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Quantum critical states exhibit strong quantum fluctuations and are therefore highly susceptible to
perturbations. In this Rapid Communication we study the dynamical stability against a sudden coupling to
these strong fluctuations by quenching the order parameter of the underlying transition. Such a quench can
generate superextensive energy fluctuations. This leads to a dynamical quantum phase transition (DQPT) with
nonanalytic real-time behavior in the resulting decay of the initial state. By establishing a general connection
between DQPTs and quantum speed limits, this allows us to obtain a quantum speed limit with unconventional
system-size dependence. These findings are illustrated for the one-dimensional and the infinitely connected
transverse-field Ising model. The main concepts, however, are general and can be applied also to other critical
states. An outlook is given on the implications of superextensive energy fluctuations on potential restricted
thermalization despite nonintegrability.
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Introduction. Systems in the vicinity of quantum phase
transitions experience strong quantum fluctuations and corre-
lations which also give them interesting dynamical properties
[1]. This includes the phenomenon of critical slowing down
[1] or the creation of defects in the context of the Kibble-Zurek
mechanism [2–4] when slowly sweeping through a quantum
critical point [5,6]. While this has led to a comprehensive
understanding of the long-time dynamics in the vicinity of
critical points, here we concentrate on the equally challenging
regime of transient nonequilibrium response.

In this Rapid Communication the transient dynamics of a
quantum critical state is studied after a sudden coupling to its
strong quantum fluctuations by quenching the order parameter.
As the main result, it is found that such a quench induces
a dynamical quantum phase transition (DQPT) [7] yielding
nonanalytic behavior during quantum real-time evolution. In
particular, the strong quantum fluctuations in the initial critical
state lead to a critical time for the dynamical transition that
turns out to exhibit an unconventional system-size dependence.
Specifically, the critical time vanishes in the thermodynamic
limit, implying a breakdown of time-dependent perturba-
tion theory immediately after the quench. Furthermore, this
breakdown implies that the initial critical state becomes
orthogonal to itself after a short-time evolution, signaling
optimal distinguishability of the two states. This observation
allows us to establish a general connection between DQPTs
and quantum speed limits which has profound implications
for the studied dynamics. While the main ideas are illustrated
using two paradigmatic model systems of quantum criticality,
the one-dimensional and the infinitely connected transverse-
field Ising model, the concepts are general and also apply to
other systems [8].

Setup. Consider a system initially prepared in a pure state
|ψ0〉 which in the following is taken to be the ground state of a
Hamiltonian H0 at its critical point. Upon suddenly switching
a parameter h in the Hamiltonian H0 �→ H = H0 + hO (here,
O will be chosen as the order parameter of the transition),
the decay of the initial state can be characterized through the

Loschmidt amplitude,

G(t) = 〈ψ0|e−iH t |ψ0〉. (1)

Objects of the structure of G(t) appear as quantifiers for the
stability of quantum states during unitary evolution in many
contexts, such as the Schwinger mechanism in high-energy
physics [9,10], quantum chaos [11,12], or quantum speed
limits [13–16].

Moreover, Loschmidt amplitudes play a central role in
the theory of dynamical quantum phase transitions (DQPTs)
[7], which has developed into an emerging prototype of
phase transitions far from equilibrium experiencing significant
interest [17–39]. Very recently, DQPTs have been observed
experimentally for the first time [38,39]. As opposed to
conventional equilibrium phase transitions that are driven by
control parameters such as temperature or pressure, DQPTs
occur during nonequilibrium quantum real-time evolution with
Loschmidt amplitudes becoming nonanalytic at critical times.
DQPTs have been identified in various models [17–39] and
recently substantial progress has been achieved for topolog-
ical systems [26,29,35,38], by identifying dynamical order
parameters [29,38], scaling, universality [28], or robustness
[19,21,32]. It is one purpose of this work to point out
an interesting connection to another important concept in
quantum physics, quantum speed limits.

Model. In the following, the main ideas will be illustrated
using the one-dimensional transverse-field Ising chain,

H0(g) = −J

N−1∑

l=1

Sz
l S

z
l+1 − g

N∑

l=1

Sx
l . (2)

Here, Sα
l are spin- 1

2 operators with α = x,y,z, l = 1, . . . ,N ,
and N the total number of lattice sites. Open boundary condi-
tions are used in the following. The quantum critical point for
this model is located at g/J = 1

2 , separating a ferromagnetic
phase (g/J < 1) from a paramagnetic phase (g/J > 1). The
order parameter of the transition is the magnetization M =∑

l S
z
l , which we therefore take as our perturbation O = M
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for the quench. In the remainder we choose units where
h̄ = 1 and the zero of energy such that |ψ0〉 has a vanishing
expectation value with respect to H0 = H0(g/J = 1

2 ). At
the end of this Rapid Communication, we will also discuss
another paradigmatic model of phase transitions, the infinitely
connected transverse-field Ising model.

