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Ultracold atoms in optical lattices provide clean, tunable, and well-isolated realizations of paradigmatic
quantum lattice models. With the recent advent of quantum-gas microscopes, they now also offer the
possibility to measure the occupations of individual lattice sites. What, however, has not yet been achieved
is to measure those elements of the single-particle density matrix, which are off- diagonal in the occupation
basis. Here, we propose a scheme to access these basic quantities both for fermions as well as hard-core
bosons and investigate its accuracy and feasibility. The scheme relies on the engineering of a large effective
tunnel coupling between distant lattice sites and a protocol that is based on measuring site occupations after
two subsequent quenches.
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Introduction.—Atomic quantum gases in optical lattices
[1–3] combine a variety of properties that make them
a unique experimental platform for studying meso-
scopic quantum phenomena. Primarily, these systems
provide clean realizations of paradigmatic quantum lattice
Hamiltonians, well isolated from the environment.
Additionally, system parameters are highly adjustable
including dimensionality, lattice geometry, interaction
strengths, number of spin states, etc. Moroever, optical
lattice systems offer also unique measurement capabilities
beyond what is possible in solid-state systems. For exam-
ple, using quantum-gas microscopes it is possible to
measure the full spatial density profile with single-lat-
tice-site resolution [4–12]. Upon repeating such experi-
ments, one can determine means, fluctuations, correlations,
and even full distribution functions of site occupations.
This was used, e.g., to measure multiparticle string order
[13,14]. Furthermore, combining these probes with meas-
urement protocols, where additional dynamics is imposed,
it has been achieved to detect entangled states of matter
both by measuring a lower bound of the concurrence in spin
systems [15,16] and by extracting Renyi entropies in one-
dimensional (1D) bosonic lattice systems [17–19].
Yet, these quantum-gas microscopes provide direct

access only to physical quantities (near) diagonal in the
occupation basis. While protocols for measuring currents
and coherences on neighboring lattice sites were proposed
[20,21] and employed experimentally by either pairwise
merging [22–24] or isolating [25] neighboring sites, the off-
diagonal matrix elements of the single-particle density
matrix (SPDM)

χl0s0;ls ¼ hĉ†l0s0 ĉlsi; ð1Þ

on distant non-neighboring lattice sites l and l0 have not
yet been accessed experimentally. Here, ĉls denotes the
annihilation operator for a particle with spin s on lattice
site l. The SPDM contains elementary information about
the physical properties of quantum many-body systems and
therefore is of interest on general grounds. More specifi-
cally, one could use the SPDM to extract essential proper-
ties of many-body localized phases [26–28], to detect
topological Mott insulating states [29], or to probe topo-
logical edge states [30]. Moreover, it can be used to
reconstruct the full reduced density matrix of two lattice
sites. This would allow us to access entanglement via the
concurrence and the logarithmic negativity [31], to study
signatures of the butterfly effect [32] or to detect many-
body localized spin-glass order [33].
Here, we propose a feasible scheme for measuring the

elements of the SPDM χl0s0;ls for fermions or hard-core
bosons. Our approach requires the use of two techniques as
they are available in the aforementioned quantum-gas
microscopes: single-site resolved density measurements
and the ability to design high-resolution light-shift poten-
tials using digital mirror devices. Using these techniques
we show (i) how two distant lattice sites l0 ¼ a and l ¼ b
can be isolated from the rest of the system and efficiently
coupled to each other via virtual intermediate states
forming a “channel” [Fig. 1(a)], and (ii) how to use this
channel to measure χl0s0;ls by monitoring only local
densities on a and b. The main result concerning point
(i) is depicted in Fig. 1(e). It shows that the effective
parameter for tunneling between a and b, Bx, whose inverse
sets the measurement timescale, can be increased by orders
of magnitude when structuring (optimizing) the potential
landscape on the M sites between a and b [Fig. 1(c)]. This
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channel optimization is absolutely crucial, since for
unstructured (homogeneous) channels [Fig. 1(b)] an expo-
nential decay of Bx with M renders the measurement
essentially impossible already for small distances. In turn,
for the structured channel Bx scales like 1=M making
measurements at longer distances much more feasible. In
particular, this can allow for measuring all relevant single-
particle matrix elements of (many-body) localized systems,
involving distances roughly up to the localization length.
For problem (ii) we design a measurement protocol that is
based on monitoring the evolution of the densities on both
sites after two subsequent quenches in the Hamiltonian. It
goes beyond other quench-based measurement schemes
[20,21,34–37] that were implemented already successfully
in experiment [22–25,38–40]. In the following, we will first
describe the measurement protocol (ii), then discuss the
effective coupling of distant lattice sites (i), before closing
with concluding remarks.
Measurement protocol.—We will first treat the case of

spinless fermions, before addressing the spinful problem
and the case of hard-core bosons. The SPDM on two sites a
and b is then determined by

