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We show how lattice gauge theories can display many-body localization dynamics in the absence of
disorder. Our starting point is the observation that, for some generic translationally invariant states, the
Gauss law effectively induces a dynamics which can be described as a disorder average over gauge
superselection sectors. We carry out extensive exact simulations on the real-time dynamics of a lattice
Schwinger model, describing the coupling between U(1) gauge fields and staggered fermions. Our results
show how memory effects and slow, double-logarithmic entanglement growth are present in a broad regime
of parameters—in particular, for sufficiently large interactions. These findings are immediately relevant to
cold atoms and trapped ion experiments realizing dynamical gauge fields and suggest a new and universal
link between confinement and entanglement dynamics in the many-body localized phase of lattice models.
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Introduction.—Over the past two decades, the impres-
sive developments in harnessing matter at the single
quantum level have paved the way to the investigation
of real-time dynamics in controlled quantum systems with
an unparalleled degree of accuracy [1–3]. These progresses,
spanning as diverse fields as cold atoms in optical lattices,
trapped ions, superconducting circuits, and more, have
reinvigorated the theoretical interest in the dynamics of
closed quantum systems [4]. A paradigmatic example in
this direction is the quest for generic systems in which the
interplay of disorder and interactions prevents thermal-
ization, a scenario dubbed many-body localization (MBL)
[5]. In this new dynamical phase, the discreteness of the
local observables spectra, typical of quantum mechanics,
endows the system with a set of local integrals of motion
which freeze transport and localize excitations [6–13] (for
reviews, see [14–16]). While this phenomenon has been
predicted, and signatures observed in numerics and experi-
ments for a variety of model Hamiltonians such as Hubbard
models and spin chains [14,17,18], it is an open question to
which extent such a lack of thermalization can occur in
fundamental theories of matter and, in particular, if gauge
invariance can play a role in the mechanism.
In this Letter, we show the emergence of MBL dynamics

in lattice gauge theories (LGTs) [19–21] in the absence of
any disorder. Our work is immediately motivated by recent
theoretical proposals [22–27] and the experimental dem-
onstration [28] of LGT dynamics in synthetic quantum
systems and by the paradigmatic importance played by
gauge theories. The latter describe a plethora of physical
phenomena, from fundamental interactions in particle
physics [21] to the low-energy dynamics of frustrated
quantum magnets [29], and are instrumental in designing

quantum computing architectures which show inherent
protection against noise [30]. As such, addressing their
real-time dynamics is of profound interest from a variety of
perspectives, regarding both the basic understanding of
lattice field theories and the possibility of safely storing
quantum information via localization in quantum memo-
ries, further boosting their resilience.
Our main finding is that, starting from translational

invariant states, the dynamics of LGT is profoundly
influenced by the presence of superselection sectors—a
key element that stems directly from gauge invariance (see
Fig. 1). Even though MBL in systems without disorder has
already been discussed and debated over the past years [31–
39], the presence of such superselection sectors provides a
pristine mechanism for localization dynamics, whose origin
can be conveniently tracked by an exact integration of the

FIG. 1. (a) Schematic of a (1þ 1)-d lattice gauge theory, with
matter fields ψn defined on the vertices and pairs of conjugate
variables fUn; Lng defined on bonds. (b) Typical initial states
used in the simulations: Fermions are arranged in an alternate
pattern of empty and occupied sites (corresponding the bare
vacuum), while gauge fields are in an equal weight superposition
of electric field eigenstates with eigenvalues ð0;�1Þ. (c) Sche-
matics of the real-time dynamics, which, starting from jΨi0, can
be decomposed in an N superselection sector (see the text).
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gauge fields in (1þ 1)-d lattice gauge theories describing
matter coupled to gauge fields.
Following this analytical understanding, we provide

