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Topological phases constitute an exotic form of matter charac-
terized by non-local properties rather than local order param-
eters1. The paradigmatic Haldane model on a hexagonal lattice 
features such topological phases distinguished by an inte-
ger topological invariant known as the first Chern number2. 
Recently, the identification of non-equilibrium signatures 
of topology in the dynamics of such systems has attracted 
particular attention3–6. Here, we experimentally study the 
dynamical evolution of the wavefunction using time- and 
momentum-resolved full state tomography for spin-polarized 
fermionic atoms in driven optical lattices7. We observe the 
appearance, movement and annihilation of dynamical vorti-
ces in momentum space after sudden quenches close to the 
topological phase transition. These dynamical vortices can be 
interpreted as dynamical Fisher zeros of the Loschmidt ampli-
tude8, which signal a so-called dynamical phase transition9,10. 
Our results pave the way to a deeper understanding of the 
connection between topological phases and non-equilibrium 
dynamics.

The discovery of topological matter has revolutionized our 
understanding of band theory: not only are the dispersions of the 
energy bands important, but so is the geometry of the correspond-
ing eigenstates1. The non-local nature of the topological invari-
ants characterizing such phases goes beyond the Landau paradigm 
of local order parameters and leads to topological protection, 
for example, against disorder. Ultracold quantum gases in optical 
lattices allow for controlled studies of archetypal topological mod-
els11–14. In addition, compared with, for example condensed-matter 
systems, they also allow for detailed studies of the relation between 
dynamics and topology as the timescales are experimentally easier to 
access. Dynamical studies of driven systems have recently attracted 
attention in terms of their high Tc superconductivity15. A particular 
challenge is to identify non-equilibrium signatures of topology in 
the dynamics of highly excited states3,4,16. Here, we observe the time 
evolution of the wavefunction after a sudden quench in a Haldane-
like model and find dynamical vortices as a signature of the topo-
logical nature of the underlying ground state.

In the experiments described here, the state tomography method 
allows mapping of the full quantum-mechanical wavefunction of 
non-interacting ultracold fermionic quantum gases in an optical lat-
tice for any time after a sudden quench of the system close to or into 
a Chern insulating phase. As a key result, we identify in an intense 
series of measurements the appearance, movement and annihilation 
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Fig. 1 | Quenches in the topological Haldane model. a, We realized a 
quench between two Hamiltonians on a hexagonal lattice. In the initial 
system, tunnelling JAB between the A and B sites is suppressed by a large 
energy offset. In the final Floquet system, tunnelling is re-established by 
means of near-resonant driving. b, At each momentum, the Hamiltonian 
describes the coupling between the states of the A and B sublattices, and 
can be visualized on a Bloch sphere. In the initial system, the Hamiltonian 
for all momenta points to the north pole, whereas in the Floquet system, 
the Hamiltonian covers a large surface of the Bloch sphere. c, Phase 
diagram for the Floquet Hamiltonian as a function of shaking amplitude and 
detuning with respect to the sublattice offset for the case of circular lattice 
shaking. The model is Haldane-like with topological phase transitions to 
regions with Chern number, C, 1 and − 1. We suddenly jump from effectively 
infinite detuning to a point in the vicinity of a topological phase transition, 
which has pronounced Berry curvature (insets). The Berry curvature is 
given in units set by the length |b| of the reciprocal lattice vectors. The 
grey schematics show the strong change of curvature in the vicinity of the 
topological phase transition even before the appearance of a hole. The 
Floquet phase diagram is calculated for a shaking frequency of 11.236 kHz 
and a variable sublattice offset (see Supplementary Information).
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of vortex pairs in the momentum state of the many-body fermionic 
wavefunction. Fascinatingly, these vortices that appear dynamically 
after the quench are the same topological defects that also charac-
terize the ground state of our system in the form of Dirac points. 
This relation demonstrates the interesting new connection between 
topological structures in highly excited states that are dynamically 
reached and the underlying ground-state topology.

