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Out-of-time-ordered (OTO) correlators have developed into a central concept quantifying quantum
information transport, information scrambling, and quantum chaos. In this Letter, we show that such an
OTO correlator can also be used to dynamically detect equilibrium as well as nonequilibrium phase
transitions in Ising chains. We study OTO correlators of an order parameter both in equilibrium and after a
quantum quench for different variants of transverse-field Ising models in one dimension, including the
integrable one as well as nonintegrable and long-range extensions. We find for all the studied models that
the OTO correlator in ground states detects the quantum phase transition. After a quantum quench from a
fully polarized state, we observe numerically for the short-range models that the asymptotic long-time value
of the OTO correlator signals still the equilibrium critical points and ordered phases. For the long-range
extension, the OTO correlator instead determines a dynamical quantum phase transition in the model. We
discuss how our findings can be observed in current experiments of trapped ions or Rydberg atoms.
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Introduction—Today, synthetic quantum materials such
as ultracold atoms or trapped ions can experimentally
access quantum dynamics governed by purely unitary
evolution with a negligible coupling to an environment
on the relevant timescales [1–4]. This has lead to the
observation of quantum dynamical phenomena such as
many-body localization [5–8], particle-antiparticle produc-
tion in the Schwinger model [9], dynamical quantum phase
transitions [10–12], or discrete time crystals [13,14]. In
many of these phenomena, the propagation of quantum
information plays a central role such as for the celebrated
logarithmic entanglement growth in many-body localized
systems [15,16]. For the quantum formation transport
captured by quantum correlations, Lieb-Robinson bounds
[17–19] give fundamental constraints, which can be lifted
only for long-ranged interacting systems [20] as demon-
strated also experimentally [21,22]. Recently, it has been
realized that out-of-time-ordered (OTO) correlation func-
tions can capture information propagation beyond quantum
correlation spreading [23–32]. In particular, such OTO
correlators can diagnose quantum chaos in terms of
information scrambling via an exponential growth bounded
by a thermal Lyapunov exponent [33].
In this Letter, we show that OTO correlators can also be

used to dynamically detect both equilibrium and dynamical
quantum phases and the associated quantum critical points.
Specifically, we study the OTO correlator dynamics in
equilibrium states and after quantum quenches in trans-
verse-field Ising chains with and without long-range

couplings. When choosing as the operator in the OTO
correlator the order parameter of the underlying transition,
we find that the long-time limit serves as a diagnostic tool to
detect phases and transitions: In the symmetry-broken phase,
the OTO correlator is nonzero and vanishes upon approach-
ing the critical point remaining zero in the full paramagnetic
phase. In this way, one can possibly detect quantum
criticality in one-dimensional systems that do not exhibit
symmetry breaking at nonzero temperatures without prepar-
ing the system in the actual ground state, providing a purely
dynamical signature of equilibrium quantum phases. We
demonstrate our findings for both an integrable as well as
nonintegrable version of the one-dimensional transverse-
field Ising chain. As a system with a finite-temperature phase
transition, we additionally study a long-range transverse-
field Ising model where we find that the OTO correlator in
equilibrium states correctly captures the equilibrium phases.
In the dynamics after a quantum quench, we find that the
OTO correlator probes instead a dynamical quantum phase
transition of genuine nonequilibrium nature in the system’s
long-time steady state [12,34]. We also discuss how our
results can be observed in current experiments in systems of
trapped ions or Rydberg atoms.
OTO correlation functions [35] have been identified as

quantities providing insight into quantum chaos and infor-
mation scrambling [33]. The OTO commutator is defined as

CðtÞ ¼ −h½V;WðtÞ�2i ≥ 0; ð1Þ
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where V and W are usually chosen as local Hermitian
operators and WðtÞ ¼ expðiHtÞW expð−iHtÞ with H the
system Hamiltonian. The OTO commutator contains terms
of the form F ðtÞ ¼ hWðtÞVWðtÞVÞi coined the OTO
correlator due to its unconventional temporal structure.
These quantities probe the spread of quantum information
beyond quantum correlations, in particular signaling the
presence of quantum chaos, with a growth bounded by a
thermal Lyapunov exponent [33]. Recently, much effort,
including experiments [23–30], has been devoted to
studying its behavior, with peculiar links to the physics of
black holes and random matrix theory [33,36]. Additionally,
a simple mesoscopic Sachdev-Ye-Kitaev model [35,37–40]
captures many interesting phenomena, including a
maximal Lyapunov exponent and entropy characteristic to
black holes.
We investigate numerically such OTO correlators in a

variety of one-dimensional exhibiting equilibrium and
dynamical quantum phase transitions of different kinds.
We choose as operators V ¼ W ¼ M the order parameters
M of the respective transitions in the considered models,
which in all of the considered cases is a magnetization