extensive numerical evidence for MBL dynamics in the
lattice Schwinger model—a (1þ 1)-d version of quantum
electrodynamics, with U(1) gauge fields coupled to
Kogut-Susskind fermions [20,21]—based on both strong
memory effects and entanglement dynamics. The latter is
characterized by a sublogarithmic growth of the bipartite
entanglement entropy, which we interpret as a transport-
inhibiting mechanism due to confinement. Our results have
immediate experimental relevance in trapped ion systems,
where the Schwinger model has already been experimen-
tally realized [28], and in cold atom gases in optical lattices,
where various implementations schemes for U(1) LGT
[22–27] have been put forward.
Model Hamiltonian.—We are interested here in the

dynamics of Abelian lattice gauge theories on a one-
dimensional lattice. While our approach is general and
can be applied to arbitrary Abelian (and continuous non-
Abelian) gauge theories in both Wilson [20,21] and
quantum link formulations [40], for the sake of simplicity,
we focus in the following on the U(1) Wilson LGT, the
lattice Schwinger model (SM). Despite its simplicity, the
SM still displays many paradigmatic features also found in
more complex gauge theories, such as confinement and
string-breaking dynamics. The system is described by a
Kogut-Susskind Hamiltonian [20] of the form

H ¼ −iw
XN−1

n¼1

½ψ†
nUnψnþ1 − H:c:�

þ J
XN−1

n¼1

L2
n þm

XN
n¼1

ð−1Þnψ†
nψn; ð1Þ

where ψn are fermionic annihilation operators defined on
vertices,Un ¼ eiφn are U(1) parallel transporters defined on
bond ðn; nþ 1Þ, whose corresponding electric field oper-
ator is defined as Ln ¼ −i∂=∂φn, so that ½Ln; Un� ¼ Un,
which ensures gauge covariance. The first term describes
the gauge-matter coupling; the second is a model-
dependent electric field contribution [27,41] and indicates
the strength of the interparticle interaction mediated by the
gauge field; finally, the last term describes the staggered
mass of the fermions (which we will set to 0 in the
following). While we are not interested in the continuum
limit of the theory here, it is possible to safely take it using
the lattice formulation and properly scaling the coupling
parameters [27,41]. As in conventional lattice gauge
theories, gauge invariance is manifest after defining a set
of generators, Gn ¼ Ln − Ln−1 − ψ†

nψn þ 1
2
½1 − ð−1Þn�,

which satisfy ½H;Gn� ¼ 0. States in the Hilbert space as
defined by the Gauss law, which reads

GnjΨfqαgi ¼ qnjΨfqαgi; ð2Þ

where fqαg represents the distribution of background
charges qn on each state in the Hilbert space, defining a
superselection sector. In a U(1) LGT, qn ∈ ½−∞;∞�. We
emphasize that the presence of the Gauss law and super-
selection sectors has nothing to do with integrability but
stems solely from gauge invariance.
Superselection sectors as a mechanism for disorder-free

localization.—The presence of these superselection sectors
drastically affects the system dynamics. In (1þ 1)-d, this
can be elegantly seen by integrating out the gauge fields
and then studying the resulting Hamiltonian acting on the
matter degrees of freedom. Below, we show that this
procedure indicates that MBL is a rather generic scenario
for LGT in the absence of any underlying disorder—e.g.,
systems with homogeneous couplings and homogeneous
initial states show robust memory effects and slow (sub-
logarithmic) growth of entanglement entropy as a function
of time.
We investigate the time evolution of initial states of the

form

jΨi0 ¼ j0101…iψ ⊗ jL̄n…iσ; ð3Þ
where the fermions are in a Néel state (corresponding to the
bare vacuum of staggered fermions) and the gauge fields Ln
are in an equal weight superposition of f−1; 0; 1g at each
site. This state is translational invariant up to translations of
two lattice spacings and can be decomposed into U(1)
superselection sectors as