In the following, we describe in detail the experimental studies. 
The initial state is a fermionic band insulator in the lowest band of a 
hexagonal lattice17 with a large offset between the A and B sites such 
that tunnelling is suppressed (Fig. 1a). The final Hamiltonian after 
the quench is realized as a Floquet Hamiltonian and is engineered by 
means of resonant circular lattice shaking7,11,18,19 and re-establishes 
tunnelling. The initial Hamiltonian features flat bands with vanish-
ing Berry curvature, while the final Hamiltonian realizes a Haldane-
like model with tunable Berry curvature2,11. Due to the fermionic 
statistics, the many-body state of the spin-polarized fermions is 
given by the Slater determinant of single momentum modes. In a 
two-band model, the Hamiltonian and the time-evolved modes can 
be visualized on a Bloch sphere for each quasi-momentum (Fig. 1b). 
If we choose the poles of the Bloch sphere as the eigenmodes of 
the initial Hamiltonian, the initial modes of the lowest band point 
to the south pole. The azimuthal phase φk t,  and polar angle θk t,  on 
the Bloch sphere then describe the momentum modes after the 
time evolution. For our parameters, the final Hamiltonian points 
to different directions for each quasi-momentum (Fig. 1b), leading 
to pronounced Berry curvature. The circular shaking breaks time-
reversal symmetry, such that the final Haldane-like Hamiltonian 
can also have bands with non-trivial Chern numbers11 (Fig.  1c). 
Here, we move to a parameter regime with strong Berry curvature 
in the vicinity of the topological phase transition.

Our experimental sequence starts with a lattice ramp to prepare 
fermions filling up the lowest band (Fig. 2a). The quench is realized 
by suddenly switching on the lattice driving, which induces dynam-
ics according to the new Hamiltonian. To measure the dynamics of 
the many-body wavefunction, we employ time-resolved state tomog-
raphy after various evolution times t (refs 7,20). For the tomography, 

we project back onto the eigenstates of the initial Hamiltonian 
and observe the ensuing momentum-dependent precession on the 
Bloch sphere, which translates into a density oscillation after a time-
of-flight expansion (Fig. 2b). We observe this oscillation by taking 
a series of absorption images with a high momentum resolution of 
2,800 pixels within the first Brillouin zone. By a pixel-wise evaluation 
of the phase of the oscillation (Fig. 2c), we obtain the momentum-
resolved azimuthal phase profile φk t,  of the many-body state for 
each evolution time.

Characteristic data featuring the vortex dynamics are shown 
in Fig.  3. The many-body wave function, which starts with all 
momentum modes at the south pole, spreads on the Bloch sphere 
and reaches the north pole in the third time step (Fig. 3a). When 
plotting the momentum-resolved phase profile φk t,  of the same 
data (Fig. 3b), we see that reaching the north pole corresponds 
to the appearance of a vortex–anti-vortex pair in momentum 
space. These dynamical vortices move through momentum 
space and annihilate at a later time. In addition, we observe 
static vortices in the centre and at three equivalent corners of the 
first Brillouin zone, which remain for all evolution times. The 
static vortices can be identified with the south pole of the Bloch 
sphere, where no dynamics occurs, while the dynamical vortices 
correspond to the north pole, which is transiently reached for 
different momenta at different times21. When one momentum 
mode is at the north pole, the neighbouring momentum modes 
occupy a patch around the pole and therefore the corresponding 
azimuthal phases carry a winding.

