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Efficiently solving the dynamics of many-body localized systems at strong disorder
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We introduce a method to efficiently study the dynamical properties of many-body localized systems in the
regime of strong disorder and weak interactions. Our method reproduces qualitatively and quantitatively the
time evolution with a polynomial effort in system size and independent of the desired time scales. We use
our method to study quantum information propagation, correlation functions, and temporal fluctuations in one-
and two-dimensional many-body localization systems. Moreover, we outline strategies for a further systematic
improvement of the accuracy and we point out relations of our method to recent attempts to simulate the time
dynamics of quantum many-body systems in classical or artificial neural networks.
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Introduction. Experiments in quantum simulators, such as
ultracold atoms in optical lattices and trapped ions, have
nowadays achieved access to the dynamical properties of
closed quantum many-body systems far from equilibrium
[1–4]. Therefore, it has become possible to experimentally
study intrinsically dynamical phenomena that are challenging
to realize and probe on other platforms. One prominent ex-
ample constitutes the many-body localized phase in systems
with strong disorder, whose signatures have been observed
in a series of recent experiments [5–9]. Many-body local-
ization (MBL) describes a nonergodic phase of matter, in
which particles are localized due to the presence of a strong
disorder potential [10–13], extending the phenomenon of An-
derson localization [14] to the interacting case. Importantly,
the presence of interactions makes the dynamical properties
much richer [15–21]. In particular, interactions give rise to an
additional dephasing mechanism, allowing entanglement and
quantum information propagation even though particle and
energy transport is absent [15–18,22]. Describing, however,
quantitatively this interaction-induced propagation for large
systems beyond exact numerical methods has remained as one
of the main challenges.

In this work, we introduce an efficient numerical method
to compute the dynamics of weakly interacting fermions in
a fully localized MBL phase. The method is controlled by
the interaction strength and we find that the error remains
bounded in time over many temporal decades up to the asymp-
totic long-time dynamics of quantum information transport in
MBL systems, which occurs on timescales exponentially in
system size. The computational resources for computing local
observables and correlation functions in our approach scale
only polynomially in system size and are even independent
of the targeted time in the dynamics. We utilize the method
to study the dynamics of interacting fermions not only in one
dimension (1D) but also in two dimensions (2D) for up to 200
lattice sites. After benchmarking our approach by comparing
the characteristic entanglement entropy growth with exact
diagonalization, we study the quantum information transport

on the basis of the quantum Fisher information [7,23–28],
the logarithmic light cone in correlation functions [22,29–36],
and temporal fluctuations of observables, both for 1D and
2D. Finally, we point out a connection between our approach
and recent ideas to encode quantum states into classical and
artificial neural networks.

Models and methods. At sufficiently strong disorder the
MBL eigenstates are expected to be adiabatically connected
to the noninteracting ones [37,38]. In such a case the system is
fully described by an extensive number of quasilocal integral
of motions {Îl} [29,39–46], which emphasize an emerging
weak form of integrability [37,41]. In this case the Hamilto-
nian of the system exhibits a representation of the following
form:

Ĥ =
∑

l

J (1)
l Îl +

∑

l,m

J (2)
l,m Îl Îm + · · · , (1)

where l enumerates the sites of the underlying lattice. For the
considered weakly interacting case, higher-order couplings
between the integrals of motion Îl become exponentially sup-
pressed in the interaction strength, so that we can terminate the
expansion as done in Eq. (1). Moreover, it is expected
that J (2)

l,m ∼ e−d (l,m)/ξ with d (l, m) the spatial distance of the
two involved lattice sites l and m and ξ denoting the local-
ization length. While it is expected that this so-called l-bit
representation exists, it has remained as a central challenge (i)
to construct explicitly the integrals of motion {Îl} and (ii) to
make use of the l-bit Hamiltonian to compute its dynamics.