jΨi0¼
1

N 1=2

X
q̄n¼0;�1

j0101…iψ ⊗ jq̄n…iσ ¼
1

N 1=2

X
qα

jΨfqαgi

ð4Þ
with N denoting the total number of different super-
selection sectors. In order to derive the dynamics within
each sector, we analytically integrate out the gauge fields
[41]. We assume L̄0 ¼ 0 to minimize boundary effects and
apply a Jordan-Wigner transformation to the fermionic
fields in order to recast the dynamics as a spin model:
ψ†
nψn ¼ ðσzn þ 1Þ=2. The gauge fields can be sequentially

integrated out by noting that

Ll ¼ Ll−1 þ ½σzl þ ð−1Þl�=2þ ql; ð5Þ

which simply describes the fact that, given the value of the
ingoing electric field on the left side of a site and given the
values of the dynamical and static charge, the value of
the outgoing electric field is unambiguously fixed.
After integration, the resulting Hamiltonian dynamics

crucially depends on fqαg—that is, states in different
superselection sectors will evolve according to different
HamiltoniansHfqαg. This is a direct consequence of the fact
that, because of the Gauss law, different superselection
sectors describe dynamics subject to different static
charge configurations. In each sector, the corresponding
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Hamiltonian is made of two contributions, Hfqαg ¼ H�þ
Hfqαg

In . The first one describes electron-gauge coupling,
which is not sensitive to background charges, and is given
by H� ¼ w

P
N−1
n¼1 ½σþn σ−nþ1 þ H:c:�. The second term orig-

inates from the electric field potential term, which is now a
function of the fermionic populations only. It contains an
interaction part:

HZZ ¼ J
2

XN−2

n¼1

XN−1

l¼nþ1

ðN − lÞσznσzl ; ð6Þ

which is related to the linear growth of Coulomb interactions
in one-dimensional systems, and single spin terms:

Hfqαg
Z ¼ J

2

XN−1

n¼1

�Xn
l¼1

σzl

���Xn
j¼1

qj

�
− n mod 2

�
: ð7Þ

Crucially, this last part of theHamiltonian depends explicitly
on the superselection sector via fqlg. As such, starting from
initial states of the form in Eq. (4), the system dynamics is
dictated by a charge distribution average, that is,

jΨðtÞi ¼ e−itHjΨi0 ¼
1

N 1=2

X
fqαg

e−itH
fqαg jΨfqαgi; ð8Þ

which is effectively describing a disorder average, since the

terms in Hfqαg
Z effectively act as a (correlated) disorder for

the spin dynamics. The observation inEq. (8) is applicable to
arbitrary Abelian Wilson theories, and even non-Abelian
quantum link model, in one-dimensional systems. For the
specific case of Z2 quantum link models, our theory (see
Ref. [42]) recovers the results of Ref. [43], which reported
Anderson localization in disorder-free models. The same
reasoning can be applied to two-dimensional systems, in
particular, to the evolution of quenched gauge theories. It
explicitly shows that, contrary to conventional spin models,
the dynamics of systems endowed by a gauge symmetry can
naturally lead to phenomena related to disordered systems,
even in the absence of any disorder (both on the initial state
and in the dynamics). This happens for generic initial states
which are in product form of the matter and gauge fields, as
in those cases the weight of superselection sectors with
effectively no disorder decreases exponentially with the
system size. Finally, we emphasize that the mechanism
discussed here is very different from the disorder-free
localization dynamics discussed in the context of fractons
[38,39], which relies on slow dynamics of topological
excitations and separation of energy scales [48,49].
Many-body localization dynamics in U(1) lattice

gauge theories.—While our theory predicts a generic
mechanism for effectively disordered dynamics in LGTs,
the question if this finally leads to localization behavior has
to be addressed by nonperturbative methods. We thus turn
to a numerical investigation of the system dynamics
described by Eq. (8). We address this by employing a
computationally optimized approach to the method of

Krylov subspaces—for details, see Ref. [42]. As a first
figure of merit, we focus on the staggered occupation of the
fermions:

νðtÞ ¼ 1

2N

XN
n¼1

hð−1Þnψ†
nðtÞψnðtÞ þ 1i;

which, by a Jordan-Wigner transformation, can be
expressed as νðtÞ ¼ ð1=2NÞPN

n¼1hð−1Þnσzn þ 1i by trans-
forming fermionic fields to spin operators. Since we
employ staggered fermions, this quantity corresponds to
the total number of particles created in the system. In
addition, we also monitor the staggered population for the
central two sites of the system:

μðtÞ ¼ hn̂N=2ðtÞ − n̂ðN=2Þþ1i;

where n̂iðtÞ≡ ψ†
i ðtÞψ iðtÞ is the fermion counting operator

on site i.
In Figs. 2(a) and 2(b), we plot typical results of our

simulations for N ¼ 26. In the weak coupling limit, both
quantities reach their average thermodynamic value: 0.5
and 0, respectively. In contrast, for the strong coupling
phase, the system does not relax for both observables (we
have carried out simulations up to times 1020 until L ¼ 14
to check this). This behavior is analyzed using finite-size
scaling in Figs. 2(c) and 2(d): For J ¼ 0.1, both quantities
approach their thermodynamic value as N is increased.

(a)
(b)

(c)

(d)

FIG. 2. Dynamics of the overall staggered fermion occupation
(a) and central staggered fermion occupation (b) from a bare
vacuum initial state for different values of coupling strength
parameter J, andN ¼ 26. (c),(d) Final time value of νðtÞ and μðtÞ,
respectively, averaged from t ¼ 50 to t ¼ 100 for different
system sizes up to N ¼ 30 and two limiting values of J. The
absolute error due to averaging realizations is shown as vertical
bars for each point.
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Instead, for J ¼ 1.0, for both νðtÞ and μðtÞ the deviation
from thermodynamic values actually increases as a func-
tion of the system size, signaling strong memory effects.
Another key aspect of MBL is a very slow propagation of

quantum information [6–9], which can be studied by
monitoring the bipartite von Neumann entanglement
entropy after the quench, defined as

SA ¼ −TrAρA log ρA; ð9Þ

where ρA denotes the reduced density matrix of the state in
the region A, which in the following will be half system.
For systems whose dynamics is captured by the eigenstate
thermalization hypothesis, one expects that, after a quan-
tum quench, the bipartite entanglement entropy grows
linearly as a function of time; instead, MBL systems are
characterized by slow entanglement spreading, which is
typically logarithmic in time [6,8,51].
In Figs. 3(a) and 3(b), we plot SA as a function of time

for the same parameter regimes as in Fig. 2. While for
small J ¼ 0.1 the entropy grows faster than logarithmically
[and approaches a saturation value of the order of
N=2 logð2Þ − 0.5, as expected for a random state [52]],
in the localized phase the growth is extremely slow: In
particular, it is slower than logðtÞ. Using full diagonaliza-
tion of the Hamiltonian, we further analyze this behavior in

Figs. 3(c) and 3(d) for the strongly interacting regime,
J ¼ 10: In this case, the decay is consistent with a double-
logarithmic behavior, as it is definitely slower than
½logðtÞ�α. This type of growth has never been reported in
MBL systems, where the typical logðtÞ behavior can be
inferred in the local integral of motion picture and con-
sidering short-ranged interactions.
In LGT, however, we argue that confinement plays an

important role in determining entanglement dynamics. For
this purpose, we compare the present case, which is
confining, with a deconfined regime. The latter can be
achieved in the presence of a finite θ angle with θ ¼ π [53];
in this regime, including a four-Fermi coupling interaction
Vnjnjþ1, the dynamics of the states jΨi0 is mapped exactly
to an XXZ chain with (correlated) disorder in σz terms, a
model whose transport and entanglement properties have
been extensively studied in the context of MBL [54–59].
The comparison between the two cases reveals that the