M ¼
�
σzn for short-range models;

Sz for the collective spin model;
ð2Þ

where σzn are Pauli matrices and n ¼ 1;…; N with N the
total number of lattice sites of the system, and Sz ¼
N−1PN

n¼1 σ
z
n is the total spin operator. Concretely, we

study the dynamics of OTO correlators of the form

F ðtÞ ¼ hMðtÞMMðtÞMi; ð3Þ

with the expectation value h� � �i ¼ hψ0j � � � jψ0i. For jψ0i,
we choose two different states. First, we take the respective
ground state of the model at the given parameter set in order
to probe the equilibrium phase diagram. Second, for the
study of the nonequilibrium dynamics, we choose a fully
polarized state jψ0i ¼ j↑↑↑…i, which, on the one hand,
can be prepared in experiments of trapped ions or Rydberg
atoms with high fidelity [11–13,41–44] and, on the other
hand, is well suited to study dynamical quantum phase
transitions (DQPTs) in nonequilibrium time evolution with
the considered Ising models [11,12,34,45]. We give the
details on how to access our theoretical predictions exper-
imentally in the concluding discussion.
Transverse-field Ising chain—Let us start with the

paradigmatic model for quantum phase transitions, the 1D
transverse-field Ising (TFI) chain [46], whose dynamics has
been realized in recent experiments of Rydberg atoms when
interactions beyond nearest neighbors can be neglected on
the relevant timescales [43,44,47]. Its Hamiltonian with
periodic boundary condition reads as

H ¼ −J
XN
n¼1

σznσ
z
nþ1 þ g

XN
n¼1

σxn; ð4Þ

where the σin’s are Pauli matrices and σiNþ1 ¼ σi1 with i ¼ x,
y, z. This model hosts an equilibrium quantum phase
transition (QPT) at g ¼ J separating a paramagnetic phase
for g > J from a symmetry-broken phase with nonzero
magnetization along the σz direction for g < J [46]. For
quantum quenches, the system exhibits the appearance of
DQPTs with nonanalytic behavior during quantum real-time
dynamics whenever the quench crosses the underlying
equilibrium QPT [45,48].
The ordered phase can be detected in equilibrium from

dynamics by the autocorrelation function hσznðtÞσzni, which
takes a nonzero (vanishing) value in the long-time limit in
the ferromagnetic (paramagnetic) phase, respectively [46].
However, in the case of a quantum quench, it becomes fully
featureless since it vanishes for long times [49,50], irre-
spective of the Hamiltonian parameters. It would, never-
theless, be advisable to detect both the QPT or DQPT from
a dynamical measurement because these are naturally
accessible experimentally in quantum simulators. Since
the autocorrelation function does not fulfill this job, it looks
natural to try its second moment, i.e., h(σznðtÞσzn)2i, which
is nothing but the OTO correlator discussed before.
The model can be mapped onto free fermions such that

many correlation functions can be calculated in a simple
analytical manner, except for the order parameter σzn [49].
Therefore, we calculate the OTO correlator using numerical
methods, such as time evolving block decimation (TEBD)
[54] and exact diagonalization (ED). Still, it can be
evaluated exactly analytically in certain limiting cases:
for g ¼ 0, it takes its maximal value 1, while it vanishes in
the J ¼ 0 limit [55]. In between these two limits, the OTO
correlator is expected to interpolate. Whether the transition
occurs at the critical point or at some other location is an
intriguing question that we investigate in the following.
This we study numerically on finite systems consisting

of up to N ¼ 60 spins in equilibrium for TEBD and up to
22 spins for ED. The time dependence of Eq. (3) is shown
in Fig. 1 for several representative parameter sets both in
equilibrium and after a quantum quench, in the ordered and
disordered phases. While the real part steady state value of
F ðtÞ depends on whether the time evolving Hamiltonian
is in the ordered or disordered region, its imaginary part
vanishes identically in the steady state. After a quantum
quench, we find that ImF ðtÞ ¼ 0 such that we focus on
the real part of the OTO correlator FRðtÞ ¼ ReF ðtÞ in the
following. FRðtÞ starts from FRðt ¼ 0Þ ¼ 1 due to the
operator identity ðσznÞ2 ¼ 1 and reaches rather quickly a
time-independent steady state value before finite size
effects start to appear.
Steady state OTO correlator—As obvious from Fig. 1,

the steady state value of the OTO correlator can be
determined accurately both from the TEBD and ED data
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by calculating the time average F̄ as the t ≫ 1=J limit of
ð1=tÞ R t