Cumulant generating function of energy. The Loschmidt
amplitude G(t) is the Fourier transform of the energy (work)
distribution function [40,41] and thus

K(t) = − log [G(t)] = −
∞∑

l=1

1

l!
κl(−it)l (3)

is the respective cumulant generating function with κl denoting
the cumulants. For noncritical states, the κl are extensive
and we have that G(t) satisfies a large-deviation scaling
[7,41,42] with G(t) = exp[−Nk(t)]. Thus, K(t) = −Nk(t)
with k(t) intensive, N = Ld the system size, and L denotes
the linear extent of the system and d the dimension. If
the problem at hand is perturbative at short times we
have that k(t) = iεt + �ε2t2/2 + O(t3). Here, ε = N−1κ1 =
N−1〈H 〉 = N−1〈ψ0|H |ψ0〉 is the mean energy density and
�ε2 = N−1κ2 = N−1[〈H 2〉 − 〈H 〉2] is the energy fluctuation
density in the initial state.

The rate function K(t) can become nonanalytic as a
function of time, which is the defining feature of the anticipated
DQPTs [7]. This is possible because, formally, Loschmidt
amplitudes resemble conventional equilibrium partition func-
tions at complexified parameters. Specifically, objects of the
structure ZB = 〈ψ1|e−RH |ψ2〉 appear as boundary partition
functions in equilibrium where the states |ψ1/2〉 encode the
boundary conditions on two ends of a system and R denotes
their distance [43]. Replacing R → it and |ψ1/2〉 → |ψ0〉, the
Loschmidt amplitude can be thought of as a Wick-rotated
partition function. Analogously, the initial state |ψ0〉 in the
dynamical problem can be identified as a boundary condition
in time. While the notion of dynamical phase transitions
also appears in other contexts [44–50], in the following the
definition in terms of Loschmidt amplitudes will be adopted
here.

Divergent energy fluctuations and entanglement. When
considering initial quantum critical states, the extensivity of the
cumulant generating function K(t) can be lost. While ε = 0,
since the order parameter has a vanishing expectation value at
the critical point, standard scaling theory implies that energy
fluctuations �E2 = Ld�ε2 can become superextensive [8],

�E2 ∝ L2d−2�O , (4)

when d > 2�O . Here, �O denotes the scaling dimension
of the operator O. If d < 2�O , the critical fluctuations
of the order parameter do not overcome the nonuniversal
contributions from short-range correlations which contribute
conventional extensive energy fluctuations. Thus, �E2 does
not become superextensive in that case. For d = 2�O also
logarithmic corrections are possible.

This potential divergence of energy fluctuations roots in
the strong quantum correlations at a critical point because
�ε2 ∝ N−1 ∑N

lm=1〈OlOm〉 measures the order parameter
structure factor. Notice that there is an interesting connection
to divergent entanglement at quantum phase transitions for

FIG. 1. Dynamics of the rescaled cumulant generating function
φ(τ ) in the one-dimensional transverse-field Ising chain for different
system sizes N at a longitudinal field strength h/J = 0.1. For
comparison, the inset shows the cumulant generating function K(t)
before rescaling.

operators O of the structure O = ∑N
l=1 flσ

α
l , α = x,y,z,

with σ α
l Pauli matrices and fl = 1 or fl = (−1)l . Then,

fQ = (4N )−1 ∑N
lm=1〈OlOm〉 is a quantum Fisher information

and therefore a witness for multipartite entanglement [51–54].
In other words, divergent energy fluctuations can be associated
with divergent entanglement in the initial state. While an en-
tanglement witness in general only bounds entanglement and
cannot be considered an entanglement measure or monotone,
the quantum Fisher information has turned out to be a valuable
quantifier for entanglement at quantum phase transitions [54].

In the presence of strong energy density fluctuations [see
Eq. (4)], the cumulant generating function K(t) cannot be
extensive at short times as we have for noncritical states.
In contrast, it is one main result of this work that for
the considered models K(t) satisfies the following general
functional form:

K(t) = Laφ(tLb). (5)

In Fig. 1 one can see φ(τ ) for the quench in the Ising chain.
One obtains an excellent collapse of the data for different
system sizes with the exponents a = 0, b = 7

8 , and we have
defined τ = tLb. From the numerical data the exponent b can
be determined from the system-size dependence of the first
peak whereas the exponent a can be determined by performing
a scaling collapse. For the presented data this gives b =
0.875(2) and a = 0.001(5), consistent with b = 7

8 and a = 0.
By varying the symmetry-breaking field h, the main features
do not change except that the time scales become larger for
decreasing h. These data have been obtained using the ITENSOR

library [55] with a Trotter time step of �t = 10−4L−7/8 and
bond dimension χ = 200. We have checked that the data have
converged both concerning χ as well as �t .