The observed appearance of dynamical vortices can be translated 
into the language of a dynamical phase transition in the sense of 
ref. 9. This concept exploits a formal analogy between the non-
analytic behaviour of the free energy at equilibrium phase transitions 
and a similar non-analytic behaviour of dynamical quantities at crit-
ical times after quantum quenches22. It was introduced for quantum 
Ising models9, extended to Hubbard models23 and topological lattice 
Hamiltonians24–26, and in parallel to this work also experimentally 
studied with trapped ions27. In analogy to the Fisher zeros (or Lee–
Yang zeros) in the partition function, which trigger equilibrium 

(ii) (iii)

Sh
ak

in
g

am
pl

itu
de

La
tt

ic
e 

de
pt

h

Time

Time of flight

a

n(
k,

tpr
ec

) (
a.

u.
)

tprec (µs)

c

t

t = 0

tprec

b

(i)

0.04

0.08

0 60 180
0.00

0.04

0.08

0.12

120

0.12
n(k) (a.u.)

kx

ky

0.00

Fig. 2 | experimental sequence for time-resolved state tomography. a, With an adiabatic ramp up of the lattice depth, we prepare all momentum states 
(red arrow) in the lower eigenstate of the static Hamiltonian (black arrow), that is, pointing to the south pole (i). We quench into the Floquet Hamiltonian 
by suddenly switching on the driving amplitude, which leads to the dynamics of the state according to the new Hamiltonian for a time t (ii). To measure 
the evolved state, we quench back into the initial Hamiltonian, such that the state precesses around the vertical axis for a time tprec (iii). b, We measure the 
momentum density kkn( ) via time-of-flight expansion. The picture shows an example at t =  0.543 ms and tprec = 93.5 µ s and for the parameters given in Fig. 3. 
c, The precession leads to an oscillation in the momentum density ω φ+ +kkn t A t( , ) ~ [1 sin( )]kk kk kk t

prec prec
,

(compare ref. 7), the phase of which is the azimuthal 
phase φkk t,

 of the state at the end of the dynamics in the Floquet system. We evaluate this oscillation at each pixel of our images, that is, each momentum, and 
for each evolution time t (blue and green data points show the oscillation at the indicated pixel for the evolution times t =  0.267 ms and 0.801 ms, respectively).
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phase transitions, one can define dynamical Fisher zeros8, at which 
the Loschmidt amplitude ψ ψ= − ∕ℏG t iHt( ) exp( )0 0  goes to 
zero. It measures the overlap of the time-evolved many-body state 
with the initial state ψ0  before the quench. The overlap vanishes 
exactly if at least one of the momentum modes reaches the north 
pole, which establishes the connection to the appearance of vortices 
that we observe. Therefore, the observed dynamical vortices can be 
identified with these dynamical Fisher zeros and be regarded as a 
signature of a dynamical phase transition as in the sense of ref. 9. 
Details on the connection to the dynamical phase transition and 
a plot of the calculated non-analytical behaviour can be found in 

the  Supplementary Information. We note, however, that the term 
dynamical phase transition is also used in different contexts, for 
example, in disordered systems as a transition between localized 
and non-localized states28–30.

We repeated the experiment for different final Hamiltonians 
by shaking at different detunings (Fig.  4) and we observed the 
appearance of dynamical vortices for quenches into a region 
within and closely around the non-trivial regime of the final 
Hamiltonian. These observations raise the question whether the 
appearance of dynamical vortices is a signature for the change of 
Chern number between the initial and final Hamiltonian. Indeed, 
one can prove that a change of Chern number does imply the 
appearance of dynamical vortices10. However, a strong change 
in Berry curvature across the quench, as it appears close to the 
topological phase transition, is also sufficient to induce dynami-
cal vortices (named accidental vortices10). Motivated by our stud-
ies on the relation between dynamics and topology, recently, 
two reports21,31 showed a detailed relation between the so-called 
linking number and topology. For our system, that work also 
shows that the existence of dynamical vortices depends on both 
the initial and the final Hamiltonian and only when the initial 
Hamiltonian corresponds to infinitely flat bands does one expect 
a one-to-one relation21,31.

