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We study the effects of local perturbations on the dynamics of disordered fermionic systems in order to
characterize time irreversibility. We focus on three different systems: the noninteracting Anderson and
Aubry-André-Harper (AAH) models and the interacting spinless disordered t-V chain. First, we consider
the effect on the full many-body wave functions by measuring the Loschmidt echo (LE). We show that in
the extended or ergodic phase the LE decays exponentially fast with time, while in the localized phase the
decay is algebraic. We demonstrate that the exponent of the decay of the LE in the localized phase diverges
proportionally to the single-particle localization length as we approach the metal-insulator transition in the
AAH model. Second, we probe different phases of disordered systems by studying the time expectation
value of local observables evolved with two Hamiltonians that differ by a spatially local perturbation.
Remarkably, we find that many-body localized systems could lose memory of the initial state in the long-
time limit, in contrast to the noninteracting localized phase where some memory is always preserved.
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Introduction.—The second law of thermodynamics
imposes strong constraints on the time reversibility of
nonadiabatic processes between thermodynamic states.
However, the applicability of the second law requires, in
general, ergodicity, which is absent for closed many-body
localized (MBL) systems [1–13]. This has recently also
been shown experimentally [14–18]. Consequently, after a
nonadiabatic process, such MBL systems do not inherit a
thermodynamic description, leading to a major question: To
what extent does this breaking of ergodicity influence time
reversibility?
In this work, we probe the time reversibility of closed

quantum many-body systems with disorder. Specifically,
we study the sensitivity of the nonadiabatic dynamics due
to weak local perturbations in three fermionic systems
including the Aubry-André-Harper (AAH) as well as the
Anderson model with and without interactions. We char-
acterize time reversibility by noticing that the faster the
departure of the perturbed and unperturbed trajectories,
the stronger the sensitivity of quantum motion and therefore
the stronger time irreversibility. In this work, the quantifi-
cation of the distance of the two time-evolved systems is
based on two complementary measures: First, we study the
sensitivity in terms of the Loschmidt echo (LE) [19,20],
which quantifies the deviation on the basis of the full
quantum many-body wave function; second, we introduce a
quantity which measures the closeness of only local proper-
ties instead of global wave functions, by measuring the local
densities, representing a less strict measure as compared to
the LE. We find numerical evidence corroborated by
analytical arguments that the various distinct phases of

our fermionic models can be detected and characterized by
studying the long-time dynamics of these measures. Our
predictions can be tested experimentally, because both of
the studied quantities are, in principle, experimentally
accessible for ultracold atoms in optical lattices and trapped
ions where signatures of MBL have been already observed
recently [14–18]. In systems of ultracold atoms, local
densities can be measured with the use of quantum gas
microscopes [21,22] and LE by interferometric techniques
[23–25]. The local control of trapped ions provides direct
access to local densities, and LE has been already measured
in recent experiments [26,27].
Models and methods.—We study the Hamiltonian

Ĥ ≔ −
th
2

XðL=2Þ−2
x¼−ðL=2Þ

ĉ†xĉxþ1 þ H:c:þ
XðL=2Þ−1

x¼−ðL=2Þ
hx ~̂nx

þ V
XðL=2Þ−2

x¼−ðL=2Þ
~̂nx ~̂nxþ1;

where ĉ†xðĉxÞ is the fermionic creation (annihilation)
operator at site x and ~̂nx ¼ n̂x − 1

2
with n̂x ¼ ĉ†xĉx, L the

system size, and N ¼ ðL=2Þ the number of fermions.
We consider three different cases: (i) The noninteracting

Aubry-André-Harper (AAH) model, obtained from Ĥ
with V ¼ 0, th ¼ 2, and hx ¼ W cosð2πxϕþ αÞ, where
ϕ ¼ ð1þ ffiffiffi