In this work, we show that in the limit of weakly in-
teracting fermions at strong disorder both of these chal-
lenges can be efficiently solved. In this limit we can decom-
pose the Hamiltonian Ĥ = Ĥ0 + V̂ with Ĥ0 a noninteracting
Anderson-localized system and V̂ the interaction part, whose
strength we denote by V . We take as the Îl ’s the integrals of
motion of Ĥ0 = ∑

l εl Îl with Îl = η̂
†
l η̂l and η̂

†
l (η̂l ) denoting

the creation (annihilation) operator for a single-particle An-
derson eigenstate φl with eigenvalue εl . As a second step, we
express V̂ = ∑

lmnk Blmnk η̂
†
l η̂mη̂†

nη̂k in terms of the {η̂l}. Then
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FIG. 1. (a) Bipartite half-chain entanglement entropy S(t ) after
a global quantum quench for several systems sizes (L) in 1D. S(t )
has been calculated using the exact Hamiltonian Ĥ (exact) and the
effective model Ĥ eff (approx.). The inset shows the relative error
δS (t ) = |S (t ) − Sapprox(t )|/S (t ), between the entanglement entropy
calculated with Ĥ and the one calculated with Ĥ eff. (b) QFI for the 1D
MBL system for several system sizes compared with exact results.

we neglect all contributions that do not commute with the {Îl}
so that we arrive at the following desired l-bit Hamiltonian:

Ĥ eff =
∑

l

εl η̂
†
l η̂l +

∑

l,m

Bl,mη̂
†
l η̂l η̂

†
mη̂m, (2)

with Bl,m = Bllmm − Blmlm. This construction relies on the
perturbative nature of an MBL phase, in which the integrals
of motion of the system {Îl} can be obtained perturbatively
from the noninteracting ones {η̂†

l η̂l} [10,29,40,44,46]. Thus,
as a first approximation in the limit of weak interactions, the
integrals of motion can be taken as those of the noninteracting
case. In the concluding discussion we will outline how one
can improve systematically the accuracy of the l bits by
accounting for higher orders in V [47]. For the following, we
will use the representation above and show that it is already
sufficient to capture quantitatively the dynamics for small V .

Having discussed the construction of the l-bit Hamiltonian,
we now outline how this can be used to study dynamics, which
is based on two main properties. First, the time evolution of η̂l

and η̂
†
l can be determined analytically via η̂

†
l (t ) = exp[itεl +

it
∑

m B̃l,mη̂†
mη̂m]η̂†

l where B̃l,m = Bm,l + Bl,m.
Second, for an initial state |ψ〉, which is a product state

in terms of the bare fermions, i.e., Gaussian, the expectation
values of time-evolved local observables and correlation func-
tions can be reduced to the evaluation of Slater determinants,
which can be done very efficiently. For example, for a generic
local observable Â = ∑

l,m al,mη̂
†
l η̂m, we need only to cal-

culate 〈η̂†
l η̂m(t )〉 = eit (εl −εm )〈η̂†

l eit
∑

p(B̃l,p−B̃p,m )η̂†
pη̂p η̂m〉, where

〈· · · 〉 = 〈ψ | · · · |ψ〉. The term 〈η̂†
l eit

∑
p(B̃l,p−B̃p,m )η̂†

pη̂p η̂m〉 can be
efficiently computed using Wick’s theorem [48], interpret-
ing eit

∑
p(B̃l,p−B̃m,p)η̂†

pη̂p as an effective time-evolution operator
of the quadratic Hamiltonian Ĥ (l,m) = ∑

p(B̃l,p − B̃m,p)η̂†
pη̂p.

Importantly, such initial conditions are typical choices in
theory [15,16,20,21,49–52] and have been realized in the
MBL context experimentally [5,6,8,9].

FIG. 2. (a) Disorder-averaged QFI density [ fQ(t ) = FQ(t )/2N]
for the 1D MBL model for several system sizes (L) and a fixed
disorder and interaction strength. The inset shows fQ(t ) in a suitable
scale to underline that fQ(t ) ∼ log log t . (b) Disorder-averaged QFI
density [ fQ(t )] for the 2D model for several system sizes (S) and
a fixed disorder and interaction strength. The inset shows that also
in this case fQ(t ) ∼ ln lnt . For both panels the evolution has been
obtained using Ĥ eff. Dashed lines are for the noninteracting case
(V = 0) for the largest system size in each panel.