χab ¼ hĉ†aĉbi ¼ trfρ̂ĉ†aĉbg: ð2Þ

Here, ρ̂ denotes the system’s full density operator, which
can either describe an equilibrium state or can result from
a nonequilibrium process. As we show in more detail
below, for our measurement protocol we engineer situa-
tions where the two sites a and b are isolated from the
remainder of the system but still coupled to each other, such

that their dynamics is governed by two possible effective
Hamiltonians:

Ĥz
ab ¼ Bzðn̂a − n̂bÞ; Ĥx

ab ¼ Bxðĉ†aĉb þ ĉ†bĉaÞ; ð3Þ

with n̂l ¼ ĉ†lĉl, energy offset 2Bz, and tunnel coupling Bx.
Let us first consider the subspace of a single fermion

shared among both sites. It is convenient to introduce an
effective pseudospin-1=2 representation with ↑ and ↓
referring to the cases where the fermion is located on site
a and b, respectively. Then we can recast the reduced
density matrix into the form ρ̂ab ¼ ½1þ r · σ̂�=2, with σ̂ ¼
ðσ̂x; σ̂y; σ̂zÞt denoting the vector of Pauli matrices. It is
characterized by the three-dimensional Bloch vector r of
length jrj ≤ 1 directly corresponding to the polarization,
hσ̂i ¼ trðρ̂abσ̂Þ ¼ r. The purity reads trðρ̂2abÞ ¼ ð1þ r2Þ=2,
so that jrj < 1 for mixed states. The SPDM χð1Þab in the one-
fermion subspace is given by

χð1Þab ¼ trðρ̂abjih↑jÞ ¼ h↑jρ̂abj↓i ¼ ðrx − iryÞ=2: ð4Þ

Within the pseudospin representation, we can identify Bz

and Bx as effective magnetic fields, i.e., Ĥz
ab ¼ Bzσ̂z,

Ĥx
ab ¼ Bxσ̂x. Let us now consider a protocol, where we

first evolve the system with Ĥz
ab for a time tz and afterwards

for a time tx with Ĥ
x
ab. This amounts to two successive spin

rotations [Fig. 1(d)]: one by the angle α ¼ Bztz=ð2ℏÞ
around the z axis followed by one by the angle β ¼
Bxtx=ð2ℏÞ around the x axis. It transforms the polarization
r before the rotation, which we wish to reconstruct, to the
rotated polarization r0 ¼ r0ðα; βÞ. Measuring the occupa-
tions na and nb in repeated experiments, one can obtain the
z polarization r0zðα; βÞ ¼ hn̂↑ − n̂↓ið1Þ by averaging over
the events with n ¼ na þ nb ¼ 1:

r0zðα; βÞ ¼ sinðβÞ½sinðαÞrx þ cosðαÞry� þ cosðβÞrz: ð5Þ

The measurement protocol is depicted in Fig. 1(f). From
measuring r0zðα; βÞ for different angles α and β, we can

reconstruct r [and, using Eq. (4), also χð1Þab ]:

rx ¼ r0zðπ=2;π=2Þ; ry ¼ r0zð0;π=2Þ; rz¼ r0zð0;0Þ: ð6Þ

Note that the parameters Bz and Bx, whose values control
the angles α and β, do not need to be known before the
experiment, but can be measured from the periodicity of rz
with respect to tz and tx. Note also that, in case we can
assume that ρ̂ab describes a pure state, jrj ¼ 1, we can
reconstruct ry, rz, and jrxj ¼ ½1 − r2y − r2z �1=2 without the
need of implementing a finite Bz for the α rotation. This has
been exploited for the tomography of band insulators in
momentum space [35,39].