5
p

=2Þ; α is a random phase uniformly distrib-
uted in ½0; 2π�. The AAH model has a metal-insulator
transition at Wc ¼ 2 (extended phase for W ≤ Wc and
localized phase forW > Wc). The localization length close
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to the transition diverges as ξloc ∼ log−1ðW=2Þ [28]. (ii) The
noninteracting Anderson model [29], given by V ¼ 0,
th ¼ 1, and fhxg independent random variables uniformly
distributed in ½−W;W�. In the Anderson model, all the
single-particle eigenstates are exponentially localized, and
ξloc ∼W−2 in theweak disorder regime [30]. (iii) The spinless
disordered t-V chain, obtained from the Anderson model by
turning on the interaction with V ¼ 1. This t-V chain is
believed tohaveaMBLtransitionat acriticaldisorder strength
Wc ≈ 3.5 [4,9,10,31] (extended or ergodic for W < Wc and
localized for W > Wc) at an infinite temperature.
To study a spatially local perturbation of the Hamiltonian

Ĥ, we define

Ĥϵ ≔ Ĥ þ 2ϵn̂0; ð1Þ
with ϵ > 0. A central object studied in this work is the LE
[32–37], which in related forms has already been studied in
disordered systems [11,38–41]:

LðtÞ ≔ jhψ jeitĤe−itĤϵ jψij2: ð2Þ

To understand how states deviate in their local properties if
evolved withH andHϵ, we study the difference of the local
density profile (DLDP) [41,42], defining

DðtÞ ≔
X
x

jδρðx; tÞj ð3Þ

with

δρðx;tÞ≔ hψ jeitĤn̂xe−itĤjψi− hψ jeitĤϵ n̂xe−itĤϵ jψi: ð4Þ

Moreover, we are interested in the long-time behavior of
DðtÞ, which quantifies the long-time relative temporal
fluctuations

D∞ ≔ lim
T→∞

1

T

Z
T

0

dsDðsÞ: ð5Þ

For the initial state jψi, we choose a product state in the
occupation basis ðQN

s¼1 c
†
2sj0iÞ (charge density wave state),

which is easy to realize in experiments [14]. The strength of
the perturbation ϵ is set equal to 0.1, so ϵ < fth;W; Vg. We
would like to emphasize that, in contrast to Refs. [41,42],
we consider sudden quenches at infinite temperatures,
which as we will show exhibit very different physics.
The average over disorder is indicated with an overline
[43], e.g., D̄ðtÞ.
Noninteracting models.—In this section, we study the

LE and the DLDP for the AAH and Anderson models. We
compute the LE for these models using a free fermion
technique [44], which permits us to inspect large system
sizes for long times. Figures 1(a)–1(c) show the LE in the
two phases of the AAH and in the Anderson model. In the
extended phase of the AAH model (W ¼ 1.5), the LE

decays exponentially as LðtÞ ∼ e−Γt, revealing the strong
effect of local small perturbations. In the localized phase for
both models (AAH and Anderson model), the LE decays
algebraically in time as LðtÞ ∼ t−β. Note that, in both
phases, the long-time saturation value is exponentially
small in system size, i.e., Lðt → ∞Þ ∼ e−ηL. Still, the
two phases can be distinguished through the decay of
the LE as a function of time.
For the localized phase, Figs. 1(b) and 1(c) also show the

relation between the exponent β and the microscopic
parameter of the Hamiltonian (W), with a good collapse
of the curves. For the Anderson model, we observe
β ∝ W−2, indicating that β is proportional to ξloc at least
in the weak disorder limit. For the AAH model, we find the
scaling β ∝ ½W logðW=2Þ�−1. Thus, β is again proportional
to the localization length ξloc on approaching the metal-
insulator transition to leading order. The rescaled time in
the LE deserves particular attention: The time scale for the
onset of the algebraic decay is proportional to the locali-
zation length, which on approaching the metal-insulator
transition shifts to infinity in the thermodynamic limit.