For concreteness, we demonstrate our method for the
Hamiltonian [16,53–56]

Ĥ := −1

2

∑

〈i,j〉
(ĉ†

i ĉj + H.c.) +
∑

j

hjn̂j + V
∑

〈i,j〉
n̂in̂j, (3)

where ĉ†
j (ĉj) is the fermionic creation (annihilation) operator

at site j and n̂j = ĉ†
j ĉj. {hj} are random fields uniformly dis-

tributed between [−W,W ], and V is the interaction strength.
We study the system both in a 1D lattice of size L with peri-
odic boundary conditions and defined in a rectangular lattice
(2D) of size S = L × L

2 with periodic and open boundary
conditions respectively in the x and in the y direction. We
focus on half-filling N/L = 1/2 (N/|S| = 1/2) with N the
number of fermions. The 1D system is believed to have an
MBL phase at strong disorder [54–59]. The 2D case, on the
other hand, has largely remained elusive due to the lack of
efficient methods to simulate sufficiently large system sizes.
A recent experiment has given evidence of an MBL phase in
a bosonic 2D system [6]. Nevertheless, it is currently under
debate whether MBL can be stable at all in 2D [6,8,60–64].
The proposed mechanism for the breakdown of MBL relies on
rare resonances which, however, only manifest on very long
time-scales, below which our l-bit description, Eq. (2) could
still be accurate at intermediate timescales.

Following our prescription outlined before, we
first diagonalize the noninteracting model by intro-
ducing η̂

†
l = ∑

i φl (i) ĉ†
i . This then leads to Bl,m =

V
∑

〈i,j〉[|φl (i)|2|φm(j)|2 − φl (i)φm(i)φl (j)φm(j)]. In the
remainder, we choose staggered initial states of charge-
density type both for 1D |ψ〉 = ∏L/4−2

s=−L/4 c†
2s|0〉 and for

2D |ψ〉 = ∏L/2−1
y=−L/2

∏L/4−2
x=−L/4 c†

(2x,y)|0〉, motivated by recent
experiments [6]. Disorder-averaged quantities will be
indicated with an overline, e.g., 〈n̂i〉.

Benchmark for quantum-information propagation. We now
compare the exact dynamics of Ĥ with that generated by Ĥ eff.
For the benchmark we choose to study quantum-information
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FIG. 3. (a) Logarithmic light-cone calculated using the Cx (t ) for the effective model in 1D. (b) Cx (t ) as a function of time; the time has
been properly rescaled to get the collapse of the curves. It also shows the noninteracting case (V = 0) (dashed line). For both panels (a) and
(b) L = 48. (c) Logarithmic light cone for the 2D case with S = 10 × 5 in the x direction calculated using Cx,0(t ) evolved with the effective
model with W = 25 and V = 0.1.

(entanglement) propagation, which inherits one of the central
and nontrivial features of MBL phases. In Fig. 1 we show data
for two measures, both obtained using exact diagonalization
and via our effective Hamiltonian [65]. First, this includes the
half-chain entanglement entropy

S (t ) = −Trρ̂L/2(t ) log ρ̂L/2(t ), (4)

where ρ̂L/2(t ) denotes the reduced density matrix of half of
the system. Second, we study the quantum Fisher information
(QFI) related to the initial charge-density pattern defined by

FQ(t ) = 4[〈Ô(t )2〉 − 〈Ô(t )〉2], Ô =
∑

x

(−1)xn̂x. (5)

The QFI probes the propagation of quantum correlations and
is an entanglement witness [7,23–28], that has been also
measured experimentally in the MBL context [7].