1 2 3 4 5 6 7

(a)

(b)

(e)

(c)

(f)

(d)

FIG. 1. (a) Two distant lattice sites a and b are effectively
coupled to each other via energetically distant intermediate states
of a channel formed by the sites between them. (b),(c) Homo-
geneous and structured (optimized) channel design: on-site
potential ul on the sites l ¼ 1;…;M between a and b, for M ¼
7 and ϵ ¼ 0.05. The horizontal axis defines zero energy
ðua þ ubÞ=2≡ 0, tick marks are separated by J. (d) Rotation
of the pseudospin polarization r. (e) Effective tunnel coupling Bx
vs M for ϵ ¼ 0.05. (f) Measurement protocol.
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Let us now discuss the general case where a priori any
particle number n ¼ na þ nb can occur. When measuring
the occupation numbers na and nb, one first has to
distinguish between the three possible outcomes n ¼ 0,
1, 2, and note their relative frequencies pn in repeated
experiments. The cases n ¼ 0 and n ¼ 2 correspond to the
states jnanbi ¼ j00i and j11i, respectively, which are
invariant under the action of both Hamiltonians (3) and

give χð0Þab ¼ χð2Þab ¼ 0 of ĉ†aĉb. Overall, the full SPDM
element can thus be written as

χab ¼
X2

n¼0

pnχ
ðnÞ
ab ¼ p1χ

ð1Þ
ab : ð7Þ

The results obtained so far are equally valid for hard-core

bosons, since χð0Þab ¼ χð2Þab ¼ 0 remains true and χð1Þab is
obtained from single-particle dynamics. The scheme does
not generalize to soft-core bosons.
Finally, it is left to consider spinful fermions. The SPDM

for equal spin states hĉ†asĉbsi can be obtained by repeating
the above protocol individually for each spin state. This
requires spin-sensitive measurements of n̂as, as they were
performed in various experiments. To obtain hĉ†as0 ĉbsi for
s0 ≠ s one could first perform a spin rotation s0 → s on site
l0 and then, again, proceed as before. Since such a spin
rotation commutes with both quench Hamiltonians, it could
be performed also after the double quench. However, this is
in turn equivalent to simply measuring n̂s0a instead of n̂sa,
so that actually no spin rotation is needed. Note that unlike
for spinless fermions, which are noninteracting, the imple-
mentation of the quadratic Hamiltonians (3) requires for
spinful fermions also to switch off the interactions using a
Feshbach resonance [41]. This technique is available in a
fermionic quantum-gas microscope [14].
Realizing the quench Hamiltonians.—Let us now discuss

how to implement the Hamiltonians Ĥz
ab and Ĥx

ab exper-
imentally. For simplicity, we will consider spinless fer-
mions in 1D. The below reasoning applies also to hard-core
bosons, which can be mapped to free fermions using a
Jordan-Wigner transformation. For the spinful case the
same Hamiltonian has simply to be realized for all spin
components. The generalization to higher spatial dimen-
sions can be achieved by realizing a 1D channel connecting
two sites or, alternatively, by generalizing the below
reasoning to higher-dimensional channel architectures.
We assume that during both stages of the measurement

protocol the subsystem containing the two sites a and b as
well as the M sites between them (forming the channel) is
decoupled from the rest of the lattice by switching on a
large potential offset. We label the lattice sites of this chain
from a (l ¼ 0) to b (l ¼ M þ 1) in ascending order:

Ĥ ¼ −J
Xb−1

l¼a

ðĉ†lĉlþ1 þ ĉ†lþ1ĉlÞ þ
Xb

l¼a

uln̂l: ð8Þ

Here, J denotes the tunneling amplitude and the ul
are tunable on-site energies. The latter can be tuned
independently using high-resolution light-shift potentials
realized by digital mirror devices in quantum-gas micro-
scopes. For later convenience let us decompose this
Hamiltonian according to Ĥ ¼ Ĥab þ Ĥch þ Ĥcp. Here,
Ĥab¼uan̂aþubn̂b captures the subspace containing the
sites l ¼ a, b. The channel between a and b is described by
the Hamiltonian Ĥch ¼ −J

P
b−2
l¼aþ1ðĉ†lþ1ĉl þ H:c:Þ þP

b−1
l¼aþ1 uln̂l ¼ P

k αkĉ
†
kĉk, which is diagonalized by

the modes k ¼ 1;…;M, having energies αk and annihila-
tion operators ĉk ¼

P
b−1
l¼aþ1 λklĉl with real coefficients

λkl. The channel is coupled to a and b by Ĥcp ¼ −Jðĉ†aĉ1þ
ĉ†bĉM þ H:c:Þ ¼ P

kðJakĉ†aĉk þ Jbkĉ
†
bĉk þ H:c:Þ, where

we defined the real matrix elements Jak ¼ −Jλkðaþ1Þ
and Jbk ¼ −Jλkðb−1Þ.
We aim at an effective Hamiltonian involving only the

lattice sites a and b which we achieve by coupling them
through the intermediate channel via virtual off-resonant
processes. In this spirit, we consider a setup where the on-
site energies ul are tuned in such a way that the tunneling
from sites a and b into the channel is accompanied with a
large energy cost. In this case, Ĥcp constitutes a weak
perturbation, that can be eliminated using a Schrieffer-
Wolff transformation: eκŜ½Ĥab þ Ĥch þ κĤcp�e−κŜ ¼
Ĥeff

ab þ Ĥeff
ch þOðκ3Þ, with counting parameter κ ¼ 1 and

an anti-Hermitian generator Ŝ ¼ P
k;xðAxkĉ

†
xĉk − H:c:Þ,

which includes the small parameters of our approximation,
Axk ≡ Jxk=ðαk − uxÞ ≪ 1 for x ¼ a, b. This gives the
effective Hamiltonian