fact that excitations are confined drastically changes
entanglement spreading, further decreasing its growth from
logarithmic to sublogarithmic. The fact that confinement
affects even this "high-energy" behavior is not surprising,
as it describes the behavior of large interparticle separa-
tions, very far from ground state physics.
Finally, in Fig. 4, we show the long-time dynamics of SA

and, in particular, its saturation value. As illustrated in
Fig. 4(b), the latter scales linearly as a function of the
system size, another characteristic feature of MBL
dynamics.
Conclusions and outlook.—We have shown how many-

body localization dynamics can naturally emerge in lattice
gauge theories in the absence of any disorder. The physical
interpretation is that, due to the presence of superselection
sectors, the dynamics of translational invariant states is
effectively described by an average over random charge
configurations, with electrons interacting via long-range
Coulomb potential. While our results are derived from a
fully local field theory, after gauge field integration they
signal that certain types of long-range interactions per se
are not sufficient to delocalize the charges. This is surpris-
ing in view of earlier results [60–62] but in line with recent

(c) (d)

(a) (b)

FIG. 3. Time evolution of the bipartite von Neumann entan-
glement entropy SAðtÞ from a bare vacuum initial state. (a) SAðtÞ
for different values of coupling strength parameter J and N ¼ 18.
The dashed line refers to the value N logð2Þ=2 − 1=2 of the
entanglement entropy as expected for a random state. (b) SAðtÞ on
intermediate time scales for J ¼ 1 and different system sizes N.
(c) Long-time growth of SAðtÞ for J ¼ 10 including a fit (solid
line) fðtÞ ¼ a log½logðwtÞ� þ b to the N ¼ 14 data. (d) The same
data are plotted on a double logarithmic scale.

(a) (b)

FIG. 4. (a) Asymptotic long-time dynamics of the entanglement
entropy density SAðtÞ for different system sizes N at J ¼ 1
suggesting saturation to an extensive value by plotting the
entanglement entropy density SAðtÞ=N (b).
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treatments of the long-range interactions in a nonperturba-
tive way [63]. We remark that there is a key difference
between gauge theories and, say, generic long-range XY
models: Only the former can be exactly recast in a local
fashion. It would be interesting to see whether matching
this key requirement leads to a strict criterion for MBL in
long-range systems.
Moreover, we provide numerical evidence that shows

how confinement substantially favors localization, in par-
ticular, by inhibiting entanglement growth in a qualitative
stronger manner with respect to the local integrals of
motion in statistical mechanics models of MBL. Our results
point toward intriguing possibilities to study MBL dynam-
ics in 2D LGT: In particular, due to the modest Hilbert
space dimension growth in simple quantum link models,
numerical simulations are expected to be comparatively
easier with respect to spin models [especially for U(1)
theories], and gauge invariant tensor network methods [64–
68] could be used thanks to the considerably slower
entanglement growth in LGT.
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M. D. thank Ivan Girotto for support and acknowledge
computing resources at Cineca Supercomputing Centre
through the Italian SuperComputing Resource Allocation
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Note added.—Recently, a preprint appeared [44] where a
Z2 quantum link model with four-Fermi coupling was
considered. Our theoretical analysis predicts disorder-free
MBL and logarithmic entanglement growth there due to the
absence of confinement and is in perfect qualitative agree-
ment with the conclusion of Ref. [44].

*mdalmont@ictp.it
[1] I. Bloch, J. Dalibard, and S. Nascimbene, Nat. Phys. 8, 267

(2012).
[2] R. Blatt and C. Roos, Nat. Phys. 8, 277 (2012).
[3] I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys.

86, 153 (2014).
[4] A. Polkovnikov, K. Sengupta, A. Silva, and M.

Vengalattore, Rev. Mod. Phys. 83, 863 (2011).
[5] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys.

(Amsterdam) 321, 1126 (2006).
[6] M. Žnidarič, T. Prosen, and P. Prelovšek, Phys. Rev. B 77,

064426 (2008).
[7] A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
[8] J. H. Bardarson, F. Pollmann, and J. E. Moore, Phys. Rev.