The exponents a and b can be constrained by matching
the general form of K(t) to the expansion at small times. Be-
cause K(0) = ∂tK(t = 0) = 0 we have that �E2t2 ∝ La+2bt2

together with Eq. (4) and thus

a + 2b = 2d − 2�O . (6)
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FIG. 2. Dynamical quantum phase transition in the one-
dimensional transverse-field Ising chain for the same parameters as
in Fig. 1. The numerical data for the derivative φ′(τ ) = dφ(τ )/dτ

indicate a power-law divergence. An algebraic fit |τc(N ) − τ |−α to
the curve for N = 300, with τc(N ) the finite-size pseudocritical point,
gives an exponent α = 0.98(2).

While this constraint does not uniquely determine the individ-
ual exponents, knowing either a or b, however, is sufficient.
Importantly, the exponents a = 0 and b = 7

8 are exactly
compatible because for the transverse-field Ising chain we
have that d = 1 and �O = 1

8 .
Dynamical quantum phase transitions. While for short

times the initial increase of φ(τ ) is still quadratic, one observes
a prominent peak at larger times. In Fig. 2 numerical evidence
is provided that this peak develops into a nonanalytic structure
in the thermodynamic limit, which is the defining feature of
a DQPT [7]. Specifically, we plot φ′(τ ) = ∂τφ(τ ), showing
evidence for a power-law behavior in the vicinity of the
sharp structure. In particular, we find from a power-law fit
to the data that φ′(τ ) ∼ (τc − τ )−α with α = 0.98(2). The
system-size-dependent pseudocritical time τc(N ) has been
determined by the local maximum of φ(τ ) at a given N .

The emergence of a DQPT at a time τc implies the
breakdown of time-dependent perturbation theory in analogy
to the breakdown of high-temperature series expansions at
equilibrium thermal phase transitions. As will be shown later,
this has important consequences for quantum speed limits
[13–16]. While still for any system of finite size we can use
Eq. (3) to expand K(t) = −�E2t2/2 + O(t4), the radius of
convergence t∗(L) of this series is necessarily limited by the
critical τc,

t∗(L) = τcL
−b, (7)

with b given by Eq. (5). Importantly, t∗(L) vanishes in
the thermodynamic limit, which is different from previously
studied cases where the critical times of DQPTs have always
been found to be independent of system size.

Quantum speed limits. Quantum speed limits give general
bounds on the time scale for how fast quantum states evolve
in real-time dynamics [13–16]. This need not be the speed of
change for local observables, but rather quantifies at which
point in time a time-evolved state becomes distinguishable
from the initial one. Besides setting fundamental limits for the
dynamics in closed [13,14] and open [15,16] quantum systems,
quantum speed limits also have applications in optimal control

theory [56] and are believed to be important for many quantum
technologies such as quantum metrology, as has been argued,
for example, in Refs. [15,16].

Optimal distinguishability of two quantum states is
achieved when they are orthogonal. In terms of the dynamical
problem this implies a vanishing overlap or Loschmidt
amplitude [see Eq. (1)]. The Mandelstam-Tamm bound [13]
limits the time scale T necessary for a state becoming
orthogonal to itself under coherent real-time evolution with
a time-independent Hamiltonian by

T � π

2�E
. (8)

Although it is straightforward to imagine that states can
become orthogonal during time evolution for small systems,
e.g., a single spin performing Larmor precession in a magnetic
field, for a many-body system it appears unlikely in general
that Loschmidt amplitudes can vanish. To see this, consider
the spectral representation of the Loschmidt amplitude,

G(t) =
∑

ν

|〈φν |ψ0〉|2e−iEν t , (9)

with |φν〉 denoting the eigenstates of the final Hamiltonian H

and Eν the corresponding energies. As one can see from this
formula, by taking a system of finite size, exact zeros of G(t)
require a fine-tuned “phase condition” [35] on all e−iEν t to
exactly cancel all the involved terms, which is, in general, not
possible.

The situation, however, changes for large many-body sys-
tems. As anticipated before, the Loschmidt amplitude can be
interpreted as a conventional partition function at complexified
parameters. The complexification of parameters is important
for the equilibrium theory of phase transitions which leads to
the concept of Fisher [57] and Lee-Young zeros [58], a concept
which can consequently also be applied to G(t). Within this
analogy, G(t) is determined by its zeros zn in the complex
plane by extending t → z ∈ Z [7]: G(z) = eμ(z) ∏

n(z − zn),
with μ(z) a smooth function. The singular contribution Ks(t) to
K(t) is given by Ks(t) = − ∫

dz ρ(z) log(t − z), with ρ(z) =∑
n δ(z − zn) the density of zeros [27]. For a finite-size system

these zeros are generically located on isolated points in the
complex plane and require fine tuning to lie exactly on the
real-time axis because of the anticipated phase condition [35].
In the thermodynamic limit, on the other hand, the zeros
accumulate to form lines or areas. Whenever such a line or
area crosses the real-time axis, K(t) becomes nonanalytic [7],
as is the case at conventional equilibrium transitions [57,58].

