite the fluctuations,
the locations of Fisher zeros can be identified as distinct
minima in the observed return probability.

Having discussed the possibility of detecting experimen-
tally the location of partition function zeros in the complex
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FIG. 3. Complex-partition-function zeros of Ising models on
cylinders of different sizes: (a) 3 x 3, (b) 5 x 5, and (¢) 7 x 7. With
increasing system size, the distribution of Fisher zeros becomes
denser. In the thermodynamic limit they will coalesce on the unit
circle, indicated by the white dashed line.

parameter plane, we next extend this scheme to the measure-
ment of correlation functions.
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FIG. 4. (a) Simulated measurement outcome for the partition
function zeros in the complex coupling plane of a classical 3 x 3
Ising model for a finite number of 5000 measurements displaying the
projection noise. (b) Cut along the white dashed line of (a) comparing
the measured probability £ with the exact result. From light to dark
blue, the data points correspond to simulated measurements with
1000, 5000, and 10 000 samples.

VII. CORRELATION FUNCTIONS

In thermal ensembles, correlation functions of the form

1
(si8;) = Z ZSiSj exp (— ZX:KlmSlsm — XI:HISZ) 21
3 m

probe physical properties of the system, whose extensions
to complex parameter planes have been also explored [16].
As we explain now, in addition to the partition function,
accessing correlation functions at complex couplings is also
possible within the proposed framework of quantum circuits.
In particular, the norm of the correlation function is accessible
by slightly extending the scheme discussed before for the
measurement of the partition function. To implement the
measurement of correlation functions in the quantum circuit
we exploit the fact that 0,0, = —ie™ -1/, Therefore, the
norm of the correlation function can be obtained as the ratio
the return probabilities in two quantum circuits that differ only
by one additional Ising gate,

I(sis )
|(4] exp [in/2(a,-aj—1)—zi,j Kijoioi—3_; Hiol]|+)I?
[{(+|exp ( - Zi,j Kijoio; — ZiHiGiZ)l‘I'Hz

(22)

Now we present a procedure for computing the correlation
function for spins which includes information about phases,
in the two-dimensional Ising model. This method can also be

022125-5



KRISHNAN, SCHMITT, MOESSNER, AND HEYL

PHYSICAL REVIEW A 100, 022125 (2019)

generalized to arbitrary Ising models. There are two mecha-
nisms for explicitly computing complex correlation functions
between two spins for the two-dimensional Ising model: one
for both spins in the same “row” of the lattice and one for
the case where the spins are located in different rows. Both
involve inserting additional couplings or magnetic fields at the
spins whose correlation we wish to measure.

Consider our experimental procedure including kicking for
the two-dimensional Ising model with couplings K and H. To
measure correlations between spins (i, j) and (k, /) one can
introduce an additional coupling §K;; x; between those spins.
For this section we let F(8K;; ) be the return amplitude
measured for the two-dimensional Ising model with said
additional coupling.

First, suppose the spins are in the same row, i.e., both spins
occur in the same kick of the kicked quantum Ising model.
We add a small real coupling K® between the two spins
whose correlation we are measuring: S; ,, and Si . Then the
magnitude of the return amplitude is given by

. |.7-'(0)|2(l + 28K£Lkae(S,-,mSk,m))
- 62(\K+6K.R

im,km

[=IKD) - @Y

If we instead add a small imaginary coupling K/ , between

¢ m,km
the two spins S; ,, and S ,,, we get

)|> = 17O (1 - 28K

im,km

| F (K,

im,km

Im(S; nSk.m)). (24)

Therefore, making measurements with an additional real or
imaginary coupling between the spins of interest, respectively,
will provide real and imaginary parts of (S; ,,Sk ) as

1
Re(Si,mSk,m> = -
281(1'1;1,km
n | F(SKE )| UK +3Kam =KD
Zalqlfn,km"/_-.(o)'z ’
2
Im<Si,mSk’m> = — 11 <|]:(81(llm'kgl)| _ 1) (25)
28K, m | F(0)]