0 F ðt0Þdt0, albeit t is still much smaller than the
tunneling time (growing exponentially with N) between the
almost degenerate ground states for finite N. The results for
F̄ obtained in this way are shown in Fig. 2. We find that F̄
is nonzero in the ordered phase and vanishes gradually
upon approaching the equilibrium QPT, while it stays zero
in the whole disordered paramagnetic phase. This happens
not only in equilibrium but also in the case of the quantum
quench: the steady state value of the OTO correlator,
therefore, serves as a putative order parameter also for
the DQPT. Let us stress that this behavior is in stark
contrast to the expectation value of hσznðtÞi or hσznðtÞσzni,
which both vanish for long times in the case of a quantum
quench [49]. Importantly, one can detect the equilibrium
QPT solely [50] by performing a dynamical measurement
using OTO correlators without ever performing the

challenging preparation of the actual ground state but
rather doing a quantum quench from an initial condition
that can be implemented with high fidelity in current
experiments.
The ferromagnetic axial next-nearest-neighbor Ising

model.—While the TFI is an integrable model, we now
study a nonintegrable extension which is the transverse
axial next-nearest-neighbor Ising (ANNNI) model given
by [56]

H ¼ −J
XN
n¼1

σznσ
z
nþ1 − Δ

XN
n¼1

σznσ
z
nþ2 þ g

XN
n¼1

σxn; ð5Þ

where Δ denotes the strength of the second nearest-
neighbor interaction. For Δ=J ¼ 0.5, the Ising transition
occurs at g=J ≈ 1.6 [56]. For Δ ¼ 0, the model becomes
integrable and reduces to Eq. (4). For J ¼ 0, the model
again reduces to two identical independent copies of Eq. (4)
for the even and odd sites. For these two limiting cases, our
previous results hold. For any finite Δ, Eq. (5) becomes
nonintegrable [56,57].
We have calculated the OTO correlator of the order

parameter using TEBD for the equilibrium case and using
ED for the quantum quench. The results are plotted in
Fig. 3. The OTO correlator behaves similarly to the
integrable case: the imaginary part vanishes for long times
in equilibrium and is identically zero after a quench; thus,
we focus only on its real partFR. This takes a finite value in
the ferromagnetic phase both in equilibrium or after the
quench and vanishes on the paramagnetic side. Therefore,
the identification of the OTO correlator as a putative order
parameter works ideally for nonintegrable systems as well.
The fully connected transverse-field Ising chain: The

Lipkin-Meshkov-Glick model.—Finally, we turn to the
Lipkin-Meshkov-Glick (LMG) model [58] describing
the fully connected version of Eq. (4). The Hamiltonian
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FIG. 2. The long-time average of the order parameter OTO
correlator is shown for the TFI chain in equilibrium from TEBD
(blue circles) for N ¼ 60 and time window 60=J and after a
quantum quench from a fully polarized state using ED (red
squares) for N ¼ 20 and time window 20=J using numerical data
similar to Eq. 1 for several g’s.
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FIG. 3. The long-time average of the order parameter OTO
correlator is shown for the nonintegrable TFI chain up until
tJ ¼ 20 in equilibrium (left) for N ¼ 20, 30, and 40 (triangle,
square, and circle, respectively) and after a quantum quench from
fully polarized state (right) using ED for N ¼ 12, 16, and 20
(triangle, square, and circle, respectively), and Δ ¼ 0.5.
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FIG. 1. The representative time evolution of the real (blue solid
line) and imaginary (red dashed line) parts of the OTO correlator
are shown in equilibrium in the ordered phase with g=J ¼ 0.5 and
disordered phase with g=J ¼ 1.5 from TEBD with N ¼ 60. The
bottom row visualizes the time evolution following a quench
from the fully polarized state from ED with N ¼ 20, before finite
size effects appear.
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of this system can be expressed in terms of the collective
spin operators Sα ¼ P