Lett. 109, 017202 (2012).
[9] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phys. Rev.

B 90, 174202 (2014).

[10] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett.
111, 127201 (2013).

[11] V. Ros, M. Müller, and A. Scardicchio, Nucl. Phys. B891,
420 (2015).

[12] J. Z. Imbrie, J. Stat. Phys. 163, 998 (2016).
[13] J. Z. Imbrie, Phys. Rev. Lett. 117, 027201 (2016).
[14] R. Nandkishore and D. A. Huse, Annu. Rev. Condens.

Matter Phys. 6, 15 (2015).
[15] E. Altman and R. Vosk, Annu. Rev. Condens. Matter Phys.

6, 383 (2015).
[16] J. Z. Imbrie, V. Ros, and A. Scardicchio, Ann. Phys. (Berlin)

529, 1600278 (2017).
[17] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen,

M. H. Fischer, R. Vosk, E. Altman, U. Schneider, and I.
Bloch, Science 349, 842 (2015).

[18] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P.
Hauke, M. Heyl, D. A. Huse, and C. Monroe, Nat. Phys. 12,
907 (2016).

[19] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
[20] J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
[21] I. Montvay and G. Muenster, Quantum Fields on a Lattice

(Cambridge University Press, Cambridge, England, 1994).
[22] D. Banerjee, M. Bögli, M. Dalmonte, E. Rico, P. Stebler,

U.-J. Wiese, and P. Zoller, Phys. Rev. Lett. 110, 125303
(2013).

[23] L. Tagliacozzo, A. Celi, P. Orland, M.W. Mitchell, and M.
Lewenstein, Nat. Commun. 4, 1 (2013).

[24] E. Zohar, J. I. Cirac, and B. Reznik, Phys. Rev. Lett. 110,
125304 (2013).

[25] S. Notarnicola, E. Ercolessi, P. Facchi, G. Marmo, S.
Pascazio, and F. V. Pepe, J. Phys. A 48, 30FT01 (2015).

[26] V. Kasper, F. Hebenstreit, F. Jendrzejewski, M. K.
Oberthaler, and J. Berges, New J. Phys. 19, 023030
(2017).

[27] C. Muschik, M. Heyl, E. Martinez, T. Monz, P. Schindler,
B. Vogell, M. Dalmonte, P. Hauke, R. Blatt, and P. Zoller,
New J. Phys. 19, 103020 (2017).

[28] E. A. Martinez et al., Nature (London) 534, 516 (2016).
[29] Introduction to Frustrated Magnetism, edited by C. Lacroix,

P. Mendels, and F. Mila, Springer Series in Solid-State
Sciences Vol. 164 (Springer, New York, 2010).

[30] A. Kitaev and C. Laumann, in Proceedings of the Les
Houches Summer School (Oxford University Press, Oxford,
2010), Vol. 89, p. 101.

[31] M. Schiulaz, A. Silva, and M. Müller, Phys. Rev. B 91,
184202 (2015).

[32] J. M. Hickey, S. Genway, and J. P. Garrahan, J. Stat. Mech.
2016, 054047 (2016).

[33] M. van Horssen, E. Levi, and J. P. Garrahan, Phys. Rev. B
92, 100305 (2015).

[34] Z. Papić, E. M. Stoudenmire, and D. A. Abanin, Ann. Phys.
(Amsterdam) 362, 714 (2015).

[35] M. Schiulaz and M. Müller, AIP Conf. Proc. 1610, 11
(2014).

[36] M. Pino, L. B. Ioffe, and B. L. Altshuler, Proc. Natl. Acad.
Sci. U.S.A. 113, 536 (2016).

[37] N. Y. Yao, C. R. Laumann, J. I. Cirac, M. D. Lukin, and J. E.
Moore, Phys. Rev. Lett. 117, 240601 (2016).