As we can see from Fig. 1(a) the effective model re-
produces not only qualitatively the unbounded logarithmic
growth of the entanglement entropy [15,42], but even more
importantly also quantitatively correctly in the long-time
limit. In particular, the inset in Fig. 1(a) shows that the
relative error δS (t ) = |S (t ) − Sapprox(t )|/S (t ) is a bounded
function of time and remains smaller than 3% for all times.
Let us note that the results for δS (t ) gives evidence that
our method not only reproduces the logarithmic growth after
disorder averaging but even for individual random configura-
tions. Similarly, also for the QFI the dynamics generated by
the effective Hamiltonian follows closely the exact one [see
Fig. 1(b) where we define the QFI density fQ = FQ/2N [7]].
While the entanglement entropy serves as a prime example
for MBL properties, its computation within our method is
not scalable to large system sizes. This, however, is different
for the QFI which can still be computed efficiently even for
large systems, which allows us to also access it in 2D (see
below). It is important to note that our method reproduces the
exact dynamics also for times longer than the naively expected
range of validity of perturbation theory (∼1/V ), which can
be understood from a statistical analysis of the discarded
elements Bl,m,n,k [66].

Results. Having shown that our method reproduces quan-
titatively the exact dynamics at a controlled error, we now
aim to further demonstrate the capabilities of our method. We
target this goal by addressing several aspects of MBL systems
which up to now have not been accessible or could not be
settled due to system size limitations. This includes aspects
of quantum-information propagation, logarithmic spread of
correlations, and temporal fluctuations of local observables
both in 1D and 2D. In the following, we choose a larger
interaction strength V = 0.1 instead of V = 0.01 as used
for Fig. 1, which increases slightly the relative error in the
computed quantities, but at the same time allows us to amplify
the influence of interaction effects.

Figure 2 shows fQ(t ) for the 1D case (a) and the 2D case
(b), respectively, now computed for much larger systems than
done for the benchmark in Fig. 1. For the 2D model we
choose the QFI along the x direction, i.e., Ô = ∑

x(−1)xn̂x

with n̂x := n̂(x,0). For comparison we also include the results
for the noninteracting models, which show quick saturation
to a system-size-independent value. For nonvanishing inter-
actions, the behavior of FQ(t ) changes completely and we
observe a slow growth, which is consistent with FQ(t ) ∼
log log t (insets) over many decades in time and almost
independent of system size. As a consequence, we are capable
of demonstrating slow quantum-information propagation in
2D MBL systems, which up to now has not been possible by
other methods [29,60–62]. In a recent experiment in trapped
ions implementing a long-range disordered Ising model ev-
idence for an intermediate FQ(t ) ∼ log t growth has been
found [7], which, however, might be due to the fact that
the system could be in an algebraic MBL phase [67,68],
leading to B0,l ∼ 1/lβ with power law instead of exponential
dependence [67–70].

As a next step we aim at studying quantum correlation
spreading via the two-point connected correlation function,
defined by

Cx(t ) = |〈n̂x(t )n̂0(t )〉 − 〈n̂x(t )〉〈n̂0(t )〉|. (6)

Cx(t ) has been used in several quantum systems [31–36] to
quantify the time t required to correlate two sites at some
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FIG. 4. (a) Disorder-averaged time fluctuations [
n2(t )] for sev-
eral system sizes L for the 1D case, 
n2(t ) ∼ t−α . (b) 
n2(t ) for
several system sizes S for the 2D case; also in this case its decay is
consistent with an algebraic decay in time. The noninteracting case
(V = 0) is also shown (dashed lines) for the largest system size. For
both cases the evolution has been performed using Ĥ eff.

distance x, giving rise to the so-called light cone of propa-
gation of correlations. Moreover, Cx(t ) has been measured in
a recent experiment in a disordered Bose-Hubbard chain to
probe the existence of an MBL phase [30]. The 1D case we
address in Fig. 3(a), where we show a color plot of Cx(t ) dis-
playing the logarithmic light cone [30–36,71,72] over many
decades with quantum correlations spreading in space only
logarithmically slowly in time. Interestingly, however, we find
that there exists a timescale t�

x beyond which Cx(t ) starts to
decrease again [see Fig. 3(b)]. Remarkably, this indicates that
quantum correlations are eventually scrambled in the long-
time limit also in an MBL system, which might be consistent
and even necessary with the expectation to reach in the long-
time limit a state with volume-law entanglement entropy [73].
From the rescaling of the time axis used in Fig. 3(b) we
find evidence that this correlation time t�

x scales exponentially
with the distance x (log t�

x ∼ x). In the case of an Anderson
insulator (V = 0) quantum correlations are frozen in the long-
time limit [15,42], implying the saturation to nonzero value
of Cx(t ) [Fig. 3(b), dashed line]. Finally, in Fig. 3(c) we study
correlation spreading in 2D, where we found again, like in 1D,
the same logarithmically slow propagation.