Now suppose the spins are in different rows. Because the
spins occur during different kicks of the kicked quantum
Ising model, coupling the spins is not feasible. We thus
add z-direction magnetic fields at each spin S;, and Sy ,.
We let F(6B;j ) be the return amplitude measured for the
two-dimensional Ising model with an additional z-direction
magnetic field 6B, x; added at both spins ij and kl. First, we
add a real magnetic field 8BX , to both spins. Then

im,kn

12585, 1) = 1ZOP[1+2(5B, ) (1 + Re(SinSta))]
(26)
and
]:(aBzI‘Sn.kn)
= ¢ Pl FO)[1 +2(8Bf, 1,) (1 + Re(SimSen))]-
27)

Thus, measuring F ((SBgn’kn) will indicate the real part of

(Si.mSk.n)- Now we add a magnetic field 6B§n’,me"”/ 4 at each

spin. Then

1Z(8BR ™) = 1Z(O)*[1 — 2(8BE, 1)) Tm(SimSi)]
(28)

and

F(5BR, pe™)

im,kn

= ¢ 2B F(O)[1 — 2(8BE

im,kn

) Im(S;nSea)]. (29)

which yields the imaginary part of the desired classical expec-
tation value. Thus, both a simpler procedure for measuring the
norm of a correlation function and a more involved procedure
for measuring the phase of a correlation function are possible
with the quantum circuit presented in this paper.

VIII. DISCUSSION

In this work we have proposed schemes to measure
complex-partition-function zeros of arbitrary Ising models in
quantum simulators. The required number of qubits scales lin-
early in the system size of the target system, where the details
of the scaling depend on the chosen boundary conditions and
on the specific simulation scheme.

For Ising models of small size, our scheme is feasible on
current quantum simulation platforms including trapped ions,
superconducting qubits, or Rydberg atoms, as we will argue
in the following. In all of these devices, the simulation of
more than ten qubits has been reported [24—27], initial product
states have been realized [20,24-30], the individual gates can
be implemented, and single-qubit resolved measurements in a
fixed measurement basis can be performed [20,24-30]. For a
concrete choice of Ising model, coupling the ancilla qubits
to the physical ones properly may be challenging. Using
trapped ion or superconducting qubit quantum computers, any
desired Ising coupling between two individual spins can be
achieved in principle. While controlled experiments with 20
or more qubits remain challenging, substantial progress has
been reported recently [24,25,27,28,31,32].

Let us now outline more concretely one potential realiza-
tion in systems of Rydberg atoms. Targeting the measure-
ment of the partition function for a one-dimensional Ising
model, for instance, one can utilize the recent advances to
controllably place Rydberg atoms in three-dimensional space
by means of optical tweezers [24,33,34]. Starting with a linear
chain to realize the targeted Ising model, the ancilla spins can
be placed midway between two physical spins but outside the
one-dimensional line forming the Ising chain. What remains is
to engineer the spin-spin interactions between the spins of the
targeted model and their coupling to the ancillas. Here one can
make use of two degrees of freedom to tune the involved inter-
action strengths to their desired values. On the one hand, the
interaction strength exhibits a marked distance dependence
which can take either dipolar or van der Waals form. On
the other hand, interactions also show a directional depen-
dence due to their dipolar nature [35]. The combination of
those two ways to tune the involved interaction strengths
allows one to explore a wide range of complex parameter
space. For a chain of length N = 10, this would require a total
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number of 19 spins, which is even well below reported exper-
iments with systems realizing more than 50 spins [24,31].

While the scheme relies on the simulation of only a number
of qubits linear in the system size of the targeted system,
the measurement of the zeros requires nevertheless resources
scaling exponentially. This increase in scale, however, is not
a consequence of our proposed protocols but rather due to the
fact that partition functions depend exponentially on system
size.

Previously, the calculation of partition functions for classi-
cal spin models has been related to quantum computation in
ways that differ, however, from our approach. These relations
allow one to use techniques from quantum information theory
to compute the partition sum on classical computers [36], to
draw conclusions about the classical simulability of quantum
algorithms from the knowledge of classical partition sums
[37], or to construct efficient quantum algorithms to evaluate
the partition sum of +J spin glasses [38]. By contrast, our

scheme can in principle translate the complex partition func-
tion of any classical Ising model on any graph to a circuit for
execution on a quantum simulator. Further, the protocols can
be straightforwardly extended to classical Potts models.
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