N
i¼1 σ

α
i =2, α ¼ x, y, z, as

HLMG ¼ −
J
N
ðSzÞ2 þ gSx: ð6Þ

This model exhibits not only a quantum phase transition in
the ground state at g=J ¼ 1 but also a symmetry-broken
phase and respective transition at nonzero temperatures.
Consequently, this system allows us to study the dynamics
of the OTO correlator in the presence of symmetry breaking
at excited energy densities above the ground state, which is
absent for the short-range model discussed before and
which leads also to a DQPT at g=J ¼ 1=2 for quantum
quenches when initializing the system in the fully polarized
state [12,34]. This DQPT separates a regime of nonzero
value of the order parameter Sz in the steady state for g=J <
1=2 from a disordered phase for g=J > 1=2 where the order
parameter vanishes. Importantly, the dynamics of the LMG
Hamiltonian can be realized in systems of trapped ions
[11,21,22,41,59]. The LMGmodel is exactly solvable since
½S⃗2; HLMG� ¼ 0 such that the Hamiltonian decomposes into
disconnected blocks for each of the total spin quantum
numbers S. Because of its exact solvability, the system is
integrable and not thermalizing. As a consequence, the
anticipated DQPT after a quantum quench is not thermal
but rather a genuine nonequilibrium transition without an
equilibrium counterpart.
In the following, we consider the maximum spin sector

S ¼ N=2, which also contains the fully polarized initial
condition we consider for the quantum quench. As already
mentioned in Eq. (2), we calculate the OTO correlator in the
LMG model for M ¼ Sz=S. A typical time evolution is
depicted in Fig. 4, while the time-averaged value [60] of the
OTO correlator is shown in Fig. 5. From the data, one can
clearly see that the OTO correlator can both detect the
equilibrium as well as dynamical transition. Compared to
the previously discussed models, there is, however, an
apparent difference. While the equilibrium F still diag-
noses the QPT, the F after a quantum quench signals the
DQPT, suggesting that the detection of the ground-state
phase transition from quantum dynamics is limited to the
short-range models discussed before. Consequently, we
find that the nature of the critical point probed by the OTO

correlator depends on the initial condition. Whether it is
possible to also detect the thermal transition remains an
open question.
Concluding discussion.—In this Letter, we have shown

numerical evidence that OTO correlators can be used to
dynamically detect both equilibrium as well as dynamical
quantum critical points in one-dimensional short-range and
infinite-range transverse-field Ising models.
In addition to serving as an order parameter, our results

for the OTO correlation have further ramifications as well.
For the operators considered for the TFI and ANNNI
models, CðtÞ ¼ 2½1 − ReF ðtÞ� holds. In Refs. [61,62], it
was argued that in a suitably chaotic system, the OTO
correlator is expected to vanish and the OTO commutator to
approach Cðt → ∞Þ ≈ 2hV2ihW2i for any nonzero temper-
ature state. This is exactly what we find in the disordered
phase of both models for the ground state as well for a
quantum quench, as shown in Figs. 2 and 3: the steady state
value of the OTO correlator vanishes for g > J; therefore,
Cðt → ∞Þ → 2 in the exact same manner as is expected in
chaotic systems. In the ordered phase, the situation is,
however, different. Both the ground-state and the quantum
quench OTO correlators are nonzero. For the considered
model, there are two possible explanations for the apparent
discrepancy in the conjectured generic long-time dynamics.
First, the arguments hold for a generic operator, but the
order parameter might not fall under this category. Second,
our conclusions hold as long as our time-averaging scheme
over a finite time window is suitable and there appears no
fundamental change of the OTO correlator dynamics
at larger times, for which we also do not find evidence.
In this worst-case scenario, our observations would hold
over an extended metastable state on intermediate time-
scales. Summarizing, we find from our study that the OTO
correlator dynamics can show unexpected behavior when-
ever the system exhibits a symmetry-broken phase, which
is precisely at the heart of making it a tool to dynamically
detect quantum phases.
For the future, it is an interesting question of how the