(a) (b)

(d) (e)

(c)

FIG. 1. (a),(b) Behavior of −logLðtÞ for the AAH model in the
extended phase (W ¼ 1.5) ½LðtÞ ∼ e−Γt� and in the localized
phase for several values ofW ½LðtÞ ∼ t−β�. In the localized phase,
t and LðtÞ have been properly rescaled to underline the time scale
on which the decays starts and the behavior of the exponent of the
algebraic decay β. (c) −logLðtÞ for the Anderson model for
several values of W; here also a rescaling has been done on t and
LðtÞ. (d),(e) The approximate formula LAðtÞ for the two non-
interacting models and for the same values of W. The averages
have been performed over 5000 random configurations of disorder.
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We now present an analytical argument supporting the
algebraic decay of the LE in the localized phase. In the
Lehmann representation, the LE reads

LðtÞ ¼
���X
n;m

hψ jnihnjmϵihmϵjψie−itðEn−E
ðϵÞ
m Þ
���2; ð6Þ

where En ðjniÞ and EðϵÞ
m ðjmϵiÞ are the eigenvalues (eigen-

vectors) of Ĥ and Ĥϵ, respectively. The simple picture is that,
in the localized phase, the local perturbation causes an
exponentially weak dephasing of the energies of the unper-
turbed Hamiltonian with respect to the perturbed one,
inducing the decay of the LE. The following approximations,
which are equivalent to a first-order expansion in ϵ [45],
permit us to estimate the behavior of the LE and relate the
power-law exponent β to the localization length. We con-
firmed this relation close to the metal-insulator transition
with exact numerics. First, we assume that the behavior of
the LE is not affected by the choice of the initial product
state. Our second approximation is that the perturbation
affects only the eigenenergies but not the eigenstates.
The first approximation allows us to replace the overlap

with the initial state jψi in Eq. (6) with a normalized trace
over the entire Hilbert space. The second approximation
implies hnjmϵi ¼ δn;m. Finally, evaluating the energy differ-

ence En − EðϵÞ
n using the first-order perturbation theory in ϵ,

En − EðϵÞ
n ≈ ϵhnjn̂0jni, we can express the result in a closed

form:

LAðtÞ ¼
YL
j¼1

cos2½ϵjϕjð0Þj2t�; ð7Þ

where fϕjð0Þg are the single-particle wave functions evalu-
ated at the center of the chain. The subscript A underlines
that this is an approximate formula. Since all single-particle
eigenstates are exponentially localized, after an appropriate
relabeling of the index j, we assume that jϕjð0Þj2 ∼
½e−ðj=ξÞ=ξ�. Thus, the only factors that contribute signifi-
cantly are the ones where ϵjϕjð0Þj2t ≈ 1:

LAðtÞ ≈
Yξ log ðϵt=ξÞ

j¼1

cos2 ½ϵjϕjð0Þj2t� ∼
�
ϵt
ξ

�
−cξ

; ð8Þ

with c > 0. The last row of Figs. 1(c) and 1(d) shows the
algebraic decay with time of the LE from Eq. (7) as
LAðtÞ ∼ t−βA for the two models and several values of W.
Surprisingly, despite being a perturbative expansion in ϵ,
LAðtÞ reproduces the algebraic decay of the LE also for long
times. The exponents βA and β have the same dependence on
the microscopic parameter W in the vicinity of the critical
point, namely, β;βA∼W−2 asW→0 for the Anderson model
and β;βA∼ log−1ðW=2Þ as W→2 for the AAH model.
Indeed, as shown in Figs. 1(d) and 1(e), βA is proportional

to the localization length ðβA ∝ ξlocÞ. For the Anderson
model, the deviation with increasing disorder strength W is
just a sign that the perturbative expansion for ξloc is breaking
down. Moreover, the approximate formula Eq. (8) describes
well the rescaling of time, given by t → ðϵt=ξÞ.
Next, we probe the effect of local perturbation on the

dynamics of local observables by studying D̄ðtÞ. Figure 2
shows D̄ðtÞ for two different values of W for the AAH
model. In the extended phase withW ¼ 1.5, D̄ðtÞ shows an
algebraic growth with time, D̄ðtÞ ∼ tα, α ≈ 0.6 forW ¼ 1.5.
The saturation point in time of D̄ðtÞ is consistent with the
scale

ffiffiffiffi
L

p
[inset, Fig. 2(a)] with the system size, indicating

that in the long-time limit the average over index sites of the
DLDP (D̄∞=L) relaxes algebraically with the system
size [46].
In the localized phase, D̄ðtÞ has a loglike slow growth,