[38] A. Prem, J. Haah, and R. Nandkishore, Phys. Rev. B 95,
155133 (2017).

PHYSICAL REVIEW LETTERS 120, 030601 (2018)

030601-5

https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2259
https://doi.org/10.1038/nphys2252
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1016/j.nuclphysb.2014.12.014
https://doi.org/10.1016/j.nuclphysb.2014.12.014
https://doi.org/10.1007/s10955-016-1508-x
https://doi.org/10.1103/PhysRevLett.117.027201
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014701
https://doi.org/10.1146/annurev-conmatphys-031214-014701
https://doi.org/10.1002/andp.201600278
https://doi.org/10.1002/andp.201600278
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1038/nphys3783
https://doi.org/10.1038/nphys3783
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/PhysRevLett.110.125303
https://doi.org/10.1103/PhysRevLett.110.125303
https://doi.org/10.1038/ncomms3615
https://doi.org/10.1103/PhysRevLett.110.125304
https://doi.org/10.1103/PhysRevLett.110.125304
https://doi.org/10.1088/1751-8113/48/30/30FT01
https://doi.org/10.1088/1367-2630/aa54e0
https://doi.org/10.1088/1367-2630/aa54e0
https://doi.org/10.1088/1367-2630/aa89ab
https://doi.org/10.1038/nature18318
https://doi.org/10.1103/PhysRevB.91.184202
https://doi.org/10.1103/PhysRevB.91.184202
https://doi.org/10.1088/1742-5468/2016/05/054047
https://doi.org/10.1088/1742-5468/2016/05/054047
https://doi.org/10.1103/PhysRevB.92.100305
https://doi.org/10.1103/PhysRevB.92.100305
https://doi.org/10.1016/j.aop.2015.08.024
https://doi.org/10.1016/j.aop.2015.08.024
https://doi.org/10.1063/1.4893505
https://doi.org/10.1063/1.4893505
https://doi.org/10.1073/pnas.1520033113
https://doi.org/10.1073/pnas.1520033113
https://doi.org/10.1103/PhysRevLett.117.240601
https://doi.org/10.1103/PhysRevB.95.155133
https://doi.org/10.1103/PhysRevB.95.155133


[39] I. H. Kim and J. Haah, Phys. Rev. Lett. 116, 027202 (2016).
[40] S. Chandrasekharan and U. J. Wiese, Nucl. Phys. B492, 455

(1997).
[41] C. J. Hamer, Z. Weihong, and J. Oitmaa, Phys. Rev. D 56,

55 (1997).
[42] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.120.030601 for details
on numerical simulations, the phase transition, the role of
superselection sectors, and the Z2 quantum link model,
which includes Refs. [43–47].

[43] A. Smith, J. Knolle, D. L. Kovrizhin, and R. Moessner,
Phys. Rev. Lett. 118, 266601 (2017).

[44] A. Smith, J. Knolle, R. Moessner, and D. L. Kovrizhin,
Phys. Rev. Lett. 119, 176601 (2017).

[45] R. B. Sidje, ACM Trans. Math. Softw. 24, 130 (1998).
[46] M. Brenes, V. K. Varma, A. Scardicchio, and I. Girotto,

arXiv:1704.02770.
[47] M. Hochbruck and C. Lubich, SIAM J. Numer. Anal. 34,

1991 (1997).
[48] Note that the notation of superselector sector has a different

meaning in our work and Ref. [38].
[49] The possibility that the constrained Hilbert space be the sole

reason of breaking of eigenstate thermalization hypothesis
has been ruled out in Ref. [50].

[50] A. Chandran, M. D. Schulz, and F. J. Burnell, Phys. Rev. B
94, 235122 (2016).

[51] G. D. Chiara, S. Montangero, P. Calabrese, and R. Fazio, J.
Stat. Mech. 2006, P03001 (2006).

[52] D. N. Page, Phys. Rev. Lett. 71, 1291 (1993).