OTO correlator for the order parameter behaves for systems
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FIG. 4. The representative time evolution of the real part of
OTO correlator is shown for the LMG model in equilibrium (left
panel) and after a quench (right panel) from the fully polarized
state in the ordered phase with g=J ¼ 0.4 (blue) and disordered
phase with g=J ¼ 1.2 (red) for N ¼ 499.
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FIG. 5. The long-time average of the order parameter OTO
correlator is shown for the LMG model with N ¼ 1599 in
equilibrium (blue) and after a quantum quench (red) from ED
within the time window 20S=J.
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other than the studied Ising chains. Moreover, it is currently
unclear what would happen to the OTO correlator for
transverse-field Ising models in two and three spatial
dimensions, which exhibit symmetry-broken phases at
nonzero temperature and in addition are also expected to
thermalize in the long-time limit, as opposed to the long-
range Ising model studied in this work. Specifically, the
OTO correlator either detects the ground state or the
thermal transition for which we cannot make a conclusive
prediction within our numerics [50].
In the remainder, we now discuss how these observations

can be accessed in quantum simulators experimentally.
While the considered quantum quench dynamics of the
short-range Ising models can be synthesized in Rydberg
atoms [43,44], the long-range version can be realized in
trapped ions [6,11–13,21,22]. The fully polarized initial
condition jψ0i ¼ j↑↑↑…i can be realized with high
fidelity [11–13,41–44]. Since jψ0i is an eigenstate of M
[see Eq. (2)], we only have to consider a reduced quantity
F̃ ðtÞ ¼ hψ0jMðtÞMMðtÞjψ0i. ForM ¼ σzn, we can reex-
press F̃ ðtÞ ¼ hψ tjMjψ ti as a conventional expectation
value with jψ ti ¼ U†ðtÞ exp½iðπ=2Þσzn�UðtÞjψ0i where
UðtÞ ¼ exp½−iHt� using exp½iðπ=2Þσzn� ¼ iσzn; see, also,
Ref. [24]. Consequently, it would be necessary to apply a
sequence of unitary transformations implementing (i) a
time evolution with the Hamiltonian H, (ii) a local single
qubit rotation on spin n, and (iii) a backward time evolution
with Hamiltonian −H. An additional challenge is that the
total simulation time is doubled to 2 × t due to forward and
backward evolution. Fortunately, clear signatures of the
order parameter can be estimated already from the data on
times t≲ 5 J−1 (see Fig. 1), which is close to the accessible
experimental range [12,43,44].
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T. Lahaye, and A. Browaeys, Tunable two-dimensional
arrays of single Rydberg atoms for realizing quantum Ising
models, Nature (London) 534, 667 (2016).

[48] M. Heyl, Dynamical quantum phase transitions: A review,
Rep. Prog. Phys. 81, 054001 (2018).

[49] F. H. L. Essler, S. Evangelisti, and M. Fagotti, Dynamical
Correlations after a Quantum Quench, Phys. Rev. Lett. 109,
247206 (2012).

[50] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.121.016801 providing
further details, which includes Refs. [46,49,51–53].

[51] S. Vajna and B. Dóra, Disentangling dynamical phase
transitions from equilibrium phase transitions, Phys. Rev.
B 89, 161105 (2014).

[52] M. S. L. du Croo de Jongh and J. M. J. van Leeuwen,
Critical behavior of the two-dimensional Ising model in a
transverse field: A density-matrix renormalization calcula-
tion, Phys. Rev. B 57, 8494 (1998).

[53] H.W. J. Blöte and Y. Deng, Cluster Monte Carlo simulation
of the transverse Ising model, Phys. Rev. E 66, 066110
(2002).

[54] G. Vidal, Efficient Simulation of One-Dimensional Quan-
tum Many-Body Systems, Phys. Rev. Lett. 93, 040502
(2004).

PHYSICAL REVIEW LETTERS 121, 016801 (2018)