D̄ðtÞ ∼ logα t with α ≈ 1.3 for W ¼ 2.5, so the effect of
local perturbations on the dynamics is exponentially slow
in time. Moreover, D̄∞ ∼ L [inset, Fig. 2(b)], so that the
relaxation of D̄∞=L never takes place.
Spinless t-V chain.—Having shown that the LE captures

the salient features of the metal-insulator transition in the
AAHmodel, we now study LðtÞ for the interacting spinless
t-V chain that has a MBL transition. We perform the time
evolution using full diagonalization for small system size
L ≤ 16 and using the Chebyshev integration technique [47]
for larger L ð18 ≤ L ≤ 24Þ. Figure 3 shows the behavior of
the LE for the interacting model for different values of
disorder strength W. The enhanced decay compared with
the noninteracting problem is also shown in Fig. 3.
Nevertheless, in the localized phase, the LE still decays
algebraically as in the localized phase of the noninteracting
models. For W ¼ 6, the function −½logLðtÞ=t� [inset,
Fig. 3(c)] does not present any systematic dependence
on the system size, indicating that the algebraic decay could
be the asymptotic thermodynamic behavior. In the ergodic
phase with W ¼ 1, the LE decays at least exponentially
with time, and the function−½logLðtÞ=t� does not decay for

(a) (b)

FIG. 2. D̄ðtÞ for the AAH model in the two phases for different
L. (a)W ¼ 1.5, D̄ðtÞ ∼ tα, while its inset shows D̄∞ as a function
of L (D̄∞ ∼

ffiffiffiffi
L

p Þ. (b) W ¼ 2.5, D̄ðtÞ ∼ logα t, and its inset shows
D̄∞ ∼ L. The averages have been performed over 2500 random
configurations of disorder.
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times in which the decay of the LE is not affected by finite
size effects [inset, Fig. 3(a)]. Figure 3(b) also shows an
intermediate disorder value W ¼ 2, at which the function
−½logLðtÞ=t� develops a plateau with respect to t, like in
the extended phase, after which a slower decay sets in. This
plateau is enlarging with increasing system size, which may
indicate that in the thermodynamic limit ergodicity will be
completely restored and the LE will decay exponentially
with t.
We now study the effects of perturbations in the dynamics

of local observables by studying the DLDP. Figure 4 shows
D̄ðtÞ in the interacting model for two values ofW. We give
evidence that the behavior of D̄ðtÞ in the ergodic phase for
long times is drastically different from the noninteracting
case: D̄ðtÞ is not a monotonic function of t [inset, Fig. 4(a)].
For short times, D̄ðtÞ grows to amaximumvalue fromwhich
it starts to decay to a finite L-dependent value. The non-
monotonic behavior is intimately connected with the ther-
malization of the system. Indeed, the long-time expectation
values of local observables for thermal systems at an infinite

temperature should be unchanged if the system is locally
perturbed. The average time inwhich the decay of D̄ðtÞ starts
defines a time scale τ; this is roughly the time at which D̄ðtÞ
changes concavity and starts to decrease. For times much
larger than τ, the expectation value of a local observable is
given by the expectation value over a many-body random
state (eigenstate thermalization hypothesis at an infinite
temperature), so that jδρðx; t ≫ τÞj ∼ ðLNÞ−γ ∼ e−ðγ log 2ÞL.
In the localized phase, the finite size effects become