[53] S. Coleman, Ann. Phys. (N.Y.) 101, 239 (1976).
[54] A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
[55] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett.

110, 260601 (2013).
[56] A. De Luca and A. Scardicchio, Europhys. Lett. 101, 37003

(2013).
[57] D. J. Luitz, N. Laflorencie, and F. Alet, Phys. Rev. B 91,

081103 (2015).
[58] J. Goold, C. Gogolin, S. R. Clark, J. Eisert, A. Scardicchio,

and A. Silva, Phys. Rev. B 92, 180202 (2015).
[59] M. Žnidarič, A. Scardicchio, and V. K. Varma, Phys. Rev.

Lett. 117, 040601 (2016).
[60] L. S. Levitov, Phys. Rev. Lett. 64, 547 (1990).
[61] A. L. Burin, arXiv:cond-mat/0611387.
[62] N. Y. Yao, C. R. Laumann, S. Gopalakrishnan, M. Knap, M.

Müller, E. A. Demler, and M. D. Lukin, Phys. Rev. Lett.
113, 243002 (2014).

[63] R. M. Nandkishore and S. Sondhi, Phys. Rev. X 7, 041021
(2017).

[64] U. Schollwöck, Ann. Phys. (Amsterdam) 326, 96 (2011).
[65] M. Bañuls, K. Cichy, J. Cirac, and K. Jansen, J. High Energy

Phys. 11 (2013) 158.
[66] E. Rico, T. Pichler, M. Dalmonte, P. Zoller, and S.

Montangero, Phys. Rev. Lett. 112, 201601 (2014).
[67] B. Buyens, J. Haegeman, K. Van Acoleyen, H. Verschelde,

and F. Verstraete, Phys. Rev. Lett. 113, 091601 (2014).
[68] L. Tagliacozzo, A. Celi, and M. Lewenstein, Phys. Rev. X 4,

041024 (2014).

PHYSICAL REVIEW LETTERS 120, 030601 (2018)

030601-6

https://doi.org/10.1103/PhysRevLett.116.027202
https://doi.org/10.1016/S0550-3213(97)80041-7
https://doi.org/10.1016/S0550-3213(97)80041-7
https://doi.org/10.1103/PhysRevD.56.55
https://doi.org/10.1103/PhysRevD.56.55
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.030601
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.030601
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.030601
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.030601
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.030601
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.030601
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.030601
https://doi.org/10.1103/PhysRevLett.118.266601
https://doi.org/10.1103/PhysRevLett.119.176601
https://doi.org/10.1145/285861.285868
http://arXiv.org/abs/1704.02770
https://doi.org/10.1137/S0036142995280572
https://doi.org/10.1137/S0036142995280572
https://doi.org/10.1103/PhysRevB.94.235122
https://doi.org/10.1103/PhysRevB.94.235122
https://doi.org/10.1088/1742-5468/2006/03/P03001
https://doi.org/10.1088/1742-5468/2006/03/P03001
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1016/0003-4916(76)90280-3
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevLett.110.260601
https://doi.org/10.1103/PhysRevLett.110.260601
https://doi.org/10.1209/0295-5075/101/37003
https://doi.org/10.1209/0295-5075/101/37003
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevB.92.180202
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevLett.117.040601
https://doi.org/10.1103/PhysRevLett.64.547
http://arXiv.org/abs/cond-mat/0611387
https://doi.org/10.1103/PhysRevLett.113.243002
https://doi.org/10.1103/PhysRevLett.113.243002
https://doi.org/10.1103/PhysRevX.7.041021
https://doi.org/10.1103/PhysRevX.7.041021
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1007/JHEP11(2013)158
https://doi.org/10.1007/JHEP11(2013)158
https://doi.org/10.1103/PhysRevLett.112.201601
https://doi.org/10.1103/PhysRevLett.113.091601
https://doi.org/10.1103/PhysRevX.4.041024
https://doi.org/10.1103/PhysRevX.4.041024