Ĥeff
ab ¼ Bxðĉ†aĉb þ ĉ†bĉaÞ þ Bzðn̂a − n̂bÞ; ð9Þ

with 2Bx ¼ −
P

kðAakJbk þ AbkJakÞ and 2Bz ¼ ua − ubþP
kðAakJak − AbkJbkÞ, where we have dropped an irrel-

evant term ∝ ðn̂a þ n̂bÞ. This Hamiltonian can take the
form of both the desired quench Hamiltonians. For ua ¼
ub ¼ 0 one has Bz ¼ 0 and Bx ¼ −

P
kJakJbk=αk so that

Ĥeff
ab ¼ Ĥx

ab. In turn, Ĥeff
ab ≃ Ĥz

ab with Bz ¼ ðua − ubÞ=2
can be achieved in the limit Axk → 0, which is reached by
increasing the channel energies αk via potentials ul.
Within our scheme there are two sources of errors. First,

we neglect corrections in the perturbative derivation of the
effective Hamiltonian beyond second order. Second, the
effective Hamiltonian is not realized in the basis of bare site
occupations, but rather in the slightly rotated perturbed
basis. The second error is of second order (as we argue
now) and therefore dominates. Considering ua ¼ ub ¼ 0 as
well as a reflection-symmetric channel Hamiltonian (so
that A2

ak ¼ A2
bk) and assuming that terms containing off-

diagonal expectation values hĉ†aĉki and hĉ†k0 ĉki with k0 ≠ k
sum up to zero (rotating wave approximation), we find
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heŜðn̂a − n̂bÞe−Ŝi ¼ ð1 − ϵÞhðn̂a − n̂bÞi, with the state-in-
dependent relative error between dressed and bare z
polarization

ϵ ¼
X

k

A2
ak: ð10Þ

In the following, we optimize our channel in such a way
that we maximize Bx while keeping the target error ϵ fixed.
We also confirm numerically that the estimated error ϵ
indeed quantifies deviations between the exact time evo-
lution and that generated by the effective Hamiltonian.
Engineering the channel.—Let us first consider a homo-

geneous channel [Fig. 1(b)] with ul ¼ Δ ≫ J, giving rise
to channel states with energies αk¼Δ−2Jcos½πk=ðMþ1Þ�
and wave functions λkl¼½2=ðMþ1Þ�1=2sin½πkl=ðMþ1Þ�
on the sites l ¼ 1;…;M of the channel (for convenience,
we assume a ¼ 0). Choosing Δ for each M so that
ϵ ¼ 0.05, we find an exponential suppression of Bx with
M [Fig. 1(e), circles], related to a destructive interference
between channel modes. Namely Bx is a sum over terms
with oscillating sign, since λkM ¼ ð−Þkþ1λk1. This unfav-
orable scaling restricts the scheme to short distances.
To obtain better results, we investigate structured reflec-

tion-symmetric channel potentials ui [Fig. 1(c)]. We
maximize Bx again under the constraint ϵ ¼ 0.05 [42].
Figure 1(c) shows the optimized channel design forM ¼ 7.
We find a power law instead, Bx ∼ 1=M [Fig. 2(b),
triangles]. This tremendous improvement is one of the
main result of this Letter. It implies that significant effective
coupling matrix elements can be engineered over rather
large distances. Figure 2(a) shows that the optimized
coupling Bx scales proportional to the error.
Let us study the validity of our perturbative results and

compare the evolution of the z polarization hðn̂a − n̂bÞi
generated by the full Hamiltonian Ĥab þ Ĥch þ Ĥcp to the
one obtained from the effective Hamiltonian Ĥeff

ab ¼ Ĥx
ab.