The vanishing Loschmidt amplitude associated with these
zeros implies that at a DQPT the initial and time-evolved
state become optimally distinguishable. Thus, for the order
parameter quench of the critical state, we find that the time T

for distinguishability relevant for quantum speed limits is set
by the DQPTs giving

T = t∗(L) = τcL
−b. (10)

Notice that this close relationship between quantum speed
limits and DQPTs is not just restricted to the present problem,
but is rather general and not related to details of the studied
model system.
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While it has already been realized that entangled states can
lead to an enhanced system-size-dependent speed of evolution
[59–62], it is important to emphasize that the origin for the
time scale t∗(L) reported in the present work is different in
nature. This is because t∗(L) does not estimate the short-time
evolution on the basis of the first few cumulants but rather
it is the full radius of convergence which gives the profound
connection to DQPTs.

Infinitely connected Ising model. After having discussed the
main ideas, results for another paradigmatic model system for
phase transitions will be presented, the infinitely connected
transverse-field Ising model,

H0(h) = − J

N

N∑

l<m=1

Sz
l S

z
m − g

N∑

l=1

Sx
l , (11)

which, in contrast to the previous case, also exhibits phase tran-
sitions at nonzero temperatures. This system has its quantum
critical point at g/J = 1, separating a ferromagnetic phase
(g/J < 1) from a paramagnetic one (g/J > 1). The order
parameter of the transition is the magnetization M = ∑

l S
z
l ,

i.e., for the considered quench this implies O = M at g/J =
1. This model is exactly solvable even by adding the symmetry-
breaking order parameter because the Hamiltonian commutes
with �S2 = ∑

α=x,y,z S2
α , where Sα = ∑

l S
α
l . As a consequence,

the Hamiltonian becomes block diagonal in the eigenbasis
of �S2 where the largest of these blocks has a dimension of
only N + 1. Considering this largest block, one can study
substantially larger system sizes of up to N = 3000 spins.

In Fig. 3 the data collapse for the rescaled cumulant
generating function φ(τ ) is shown for different system sizes.
Again we find a = 0, which, using the constraint in Eq. (6),
implies b = 2

3 because of the scaling dimension �O = 1
3 for

the magnetization in the infinitely connected Ising model [63].
In accord with the results obtained for the one-dimensional
Ising chain, the derivative φ′(τ ) shows strong numerical
evidence for a power-law divergence. From an algebraic fit
|τ − τc|−α to the data, we find that α = 1.00(5).

Outlook. In order to experimentally observe DQPTs and
quantum speed limits for quenching a quantum critical state,
it is first necessary to measure Loschmidt amplitudes. This
is currently accessible in systems of trapped ions, where
G(t) has been recently measured [10,39], or cold atoms in
optical lattices where G(t) is also, in principle, experimen-
tally feasible using a protocol [64] that has been recently
implemented to measure entanglement properties in small
systems [65]. Moreover, the tomography technique proposed

FIG. 3. Dynamical quantum phase transition for the infinitely
connected Ising model in a transverse field at a longitudinal field
strength h/J = 0.2. (a) Rescaled cumulant generating function φ(τ )
for different system sizes N . (b) Zoom onto the vicinity of the first
peak located at τc(N ) on a double logarithmic scale, indicating again
an algebraic divergence for increasing system size. From a power-law
fit |τc(N ) − τ |−α to the data we find α = 1.00(5).

in Ref. [66] and experimentally realized in Refs. [38,67] can be
used to reconstruct Loschmidt amplitudes for noninteracting
fermionic systems. In all these quantum optical platforms,
however, the preparation of quantum critical ground states
is challenging. One route towards generating such states is
adiabatic state preparation, which has already been used to
tune noninteracting fermionic systems across a topological
phase transition with sufficiently high fidelity [68,69]. The
desired goal of creating a state close to the ground state at a
critical point is thus within the scope of current experiments
by stopping the sweep at the respective critical point.

Another interesting prospect of the present work is the
question of thermalization in the long-time limit for the con-
sidered nonequilibrium quench protocol. The transverse-field
Ising chain with a longitudinal field is nonintegrable [70] and
thus expected to be thermalizing. The superextensive energy
fluctuations are, however, not compatible with a thermal state.
How these strong fluctuations influence the thermalization
dynamics in the long-time limit is an interesting question for
future work.
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