Instead, the Chern number of the final Hamiltonian can be 
inferred from the contour in momentum space, which is traced out 
by the dynamical vortex pair. For a Chern number of plus or minus 
one, the contour is expected to enclose one of the static vortices, 
whereas for Chern number zero, it does not31. For the parameters 
of Fig. 3, where the quench is to a system with zero Chern num-
ber, the contour does not wind around the static vortices (Fig. 3c). 
In the measurements presented here, the rather flat bands for the 
tomography and correspondingly small parameter regime for the 
area with Chern number one, in combination with the  averaging 
over the inhomogeneous system, prevented us from observing 
non-trivial contours. Very recently we could, however, experimen-
tally realize the direct mapping between non-trivial contours with 
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a, Visualization of the experimental data on the Bloch sphere viewed from 
the south pole for different stroboscopic evolution times (multiples of the 
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 of 
the same data including additional time steps. The hexagon marks the first 
Brillouin zone. Static vortices (marked by orange circles in (i)) are imprinted 
from the final Hamiltonian7 and remain fixed for all times. Additionally, 
dynamical vortices appear, move and disappear during the time evolution 
(marked by red circles). c, Position of the vortices summed over all observed 
evolution times (blue and red dots for clockwise and anticlockwise phase 
winding, respectively). The dynamical vortices are created and annihilated as 
vortex–anti-vortex pairs and they move on a closed contour in momentum 
space. d, Zoom-in of the phase profile at time step (iv) demonstrating our 
high momentum resolution. e, The number of dynamical vortices in the first 
Brillouin zone as a function of evolution time. The grey shaded area marks the 
time interval during which the dynamical vortices are present. The shaking 
amplitude is 2 kHz and the shaking detuning from the sublattice offset of 
11.460 kHz is 220 Hz. For details on the lattice set-up see Methods.
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corresponding linking number and non-trivial Chern numbers in a 
system with dispersive bands32.

We have observed the appearance, movement and annihilation 
of dynamical vortices in momentum space in the far-from-equilib-
rium dynamics following a sudden quench of the system param-
eters. These dynamical vortices are deeply related to the underlying 
topological phase diagram and can be used to approximately locate 
the phase transitions. While it is often experimentally challenging to 
reach the ground state of relevant systems5,6, the observation of such 
dynamics in highly excited states might be an alternative approach 
for the exploration of the underlying ground-state phase diagram, 
in cases where a thorough connection between equilibrium and 
dynamical phase transitions can be established31. This might open 
a promising route to study complex phase diagrams such as the 
Fermi–Hubbard model or interacting topological phases.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-017-0013-8.
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Methods
Optical lattice. We employed a hexagonal optical lattice with tunable energy offset 
ΔAB between the A- and B-sublattice on-site energies. The lattice is formed by three 
running interfering laser beams. For more details on the lattice set-up, see ref. 7.

The two lowest bands of this lattice can be well described within a tight-
binding model with the eigenbasis being the Bloch states restricted to the A- and 
B-sublattice sites. In this basis, the quasi-momentum-dependent Hamiltonian 
reads
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∑ ∑
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with the next-nearest-neighbour hopping amplitudes JAA and JBB on the diagonal 
and the nearest-neighbour hopping amplitude JAB on the off-diagonal element, 
which couples the A and B sites.

The Bravais vectors connecting neighbouring A(B) sites with each 
other are, for our purely hexagonal lattice structure, = − π∕a k4 (3 )(0 1 0)1 L , 

= − π∕ ∕ ∕( )a k4 (3 ) 3 2 1 2 02 L , and = −a a a3 2 1. The di connect A sites with 
neighbouring B sites = ∕ +d a a1 3( )1 1 2 , = ∕ − +d a a1 3( 2 )2 1 2 , and = ∕ −d a a1 3( 2 )3 1 2 . 
The lattice vector kL is given by the wavelength of the laser forming the lattice 