Two examples are shown in Fig. 3(a). Fitting A sinðωt − ηÞ
to the exact evolution, we can compare the extracted
amplitude A and phase η (ω to the perturbative results
Aeff and ηeff . In Figs. 3(c) and 3(d) we plot the errors ϵamp ¼
jA − Aeff j=jAj and ϵph ¼ jη − ηeff j versus the initial polari-
zation r, characterized by jrj ¼ 1 and polar angles ðθ;ϕÞ.
Their behavior with respect to the estimated error ϵ is

depicted in Figs. 3(b). The amplitude error ϵamp is directly
related to the estimated error ϵ. Like ϵ it (practically)
does not depend on the state [see limits of color bar in
Fig. 3(c)] and we find a linear scaling ϵamp ≈ 2ϵ [Fig. 3(b)],
consistent with the fact that projecting between bare and the
perturbed basis states leads to an error twice (when
switching on Ĥx

ab and when recording bare site occupations
afterwards). The phase error is much smaller [≲10−2, see
Fig. 3(d)] and does not show a strong dependence on ϵ.
This justifies a posteriori our choice to quantify the error
via ϵ.
Finally, we wish to shed light on the physics underlying

the 1=M scaling of Bx. For this purpose, we consider a
simple model for a structured channel and show that it gives
rise to such behavior. Motivated by the results of the
channel optimization [see Fig. 1(c) for the M ¼ 7], we
define u1 ¼ uM ¼ u and u2 ¼ � � � ¼ uM−1 ¼ v. The energy
v shall be comparable to J, while u takes a large value
forming a barrier at both channel edges. In this way
tunneling from a (b) into the central channel
(i ¼ 2;…;M − 1) via the edge site 1 (M) can be viewed
as a second-order process with effective matrix element
−Jeff ≈ J2=u. Diagonalizing the homogeneous central
channel, we obtain modes q ¼ 1;…;M − 2 with energies
βq ¼ v − 2J cos½πq=ðM − 1Þ�. The maximum energy sep-
aration from neighboring levels Δβ ≈ 2πJ=M is found for
modes q ≈ ðM − 1Þ=2; let q0 be one of them. By tuning u
and v, we can achieve that jJeffλj ≪ jϵq0 j ≪ Δβ, where λ ≈ffiffiffiffiffiffiffiffiffiffi
2=M

p
and ð−Þq0þ1λ are the overlaps of mode q0 with site

i ¼ 2 and i ¼ M − 1, respectively. Let us say, ϵq0 ¼ δΔβ

(a) (b)
a

FIG. 2. (a) Effective coupling versus the estimated error.
(b) Inverse effective coupling versus channel length.

(a) (c)
amp

amp ph
ph

(d)(b)

FIG. 3. (a) Evolution of z polarization for full and effective
Hamiltonian (solid and dashed lines, respectively) for ϵ ¼ 0.05,
and initial polarizations ðθ;ϕÞ ¼ ð0; π=4Þ (upper) and ðπ=2; π=4Þ
(lower). (b) Amplitude and phase error (averaged over initial
polarization with fluctuations indicated by error bars) versus
estimated error. (c),(d) Amplitude and phase error versus initial
polarization for ϵ ¼ 0.05. In all panels (a)–(d)M ¼ 5 and jrj ¼ 1.
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and Jeffλ ¼ δ2Δβ, with small parameter jδj ≪ 1. This
corresponds to a situation, where both sites a and b couple
to each other predominantly through a single central
channel mode q0, so that destructive interference between
channel modes is avoided. Now, we can estimate Bx as
resulting from a second-order process on a next level,
connecting a and b via the intermediate virtual state q0. We
find Bx ≈ ð−Þq0λ2J2eff=ϵq0 ∝ J=M. Computing Bx within
this ansatz by optimizing u and v for each system size M,
keeping ϵ ¼ 0.05 fixed, clearly confirms the linear scaling
of J=Bx with M [Fig. 2(b), green triangles]. Surprisingly,
the uv ansatz works almost as well as the full channel
optimization (red triangles), which also give large barrier
potentials u1 ¼ uM. Thus, apart from providing insight into
the mechanism underlying the channel architecture, the uv
ansatz provides also a simple recipe for the experimental
implementation of our measurement scheme.
Conclusions.—In summary, we have proposed an exper-

imental scheme for measuring off-diagonal elements of the
SPDM in lattice-site representation for fermions and hard-
core bosons in optical lattices. It relies on the ability of
quantum-gas microscopes to both measure occupations and
create light-shift potentials with single-site resolution. For
this purpose we showed on the one hand, how to engineer a
significant effective tunnel coupling between distant lattice
sites. On the other hand, we presented a protocol that uses
the dynamics induced by suddenly switching on this
coupling for reconstructing the sought-after matrix ele-
ments between two sites l and l0 from measuring the
occupations on these sites only.
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