As opposed to an Anderson insulator it has been argued
that an MBL system can show relaxation [59,74], meaning
that expectation values of local observables reach at long time
a stationary nonthermal value in the thermodynamic limit with
decaying temporal fluctuations. Here, we use our method to
reexamine the temporal fluctuations in 1D and to study them
also for 2D systems. These are defined for n̂x via


n2(t ) = 1

L

∑

x


n2
x (t ), 
n2

x (t ) = (〈n̂x〉(t ) − 〈n̂x〉tav)2,

(7)

where 〈n̂x〉tav denotes the long-time average of 〈n̂x〉(t ). As
shown in Fig. 4, both in 1D and 2D the temporal fluctuations
exhibit an algebraic decay with time, 
n2(t ) ∼ t−α .
As a reference we have included also the data for the
noninteracting cases (V = 0, dashed lines), where temporal
fluctuations remain nonvanishing for all times. We find
that the exponent α is proportional to the single-particle

localization length ξloc [75], for which we now aim to give
an analytical argument. This shows that our method not
only can be used for numerically computing quantities
but also for analytical predictions. For that purpose we

consider a special initial state |ψ〉 = ∏L
l

η̂l +η̂
†
l√

2
|0〉 for which

the calculations are simplified but which gives qualitatively
the same decay of the temporal fluctuations [76]. For this
state we find 
n2

x (t ) = [
∑

l �=m φl (x)φm(x)ei(εl −εm )t Qlm]2

with Qlm = 2−2 ∏m
k=l+1 sin(Al,m

k t )
∏

s �=k cos(Al,m
s t ) and

Al,m
k = (V/2)(B̃m,k − B̃l,k ) ∼ Ve−[min(|m−k|,|l−k|)/ξloc]. The

sum over (l, m) can be restricted only to eigenstates, whose
centers are located within a distance ξloc away from x.
Each term of the cos’s and sin’s with argument Al,m

k
decays exponentially in k, which leads to a power-law in
time [51] with an exponent proportional to ξloc, implying

n2

x (t ) ∼ t−cξloc [20].
Conclusions. In this work, we have formulated a method

which allows one to efficiently study the dynamics of weakly
interacting localized fermions. The accuracy of the approach
can be further increased systematically by taking into account
those contributions to the interaction term, which are not
commuting with the bare integrals of motion Îl and which
have been completely neglected in the present study. For
example, to lowest order they can be accounted using a
Schrieffer-Wolff transformation. Our method can be applied
to any weakly interacting MBL system, which exhibits an
l-bit representation, not only limited to the quantum quench
dynamics studied here. Thus, it can be used also to study,
for example, driven Floquet MBL systems [77] such as they
appear in discrete time crystals [78,79], MBL bosonic sys-
tems, algebraic MBL [67–69] and MBL weakly coupled with
thermal baths [80–83]. However, let us note that even in cases
where an MBL phase might not be stable asymptotically for
infinite system sizes and infinite times, our method might still
provide a description on intermediate timescales (e.g., MBL
in 2D [6,8,60–64]).

Overall, our method maps the dynamical quantum many-
body problem onto a system of classical degrees of freedom
of mutually commuting operators, similar in spirit to recent
works where dynamical problems have been solved using
classical [84] or artificial neural networks [85]. Instead of
solving the problem in the basis of the bare particles, our
work shows that a simple basis transformation onto more
convenient degrees of freedom can improve the accuracy and
efficiency dramatically, which might also be of relevance for
the aforementioned approaches.

Note added. Very recently, the dynamics of one-point
functions has been computed using a self-consistent Hartree-
Fock method, which scales polynomially in system size and
time [86].
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