= π∕k 2 1, 064 nmL .
All tight-binding parameters of the lattice can be expressed as a function of the 

single parameter ΔAB, once the polarizations of the lattice beams, which determine 
the geometry7, are fixed. The lattice polarizations are tilted out of the lattice plane 
by an angle of 9° and the out-of-plane polarization components of the three 
beams are phase shifted relative to the in-plane polarizations by 0, 2π /3 and 4π /3, 
respectively. We therefore use ΔAB as a measure for the lattice depth throughout 
the manuscript. For our polarization setting and for the parameter regime of ΔAB 
presented in the main text and here in the Methods, we determine the relations 
from a fit to exact band structure calculations:

Δ Δ∕ ≈ . ∕ ∕ ≈ . ∕ ≈− . − .J E E J E E J0 221( ) , 0 0529( ) , and 0AB R AB R
1 4

AA R AB R
2 05

BB

Here, ER/h =  4,410 Hz is the recoil frequency and h is Planck’s constant. All 
data were taken in a configuration with large Δ ∕hAB  ranging from 10,750 Hz to 
11,460 Hz, which leads to tunnelling amplitudes ∕J hAB  ranging from 280 Hz to 
256 Hz, ∕J hAA  ranging from 38 Hz to 33 Hz and ∕ ≈J h 0BB , such that ΔAB is the 
dominating energy scale and the initial bands are nearly flat.

Since the position of the lattice is determined by the relative phases of 
the three running laser beams forming the lattice, we can move the lattice in 
real space by frequency modulating the laser beams using acousto-optical 
modulators (AOMs). To realize circular lattice shaking as used for all experiments 
presented in the main text, two of the three AOMs are driven by computer 
programmable digital frequency sources with a time-dependent frequency 
ν ν ν= + ± π + πt A cos t t( ) 110 MHz 2 [ (2 ) 3 sin(2 )]1,2 s s s , where As and νs are 
the shaking amplitude and frequency, respectively. The shaking frequency is 
νs =  11,236 Hz for all data and the shaking amplitude is As =  2 kHz for the data 
shown in Fig. 3 and 1.65 kHz for the data shown in Fig. 4.

Data acquisition and analysis. Our experiments start with a spin-polarized 
(F =  9/2, mF =  9/2) cloud of ×1 105 fermionic 40K atoms in a non-interacting band 
insulator in the lowest band of the two-dimensional initial lattice. In the transverse 
direction, the potential is harmonic, thus forming a lattice of tubes. The external 
confinement from the shape of the lattice beams and additional dipole trap beams 
leads to trapping frequencies of ν = (83(4), 108(5), 93(4))Hzx y z, , .

The full state tomography method is explained in the main text and in more 
detail in ref. 7. To resolve the precession dynamics after the projection onto the 
eigenstates of the initial Hamiltonian, we take 32 images at varying times t prec after 
this projection with a step size of . µ5 5 s. In the data analysis, we apply a 5 ×  5 pixel 
Gaussian filter of width of 5 pixel on the atomic density of each time step, but no 
temporal filtering. With a length of the reciprocal lattice vector of 58(2) pixels, we 
have more than 2,800 pixels in the first Brillouin zone and therefore a very high 
resolution in momentum space. For every pixel, we fit a damped oscillation to the 
density of the form

α γ ν φ= + − π +



( ) ( )n k t W t t( , ) 1 exp sin 2k k k k

prec prec
0

prec

with the envelope Wk, the oscillation amplitude αk, the damping γk
, the oscillation 

frequency ν0 and the phase φk
. To minimize the number of fit parameters, we fix 

the frequency in the fit to ν = .11 364 kHz0 , which is the third Fourier component 
for these time steps. We initialize the phases by the values from a fast Fourier 
transform estimator and the amplitudes from the difference of the minimal and 
maximal values.

Relation between the occurrence of dynamical vortices and the equilibrium 
phase diagram. When repeating the quench experiments for different final 
Hamiltonians, we observe dynamical vortices both for parameters for which 
non-zero Chern numbers are expected but also within the close vicinity of this 
region (Fig. 4). While the region with non-zero Chern number has a width of 
approximately 80 Hz, we observe dynamical vortices for detunings centered around 
this region but with a broader range of 280 Hz width, which corresponds to the 
AB-tunnelling element of the initial bands of JAB ≅  26 Hz.