016801-6

https://doi.org/10.1007/s00220-006-0030-4
https://doi.org/10.1007/s00220-006-0030-4
https://doi.org/10.1007/s10955-006-9143-6
https://doi.org/10.1007/s10955-006-9143-6
https://doi.org/10.1103/PhysRevLett.111.207202
https://doi.org/10.1103/PhysRevLett.111.207202
https://doi.org/10.1038/nature13450
https://doi.org/10.1038/nature13450
https://doi.org/10.1038/nature13461
https://doi.org/10.1038/nature13461
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1103/PhysRevX.7.031011
https://doi.org/10.1038/nphys4119
http://arXiv.org/abs/1607.01801
https://doi.org/10.1103/PhysRevA.94.040302
https://doi.org/10.1103/PhysRevA.94.040302
https://doi.org/10.1103/PhysRevA.94.062329
https://doi.org/10.1103/PhysRevA.94.062329
https://doi.org/10.1103/PhysRevE.95.062127
https://doi.org/10.1016/j.aop.2016.09.006
https://doi.org/10.1016/j.aop.2016.09.006
https://doi.org/10.1088/1367-2630/aa719b
https://doi.org/10.1016/j.scib.2017.04.011
https://doi.org/10.1016/j.scib.2017.04.011
https://doi.org/10.1002/andp.201600318
https://doi.org/10.1002/andp.201600318
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1088/1742-5468/2011/11/P11003
https://doi.org/10.1088/1742-5468/2011/11/P11003
https://doi.org/10.1007/JHEP05(2017)118
https://doi.org/10.1007/JHEP05(2017)118
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1103/PhysRevLett.70.3339
http://arXiv.org/abs/1711.08467
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1007/JHEP05(2016)070
https://doi.org/10.1126/science.1208001
https://doi.org/10.1126/science.1208001
https://doi.org/10.1038/nature11596
https://doi.org/10.1038/nature24622
https://doi.org/10.1038/nature24622
http://arXiv.org/abs/1711.00887
http://arXiv.org/abs/1711.00887
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1038/nature18274
https://doi.org/10.1088/1361-6633/aaaf9a
https://doi.org/10.1103/PhysRevLett.109.247206
https://doi.org/10.1103/PhysRevLett.109.247206
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.016801
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.016801
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.016801
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.016801
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.016801
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.016801
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.016801
https://doi.org/10.1103/PhysRevB.89.161105
https://doi.org/10.1103/PhysRevB.89.161105
https://doi.org/10.1103/PhysRevB.57.8494
https://doi.org/10.1103/PhysRevE.66.066110
https://doi.org/10.1103/PhysRevE.66.066110
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.93.040502


[55] For g ¼ 0, i.e., deep in the symmetry-broken phase, the
OTO correlator takes on its maximal value. The operators σzn
are constants of motion since the Hamiltonian for g ¼ 0

contains only σz, and already the relation σzðtÞσzσzðtÞσz ¼
ðσzÞ4 ¼ 1 holds at any given site as an operator identity. In
the opposite J ¼ 0 limit, the long-time average of the same
correlator vanishes, irrespective of the ensemble over which
the expectation value is taken. This follows from the fact
that σzðtÞσzσzðtÞσz ¼ cosð4tgÞ þ iσx sinð4tgÞ, and upon
taking the long-time average, both terms vanish identically.

[56] C. Karrasch and D. Schuricht, Dynamical phase transitions
after quenches in nonintegrable models, Phys. Rev. B 87,
195104 (2013).

[57] V. Alba and M. Fagotti , Prethermalization at Low Temper-
ature: The Scent of Long-Range Order, Phys. Rev. Lett. 119,
010601 (2017).

[58] H. Lipkin, N. Meshkov, and A. Glick, Validity of many-
body approximation methods for a solvable model: (I).
Exact solutions and perturbation theory, Nucl. Phys. 62, 188
(1965).

[59] J. W. Britton, B. C. Sawyer, A. C. Keith, C. C. J. Wang, J. K.
Freericks, H. Uys, M. J. Biercuk, and J. J. Bollinger,
Engineered 2D Ising interactions on a trapped-ion quantum
simulator with hundreds of spins, Nature (London) 484, 489
(2012).

[60] Here, the time average is taken for Jt ≫ S.
[61] D. A. Roberts and D. Stanford, Diagnosing Chaos Using

Four-Point Functions in Two-Dimensional Conformal Field
Theory, Phys. Rev. Lett. 115, 131603 (2015).

[62] D. A. Roberts and B. Swingle, Lieb-Robinson Bound and
the Butterfly Effect in Quantum Field Theories, Phys. Rev.
Lett. 117, 091602 (2016).

PHYSICAL REVIEW LETTERS 121, 016801 (2018)

016801-7

https://doi.org/10.1103/PhysRevB.87.195104
https://doi.org/10.1103/PhysRevB.87.195104
https://doi.org/10.1103/PhysRevLett.119.010601
https://doi.org/10.1103/PhysRevLett.119.010601
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1038/nature10981
https://doi.org/10.1038/nature10981
https://doi.org/10.1103/PhysRevLett.115.131603
https://doi.org/10.1103/PhysRevLett.117.091602
https://doi.org/10.1103/PhysRevLett.117.091602