more important, and for smaller system sizes it could seem
that D̄ðtÞ [48] has an unbounded slow growth similar to the
localized phases for the noninteracting models. However, a
careful analysis shows that the saturation value is merely an
exponential decay such as in the extended phase, consistent
with D̄∞ ∼ LðLNÞ−γ [inset, Fig. 4(b)]. Compared with the
ergodic phase, in the localized phase the exponent γ is
small, so that, for the considered system sizes, the behavior
of D̄∞ is dominated by the linear prefactor L. In the
thermodynamic limit, we expect that the final shape will be
similar to the one in the ergodic phase, so that D̄ðtÞ will
eventually also decay with time at long times. Note that the
time scale at which this decay will take place is extremely
large; the limitation on the system size does not allow us to
estimate an upper bound of the time scale τ, which leaves
open the possibility that τ might shift to infinity with
increasing L. The behavior of D̄∞ in the localized phase is
reminiscent of the long-time “volume-law” saturation of
the entanglement entropy SðtÞ after a quantum quench. The
distinction between the ergodic and the MBL phase lies
only in the numerical value of the prefactor in front of the
saturation value of SðtÞ [49,50], while the scaling with L is
the same in both phases (volume law).
Conclusion.—In this work, we probed the effects of

local perturbations on the dynamics of several disordered
systems by studying the LE and the DLDP. First, with a
combination of analytical arguments and exact numerical
simulations, we showed that the LE in the localized phase
decays algebraically in time. Furthermore, we found,

(a) (b) (c)

FIG. 3. The panels show −logLðtÞ for different values of disorder strengthW. (a) The system is in the ergodic phase W ¼ 1, and the
LE decays at least exponentially fast with time. (b) An intermediate disorder strength W ¼ 2, −logLðtÞ=t (inset) forms a plateau with
time which is enlarging with the system size, showing that the range of times for which the LE decays exponentially fast is expanding.
(c) The system is in the localized phaseW ¼ 6, and the LE decays algebraically with time. We also show the LE for the noninteracting
case (V ¼ 0) for the largest system size in each panel (L ¼ 24 forW ¼ 1, 2 and L ¼ 20 forW ¼ 6). The averages have been performed
over 104 random configurations for system size L ≤ 14 and 5000 for L ¼ 16 and 2500 for larger system sizes.

(a) (b)

FIG. 4. D̄ðtÞ for the spinless disorder t-V chain for different L
and two values ofW. (a)W ¼ 1; the inset shows D̄ðtÞ for L ¼ 24
to underline its nonmonotonic dependence on t. (b) W ¼ 6; the
inset showsD∞=L as a function of L, and it decays exponentially
fast with L, ðD̄∞=LÞ ∼ ðLNÞ−γ . The averages have been performed
over 104 random configurations for system size L ≤ 14 and 5000
for L ¼ 16 and 2500 for larger system sizes.
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for the noninteracting models, that the exponent of the
algebraic decay is proportional to the single-particle locali-
zation length, which diverges at the metal-insulator tran-
sition. In the extended phase, the LE decays exponentially
fast with time. The faster exponential decay in the extended
phase compared with the algebraic decay in the localized
phase implies that time irreversibility is more strongly
manifested in the extended phase than in the localized
phase, at least for local perturbations. Second, we studied
the DLDP for the same models, and we found that the long-
time behavior saturates algebraically with the system size in
the extended phase of the Aubry-André-Harper model,
while it never relaxes for the noninteracting localized
phase. For the DLDP in the spinless disordered t-V chain,
the relaxation is exponential in system size in both phases:
In the ergodic phase this is due to thermalization, while in
the MBL phase it could be due to the interaction-induced
dephasing mechanism, which also explains the long-time
saturation values of the entanglement entropy after a
quantum quench. The study of the change in the expect-
ation values of local observables when the system is
perturbed gives a different perspective concerning time
irreversibility as opposed to the LE. Indeed, the long-time
expectation value of local observables in a thermal system
at an infinite temperature should be unchanged if the
system is locally perturbed. We give numerical evidence
that this also happens in the MBL phase.
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Note added.—Recently, we have become aware of related
works on the LE in the MBL phase [51,52].
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