This can be understood by taking into account the spread of the initial state on 
the Bloch sphere. As explained in the main text, dynamical vortices occur when 
the time-evolved many-body state becomes orthogonal to the initial state and thus 
also depends on the initial state. Consider an initial state only covering the south 
pole of the Bloch sphere, which would be the case for perfectly flat bands without 
residual tunnelling between the A and B sites. Then, dynamical vortices would only 
occur if the final Floquet Hamiltonian pointed to the equator for some momentum. 
In our specific system, the Hamiltonian can only cover the equator when it covers 
the whole Bloch sphere, that is, when the Chern number is non-zero. Hence, 
dynamical vortices would only appear after quenches into Hamiltonians with finite 
Chern number.

However, when the initial tunnelling between the A and B sites is finite or 
the system is not purely prepared in the ground state, then the initial state covers 
a small area around the south pole of the Bloch sphere. Then, quenches into the 
vicinity of regions with non-zero Chern number can also give rise to dynamical 
vortices because the final Hamiltonian does not have to cover the equator, just 
covering its vicinity for some momenta is sufficient. Thus, the appearance of 
dynamical vortices in our system is not only sensitive to a change of the topology 
across the quench, but also to a strong change of the geometry of the eigenstates. 
The observation of dynamical vortices can therefore serve as a precursor for the 
topologically non-trivial region.

This example demonstrates that, depending on the initial state, dynamical 
vortices not only appear when equilibrium phase transitions are crossed during the 
quench but that they can also appear when an equilibrium phase transition is in 
the vicinity of the final Hamiltonian. Thus, despite the dependence on the initial 
state the appearance of dynamical vortices is intimately linked to the existence of 
equilibrium phase transitions of the underlying final Hamiltonian. This opens up 
an interesting approach for studying equilibrium phase diagrams with very narrow 
phase boundaries or in cases in which it is experimentally challenging to reach the 
ground state.

Analysis of vorticity. To identify the vortices in our phase profiles φk t,
, we 

calculated the vorticity for each evolution time t . It is determined as the curl of 
the gradient of φk t,

. Usually this quantity is zero, but for phase profiles, which 
are defined modulo 2π, it obtains finite values at the singular points, that is, 
at the vortices. It is therefore a convenient measure of the local vorticity. The 
derivatives are evaluated as finite differences on the natural pixel grid of our 
images, and the gradient is furthermore symmetrized by averaging of the left and 
right difference. The position of the vortices is determined to the precision of 
one pixel and the routine yields a finite vorticity on four neighbouring pixels at 
a given vortex.

The local nature of this quantity makes it suitable to well resolve the 
annihilation of the vortex pairs, but it is also susceptible to experimental noise 
in the phase profiles. Noise can produce many closely spaced vortex–anti-vortex 
pairs. However, due to our excellent data quality, this happens only far outside the 
first Brillouin zone (FBZ) and for long evolution times. It is therefore not necessary 
to apply further spatial filtering.

Figure 3c is obtained by adding up the vorticity images of the shown evolution 
times t . The resulting trace illustrates the motion of the vortices along their 
contours. The colour scale bar is truncated to the value of a single vortex to 
avoid large values from the static vortices, where the signal adds up. The error 
for a wrong count of the vortex number within the FBZ is therefore very small 
and certainly smaller than the symbol size in Fig. 3e. For Fig. 4a, we checked the 
presence of dynamical vortices within the FBZ for each evolution time using the 
vorticity and by cross-checking with the original phase fields. The static vortices 
can always be clearly identified and are not counted here.

Data availability. Datasets that support the plots within this paper and other 
findings of this study are available from the corresponding author upon 
reasonable request.
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